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Genome-wide association study identifies new
loci associated with OCD
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To date, four genome-wide association studies (GWAS) of
obsessive-compulsive disorder (OCD) have been published,
reporting a high single-nucleotide polymorphism (SNP)-
heritability of 28% but finding only one significant SNP. A sub-
stantial increase in sample size will likely lead to further identi-
fication of SNPs, genes, and biological pathways mediating the
susceptibility to OCD. We conducted a GWAS meta-analysis
with a 2-3-fold increase in case sample size (OCD cases: N
= 37,015, controls: N = 948,616) compared to the last OCD
GWAS, including six previously published cohorts (OCGAS,
IOCDF-GC, IOCDF-GC-trio, NORDiC-nor, NORDiC-swe, and
iPSYCH) and unpublished self-report data from 23andMe Inc.
We explored the genetic architecture of OCD by conducting
gene-based tests, tissue and celltype enrichment analyses, and
estimating heritability and genetic correlations with 74 pheno-
types. To examine a potential heterogeneity in our data, we
conducted multivariable GWASs with MTAG. We found sup-
port for 15 independent genome-wide significant loci (14 new)
and 79 protein-coding genes. Tissue enrichment analyses impli-
cate multiple cortical regions, the amygdala, and hypothalamus,
while cell type analyses yielded 12 cell types linked to OCD (all
neurons). The SNP-based heritability of OCD was estimated

to be 0.08. Using MTAG we found evidence for specific genetic
underpinnings characteristic of different cohort-ascertainment
and identified additional significant SNPs. OCD was genetically
correlated with 40 disorders or traits- positively with all psychi-
atric disorders and negatively with BMI, age at first birth and
multiple autoimmune diseases. The GWAS meta-analysis iden-
tified several biologically informative genes as important con-
tributors to the aetiology of OCD. Overall, we have begun lay-
ing the groundwork through which the biology of OCD will be
understood and described.
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Introduction
Obsessive-compulsive disorder (OCD) is a neuropsychi-
atric disorder characterized by recurrent, unwanted thoughts
and/or repetitive behaviors1;2. It is relatively common (1-3%
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prevalence3, often begins in childhood and although medi-
cation and behavioral therapy are useful, symptom control is
imperfect, and the course is often chronic. Most individuals
with OCD also have a comorbid psychiatric disorder (e.g.,
tic disorders, anorexia nervosa, mood-, and/or anxiety disor-
ders)3;4 and early onset and tic-related OCD may be etiologi-
cally meaningful subtypes of the disorder5;6. OCD is respon-
sible for profound personal and societal costs7 and patients
are at a substantial risk of suicide (∼10 times higher than
the population prevalence)8 and show an increase in general
mortality9. OCD is highly heritable (∼50%)10;11, and first-
degree relatives of affected individuals have a 4-8 times in-
creased risk of developing the disorder11–13. It is hoped that
the identification of specific genes and biological pathways
mediating susceptibility to OCD will lead to improved under-
standing and perhaps to improved detection, differential diag-
nosis, and/or treatment of OCD. Unfortunately, several OCD
linkage studies (reviewed by Pauls et al.14) and >100 can-
didate gene studies (meta-analyzed by Taylor et al.15) have
produced inconsistent results. More recently, there have been
four published genome-wide association studies (GWAS) of
OCD. The first16 included 1,465 cases, 5,557 controls, and
400 trios. No genome-wide significant loci were identified,
but polygenic risk analysis revealed overlap with Tourette
syndrome and indicated that increased sample size will likely
reveal significant loci17. A second OCD GWAS18 had 1,406
cases and 3,655 controls and although a third GWAS meta-
analysis19 of these two studies revealed substantial heritabil-
ity of OCD risk based on common variation (0.28 ± 0.04), it
failed to identify genome-wide significant loci. The fourth
GWAS, recently published on medRxiv20, was comprised
of a total of 14,140 OCD cases and 562,117 controls and
revealed the first genome-wide significant hit for OCD on
chromosome 3. Sample size has clearly been the limiting
factor for gene discovery in OCD. Here we present GWAS
results obtained from a sample with a ∼ 2-3 fold increase in
case sample size (37,015 cases and 948,616 controls) over
the recent medRxiv paper. Cases and controls were derived
from 1) a previous OCD GWAS meta-analysis mentioned
above19, 2) ongoing studies in Scandinavia (NORDiC21 and
the Danish iPSYCH cohort22;23), which were also included
in the most recent OCD GWAS meta-analysis20, and 3) un-
published self-report OCD cases and controls from 23andMe
Inc.

Methods
Samples

We analysed genomic data from seven OCD case-control
cohorts of European ancestry. The meta-analysis included
1) partially published data from Scandinavia including
NORDiC-NOR (365 OCD cases, 315 controls), NORDiC-
SWE (977 OCD cases, 3,200 controls21), and iPSYCH
(2,678 OCD cases, 10,410 controls) (data was included in
the recently published OCD GWAS20; 2) the three datasets
from the previously published OCD PGC-freeze 119), com-

prised of OCGAS18 (986 OCD cases, 1,023 controls; with
changed control-inclusion compared to the original publica-
tion), IOCDF-GC (1,519 OCD cases, 3,541 controls16), and
IOCDF-GC-trio (323 complete trios); and 3) unpublished
self-report OCD cases and controls from 23andMe (30,167
OCD cases, 929,804 controls). Together, the GWAS meta-
analysis included 37,015 OCD cases and 948,616 controls
of European ancestry. We further conducted three separate
GWAS analyses, a) combining all clinical cases primarily as-
certained for OCD (OCD PGC-freeze1 and NORDiC sam-
ples (NORDiC-NOR and NORDiC-SWE), in the following
referred to as "freeze1+NORDiC"), b) clinical cases obtained
through a population-based sample primarily ascertained for
another comorbid psychiatric disorder (iPSYCH), and c) self-
report samples (23andMe). We also conducted three mul-
tivariable GWAS analyses with MTAG for the same sub-
groups as described above. Cohort specific sample and an-
alytic details can be found in the following and Supplemen-
tary Table S1 provides an overview of the individual cohorts.
Data collections were approved by the relevant institutional
review boards at all participating sites. Where required, all
participants provided written informed consent.

GWAS analysis NORDiC-NOR & NORDiC-SWE

pre-GWAS Quality Control (QC)

We assembled two separate NORDiC case/control datasets
from genotype array data for our GWAS. The first consisted
of 647,335 variant calls across a total of 1,107 NORDiC-
SWE case and 3,500 Swedish control samples. The second
consisted of 482 NORDiC-NOR case and 343 Norwegian-
ancestry control samples. The Swedish GWAS was a merger
across a total of four different cohorts (one case-only, three
control-only) whereas the Norwegian GWAS was a merger
across 3 cohorts (two case-only, one control-only). Variant-
level QC on the data removed SNP markers where there was
evidence of excess missingness in any of the input cohorts,
case/control missingness difference, or evidence of clustering
artifact. Sample-level QC on the data removed individuals
with excess missingness and instances of cryptic relatedness.
Sample-level QC also identified a subset of samples of likely
European ancestry based on clustering with 1000 genomes
data24, ensuring the construction of datasets that are homoge-
neous and less prone to potential effects of population strat-
ification. The process left us with 492,554 QC-passing vari-
ants across the NORDiC-SWE GWAS data (1,107 cases and
3,500 controls) and 479,358 QC-passing variants across the
NORDiC-NOR data (407 cases and 340 controls). Please
refer to the section ’GWAS details for NORDiC-NOR &
NORDiC-SWE’ in the supplemental text for details specific
to the Swedish and Norwegian QC and GWAS analyses.

QC and imputation implemented in RICOPILI

We used the Rapid Imputation and COmputational PIpeLIne
for Genome-Wide Association Studies (RICOPILI;25)
to run an automated round of pre-imputation QC on the
genotype data from 492,554 QC-passing variants across
the full unpruned datasets of NORDiC-SWE (1,107 cases
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and 3,500 controls) and 479,358 QC-passing variants across
NORDIC-NOR (407 cases and 340 controls), and conducted
imputation on the genotype data using the Haplotype Refer-
ence Consortium (HRC) reference panel. All subsets of the
analysis were done using RICOPILI v2018_Dec_7.001. The
pre-imputation RICOPILI QC step involved a series of hard
filters on variant and sample level data, including removing
variants with pre-sample pruning call rate < 0.95, samples
with call rate < 0.98, FHET outside of +/- 0.20, samples with
discrepancies between reported and derived sex, and post
sample-pruning variants that met any of the following: 1)
call rate < 0.98, 2) missing difference > 0.02, 3) invariant
positions, 4) minor allele frequency (MAF) > 0.01, 5) Hardy-
Weinberg equilibrium (HWE) p < 1x10−6 in controls, and 6)
HWE p < 1x10−10 in cases. After the QC described we were
left with 481,323 QC-passing variants across 1,077 cases and
3,486 controls in NORDiC-SWE, and 469,618 QC-passing
variants across 404 cases and 340 controls in NORDiC-NOR.

After sample and variant pruning we next used RICOPILI’s
impute_dirsub module to perform imputation using HRC
genotypes as a reference panel. In our imputation run we
used eagle v2.3.5 for pre-phasing, and minimac3 v2.0.1 for
imputation. We derived 3 different imputed callsets from
this process: 1) a set of high confidence imputed genotypes
(2,771,425 in NORDiC-SWE, 3,043,464 in NORDiC-NOR),
2) a set of imputed best-guess genotypes with medium
level accuracy (7,112,906 in NORDiCSWE, 7,277,174 in
NORDiC-NOR), and 3) a set of variants for which impu-
tation accuracy was lowered in order to increase the total
number of variants included in the imputation (9,021,638 in
NORDiC-SWE, 8,964,589 in NORDiC-NOR).

GWAS

We ran our GWAS across the largest dataset of imputed
variants that were generated during the imputation process
on a subset of samples that were of European ancestry.
We intersected the RICOPILI QC-pruned set of samples
with our own set of relatedness-pruned European ancestry
samples described earlier to obtain a set of 977 cases and
3,200 controls for NORDiC-SWE GWAS, and 365 cases
and 315 controls for NORDiC-NOR OCD GWAS. We
conducted principle component analysis (PCA) on these
samples across high-confidence imputed genotypes using
the pacer_sub RICOPILI module and tested the first 20 PCs
for significant association with sample case/control status
(significant = p-value < 0.05/20). We identified PCs 1, 3
and 14 as significant predictors and used them as covariates
in the NORDiC-SWE GWAS. Along the same lines we
identified PCs 1, 2, 3 and 4 as significant predictors and used
them as covariates in the NORDiC-NOR GWAS.

GWAS analysis iPSYCH

Danish nation-wide population-based case-control samples
were collected in the scope of the ’Danish OCD and Tourette

Study’ (DOTS) within ’The Lundbeck Foundation Initiative
for Integrative Psychiatric Research’ (iPSYCH). Individuals
were not primarily ascertained for OCD; OCD cases were
drawn from cases that also presented a diagnosis of another
psychiatric disorder and from controls with a diagnosis of
OCD.

Heel prick blood samples had been collected from all babies
in Denmark born between 1981 and 2005. Genetic informa-
tion was obtained by the Statens Serum Institut (SSI) at the
Danish Neonatal Screening Biobank (DNSB). The genetic
information was linked with the Danish Civil Registration
System and thereby coupled with the Danish Psychiatric
Central Research Register which collects patient data of
individuals treated in psychiatric hospitals or in outpatient
psychiatric clinics. OCD cases met ICD10 (F42) criteria,
controls were randomly selected from the same birth cohorts
and excluded individuals with a F42 diagnosis.

Genotyping was performed on the PsychChip v 1.0 array
(Illumina, San Diego, CA, USA) at the Broad Institute of
MIT and Harvard (Cambridge, MA, USA). Genotyping and
data analysis was performed in 25 batches. Genotype data
was processed using RICOPILI performing stringent QC.
Samples with a call rate below 95%, with a sex mismatch,
between the sex obtained from genotype data and from the
register data, as well as related individuals were removed.
Principle component analysis was used to exclude ancestral
outliers from non-European descent. The data was imputed
using the HRC reference panel. The final data set included
2,678 OCD cases and 10,410 controls.

The study was approved by the Regional Scientific Ethics
Committee in Denmark and the Danish Data Protection
Agency. All analyses of the samples were performed on the
secured national GenomeDK high performance-computing
cluster in Denmark (https://genome.au.dk). Details of the co-
hort, data QC and GWAS analysis have been described else-
where22;26.

GWAS analysis OCD PGC-freeze1

The OCD PGC-freeze1 cohort refers to the OCD GWAS
meta-analysis previously published by the PGC, comprising
data from the ’OCD Foundation-Genetics Consortium’
(IOCDF-GC) and ’The OCD Collaborative Genetics Associ-
ation Study’ (OCGAS). Details of the cohorts and analysis
can be found in the primary publications16;18;27. Here,
we used the OCGAS and IOCDF-GC data from a recent
meta-analysis for which the data was re-analyzed with newly
matched controls20.

The IOCDF-GC cohort consists of a case-control sample and
a trio sample. The case-control cohort consists of 1,519 Eu-
ropean OCD cases and 3,541 matched controls. Part of the
controls were drawn from previously genotyped cohorts in-
cluding the Alzheimer’s Disease Genetics Initiative28, the
Center for Applied Genomics (CAG) at Children’s Hospi-
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tal of Philadelphia (CHOP)29, and the Breast and Prostate
Cancer Cohort Consortium (BPC3)30. The trio sample con-
sists of 323 complete trios of European ancestry. Cases and
trios were predominantly recruited from OCD specialty clin-
ics. Controls were recruited from Bonn, Germany and from
Capetown, South Africa. All cases met DSM-IV diagnosis of
OCD, while the controls from Bonn had no lifetime history
of any axis I disorders and the controls from Cape Town were
unscreened.

Genotyping was performed on the Illumina Human610-
Quadv1_B array (Illumina, San Diego, CA, USA). Standard
QC was performed using PLINK231. Samples with a call
rate <98%, sex discrepancy or ambiguous genomic sex, and
related samples (pihat>0.2) were removed. SNPs with a
genotyping rate <98%, with a MAF < .01, monomorphic
SNPs, CNV-targeted SNP probes, strand-ambiguous SNPs
with significant allele frequency differences or aberrant
LD correlations with neighbouring SNPs based on the
entire HapMap2 reference panel, SNPs with differential
missing rate between cases and controls (>0.02), SNPs
with P<1x10−6 (controls) or P<1x10−10 (cases) in HWE,
and SNPs with batch effect (P<1x10−5) in control cohorts
were removed. The same QC was performed on the trios,
additionally removing SNPs with Mendelian errors. For each
trio, the transmitted and untransmitted alleles were converted
into one case and one pseudo-control. Multidimensional
scaling analysis (MDS) was performed and samples with
significant outliers in the first five dimensions or when there
were no matching cases and controls for each dimension,
were removed. Phasing was done wit SHAPEIT232 and
imputation was performed with Minimac333. HRC reference
release 1.1 was used as a reference panel. PLINK2 was used
to run the GWAS, including SNPs with imputation score >
0.8 and MAF < 0.01, using logistic regression and the first
five and the 7th MDS components as covariates. For the
trio analysis, phasing and imputation were performed in the
same way, GWAS was conducted without covariates.

Participants for the OCGAS study were recruited at five dif-
ferent participating sites of the National Institute for Mental
Health at Johns Hopkins University School of Medicine,
Brown Medical School, New York State Psychiatric Institute
and College of Physicians and Surgeons at Columbia Univer-
sity, University of California Los Angeles (UCLA) School
of Medicine, Massachusetts General Hospital and Harvard
Medical School, National Institute of Mental Health, and
Keck School of Medicine at the University of Southern
California and was approved by each site’s IRB boards. Data
was collected between 2007 and 2014 and is comprised of
trios (affected proband and both parents) or a proband and an
unaffected sibling. MD- or PhD-level clinical psychologists
evaluated each individual using the Structured Clinical In-
terview for DSM-IV (SCID), the checklist of obsessions and
compulsions from the Y-BOCS, refined to include the age
of onset, age of offset, severity of each symptom, as well as
the Y-BOCS scores for the worst episode (lifetime), further
including course and treatment response variables. Children

older than 8 years were assessed in the same way, but using
the Kiddie-SADS instead of the SCID. Diagnostic status
was assigned based on the consensus of two psychiatrists or
psychologists independently evaluating each proband, and
was further reviewed by one of five members of the JHU
diagnostic consensus committee to ensure comparability
across all five participating sites. The chance-corrected
percent agreement between the diagnosticians for the diag-
nosis of OCD was K = 0.92; for age at onset of OCD, K =
0.88 (for age +/- 5 years), and Pearson’s r = 0.71. Cases
were required to meet DSM-IV criteria for OCD, with an
onset of symptoms before the age of 18 (mean = 9.4 years;
SD = 6.35). Individuals with a later age-of-onset, or with
a diagnosis of schizophrenia, brain tumors, Huntington’s
disease, Parkinson’s disease, Alzheimer’s disease, severe
mental retardation, not permitting an evaluation of psychi-
atric disorders, or Tourette’s disorder or OCD occurring
exclusively in the context of depression (secondary OCD)
were excluded. Samples were genotyped on the Ilumina
PsychChip array at USC.

GWAS analysis 23andMe

Population

Samples of European ancestry were drawn from the research
participant base of 23andMe, a private consumer genetics
and research company. The cohort has been described in
detail elsewhere34. All participants provided informed con-
sent, and answered online surveys. The cohort was selected
from participant data available on 1st September 2017 and
the analysis was reviewed and approved by a private institu-
tional review board (www.eandireview.com). All individuals
identified as cases have reported being diagnosed with OCD,
while controls have reported not having been diagnosed with
OCD. 30,167 OCD cases and 929,804 controls were included
in the final GWAS. Of the cases, 10,808 (35.83%) were male
and 19,359 (64.17%) were female. Of the controls, 443,336
(47,68%) were male and 486,468 (52,32%) were female. Of
the cases, 7,040 (23.34%) individuals were below the age of
30, 11,087 (36.75%) between 30 and 45, 7,056 (23.39%) be-
tween 45 and 60, and 4,984 (16.52%) above the age of 60.
Of the controls, 91,287 (9.82%) individuals were below the
age of 30, 230,696 (24.81%) between 30 and 45, 257,793
between 45 and 60, and 350,028 (27.73%) above the age of
60.

Genotyping, QC, and imputation

Extraction of DNA and genotyping was performed by the
National Genetics Institute (NGI), a CLIA licensed clinical
laboratory and a subsidiary of Laboratory Corporation of
America. Individuals were genotyped on four different
genotype platforms. Two (V1, V2) platforms were vari-
ants of the Illumina HumanHap550+ BeadChip, including
25,000 custom SNPs, one platform (V3) was the Illumina
OmniExpress+ BeadChip, with custom SNPs to increase
overlap with V2, and one platform (V4) is in current use
and a fully customized array. Individuals that failed to meet
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a 98.5% call rate were re-analyzed. Only individuals with
> 97% European ancestry were included in the analysis.
European ancestry was determined through an analysis of
local ancestry using a support vector machine to classify
individual haplotypes into one of 31 reference populations.
Those classifications were then fed into a hidden Markov
model (HMM) which accounts for incorrect assignments
and switch errors, thereby giving probabilities for each
reference population per window (100 SNPs). Simulated
admixed individuals were then used to re-calibrate the HMM
probabilities so the assigned ancestries were consistent
with the simulated individuals. Publicly available datasets
(Human Genome Diversity Project, HapMap, and 1000
Genomes) and 23andMe research participants with four
grandparents from the same country served as the reference
population. Identity-by-descent (IBD) estimation was used
to define a maximal set of unrelated individuals for each
analysis. Individuals who shared less than 700 cM IBD were
defined as unrelated (e.g. approximately less related than
first cousins).

The merged UK10K and 1000 Genomes Phase 3 panel was
used for imputation. Finch, an internally developed tool, that
implements the Beagle haplotype graph-based phasing algo-
rithm, modified to separate the steps of graph construction
and phasing, was used for phasing. Imputation was then per-
formed as an estimated allele dosage averaged over a set of
possible imputed haplotypes for each individual.

GWAS

Genetic association testing was performed using logistic re-
gression, assuming an additive model for allelic effects, in-
cluding age, sex, first five PCs, and the genotype platform as
covariates. For imputed data, the imputed dosages rather than
the best-guess genotypes were used. The association p-value
was computed using a likelihood ratio test.

GWAS meta-analysis

Before the above described datasets were combined in
an OCD GWAS meta-analysis, each file was filtered and
formatted in a way that they could be more easily combined.
This involved aligning each SNP to the HRC genome35

and excluding ambiguous SNPs and SNPs of likely poor
quality. All variants had to meet the following criteria
for inclusion: Case and control minor allele frequency >
1%, imputation-score > 0.8 and < 1.2. Strand-ambiguous
A/T and C/G SNPs were removed if they had a frequency
between 0.4 and 0.6. Was their frequency outside of that
range, their frequency was compared to the frequency in the
reference dataset. It was only retained if the frequency was
either below 0.4 or above 0.6 in both, the OCD summary
statistic and the reference dataset. If a variant did not overlap
with the variants in the HRC reference, it was removed.

To combine the seven OCD case-control datasets we con-
ducted an inverse variance weighted meta-analysis using
METAL36. The genome-wide significance threshold for the

GWAS was set at a p-value of 5.0x10−8. For each individual
GWAS as well as for the meta-analysis we calculated the
genomic inflation factor (λ1000) to identify any residual
population stratification of systematic technical artifact. We
further calculated the linkage disequilibrium score (LDSC)
regression intercept to evaluate the relative contribution of
polygenic effects and residual artefacts such as population
stratification and cryptic relatedness. For the analysis we
used pre-computed LD scores from European-ancestry
samples in the 1000 Genomes Projects (see web resources)
and filtered our dataset on high-quality common SNPs with
an INFO score >0.9. The influence of confounding factors
was evaluated by comparing the estimated intercept of the
LD score regression to one. One is the expected value of the
LDSC intercept under the null hypothesis of no confounding
(e.g. from population stratification). Heterogeneity in
test-statistic across the seven datasets was assessed with
Cochran’s I2 statistic. To identify any cohort in which the
summary statistics significantly deviated from the rest of the
cohorts, we performed sign test analyses for the top SNPs
(inclusion threshold of p = 1.00x10−4, p = 1.00x10−5, p
= 1.00x−6, and p = 5.00x10−8) between each cohort and
leave-one out meta-analyses of the remaining 6 datasets.

Gene-based tests

All gene-based tests were conducted using MAGMA
v1.0837. Gene units were defined using three separate
models: 1) the standard MAGMA model based on prox-
imity, with a SNP falling within the general gene region,
here defined as 35kb upstream of the transcription start
site to 10kb downstream of the transcription start site; 2)
a model where genes units are formed across 13 differ-
ent brain tissues from GTEx by defining SNPs as eQTLs
for genes in each tissue in question38; 3) a model defined
by SNPs linked to gene regions via 3D chromatin inter-
actions across eight brain tissue datasets39. All MAGMA
gene-based tests used the following inclusion filters: MAF
≥ 0.01, INFO ≥ 0.9, and additional MAGMA parameters
‘use=SNP,P ncol=Neff_half’. The ’use=SNP,P’ means that
the SNP IDs are derived from the ’SNP’ column of input
daner files, and that p-values were derived from the ’P’ col-
umn of these files. The ‘ncol=Neff_half’ refers to the defi-
nition of N per SNP as the effective sample size and can be
defined as 4*Nca*Nco/(2*(Nca+Nco)) in a single cohort. A
Bonferroni threshold for significance was set based on the to-
tal number of tests performed across these three models com-
bined (45,664) and was equal to 0.05 / 45,664 = 1.09x10−6.

Tissue / celltype enrichment analyses

We followed a tissue / celltype enrichment analysis protocol
recently described in Bryois et al.40. Consistent with this
we utilized the codebase for this analysis, and in particular
the sets of genes that mark different highlighted tissue and
celltype datasets, that were made available by the manuscript
authors at https://github.com/jbryois/scRNA_disease.
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We selected 3 datasets that had been preprocessed by Bryois
et al.40 for inclusion in this analysis. The first features
tissue-specific gene expression data derived from GTEx41,
with a total of 37 tissues represented in the data. The second
and third are derived from Zeisel et al.42, and represent broad
celltype groups across the entirety of the mouse nervous
system, along with a high resolution single celltype map of
the same data. In Zeisel et al.42, a total of 39 broad celltype
groups and 265 individual celltypes are represented.

We followed the analysis protocol described in Bryois et
al.40 for the analyses of 37 tissues from GTEx and 39 broad
celltype groups from Zeisel et al.42, and utilized a simplified
approach for the analysis of each of the 265 individual
celltypes from Zeisel et al.42. For the tissue and broad
celltype group datasets, we conducted the full protocol from
Bryois et al.40 which included analyzing tissue/celltype
enrichment using both LDSC43 and MAGMA44. We only
considered a tissue / celltype significantly enriched if the
FDR-adjusted p-value was less than 0.05 in both the LDSC
and MAGMA-based tests. Due to the high computational
demands of testing 265 individual celltypes across the mouse
nervous system with LDSC, we limited the protocol to only
include the MAGMA assessment. We considered a celltype
significant if it had an FDR-adjusted p-value less than 0.05.

All statistical analysis downstream of LDSC and MAGMA
(namely, p-value adjustment) was done using R v4.0.0, and
all plotting was done inside of R v4.0.0 using the package
ggplot2 v3.3.2. FDR p-value adjustments were performed
using the R function p.adjust(method=”fdr”). Bonferroni
p-value adjustments were performed using the R function
p.adjust(method=”Bonferroni”).

Multivariable GWAS with MTAG

We used MTAG45 to conduct multivariable GWAS analy-
ses for the OCD samples. MTAG combines related traits
into a meta-analysis by leveraging the shared heritability
among the different traits. For this purpose we included
the same summary statistics that also formed the basis for
the meta-analysis using METAL, i.e., the freeze 1 data from
the original meta-analysis together with the NORDiC sam-
ples (freeze1+NORDiC, see above), the iPSYCH dataset, and
the 23andMe dataset. But unlike with the METAL-based
meta-analysis, the MTAG analysis results in three subgroup-
specific estimates (i.e., freeze1+NORDiC, iPSYCH, and
23andMe) that gain power by exploiting the high shared her-
itability across all subgroups compared to separate subgroup
specific analysis. Through this approach we aimed to ad-
dress potential concerns about heterogeneity in our pheno-
typing strategies for the three individual sub datasets (see be-
low in the discussion). We performed maxFDR analyses to
approximate the upper bound on the FDR of MTAG results.

SNP-based heritability and genetic correlation with
other disorders and traits

LDSC43 was used to evaluate the contribution of all included
SNPs on the variance in liability to OCD (SNP-based her-
itability). The analysis was performed using pre-computed
LDscores from samples restricted to European-ancestry in
the 1000 Genomes Project43;46, filtered for SNPs included
in the HapMap3 reference panel47. SNP-heritability was es-
timated based on the slope of the LD score regression, with
heritability on the liability scale calculated assuming a 3%
population prevalence of OCD. SNP-heritability was calcu-
lated for the whole OCD sample as well as for a) clinical
samples (NORDiC-SWE, NORDiC-NOR, and freeze1), b)
samples not primarily ascertained for OCD (iPSYCH), and c)
self-reported biobank samples (23andMe). Cross-trait LDSC
regression was used to estimate the genetic correlations of
OCD with 74 other phenotypes (see Supplementary Table S7
for an overview of all tested traits). LDSC estimates the ge-
netic correlation between two traits by regressing the prod-
uct of the Z-scores from GWASs on the LD score which
represents the genetic co-variation between the two traits
based on all polygenic effects captured by the included SNPs.
Again, European-ancestry LD-scores from the 1000Genomes
project, restricted to SNPs included in the HapMap3 refer-
ence panel, were used. Cross-trait genetic correlations were
calculated for the whole OCD sample, for the same three
sub-samples used in the SNP heritability analysis, and for
the three MTAG analyses.

Results

GWAS meta-analysis

We conducted a GWAS meta-analysis of seven European-
ancestry case-control cohorts, including a total of 37,015
OCD cases and 948,616 controls with 6,829,695 autosomal
SNPs. Five datasets have been published in previous OCD-
GWASs - the OCGAS and IOCDF-GC cohorts have been in-
cluded in the first OCD GWASs16;18;19, while the NORDiC-
SWE, NORDiC-NOR, and iPSYCH cohorts have been in-
cluded in a recent preprint20. For this GWAS, additional
samples from 23andMe (30,167 cases and 929,804 controls)
were added to these previously published datasets. The QQ-
plot (Figure 1B) and Lambda (λ = 1.241; λ1000 = 1.003) of
the meta-analysis was in accordance with the assumption of
polygenicity and did not show any evidence for residual strat-
ification effects. 15 independent SNPs exceeded the genome-
wide threshold for significance (See Figure 1, Supplemen-
tary Figures S2-S16 for regional association plots and forest-
plots). The genome-wide significant SNPs were located on
chromosomes 1, 2, 3, 4, 5, 6, 8, 11, 12, 15, and 21. The SNP
with the lowest p-value was rs10877425 on chromosome 12
(P = 1.14x10

10
) and there were an additional 27 SNPs that

were genome-wide significant in this locus.
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Gene-based tests

Gene-based tests were conducted using MAGMA v1.08 to
determine if, based on various criteria, any single protein-
coding genes carried a load of common variation in OCD
relative to controls that passed the Bonferroni threshold for
significance. We conducted three sets of tests, each one
linking common variation to individual genes via different
means. The first was the standard MAGMA approach, con-
sidering SNPs as part of the signal for a given gene if it falls
within the region 35kb upstream of the gene transcription
start site to 10kb downstream of the transcript stop site
(18,048 tests total). The second, e-MAGMA, considered
SNPs as members of a gene if they were called as eQTLs in
at least one brain tissue type assessed in GTEx (9240 tests
total). The third, h-MAGMA, considered SNPs as members
of a gene if they fell within gene exons or promoters, or
alternatively if they were in distal intronic/intergenic regions
but overlapped with a chromatin interaction detected in fetal
or adult brain that linked back to the gene body (18,376
tests total). The threshold for significance was set based
on the sum of the described tests performed (0.05/45,664 =
1.1x10−6).

We identified a total of 101 tests that passed the Bonfer-
roni threshold for significance, mapping back to a total of
79 distinct protein-coding genes (Figure 2). Only one of
these genes, WDR6, was observed as significant across all
tests. Results from c-MAGMA, e-MAGMA and h-MAGMA
captured overlapping and unique significant single-gene re-
sults (Figure 3). In some instances, the extended versions of
MAGMA (e-MAGMA and h-MAGMA) provide additional
context to the gene-based signal. For example, h-MAGMA
suggests that the significantly associated geneHCN1 is con-
centrated within promoter, exonic and chromatin-interacting
loci. In another example, only e-MAGMA implicates a set
of 6 genes within a region on chromosome 6, suggesting that
the eQTLs that are a part of this signal could not be captured
via simple gene overlap or 3D chromatin interactions. All
gene-based test results are provided in Supplementary Table
S2-S5.

Tissue / celltype enrichment analyses

In our enrichment analyses focused on broad tissues as
defined by GTEx41 we identified five different tissues that
carried a significant amount of OCD heritability enrichment.
All tissues were found within the brain, and included the
Anterior cingulate Cortex, Frontal Cortex, Amygdala, and
Hypothalamus (Figure 4).

Enrichment analyses focused on broad celltypes were carried
out in the same manner as tissue enrichment analyses and
identified a total of five broad celltypes that are significant
based on the methods used (see methods). Significant results
included telencephalon projecting excitatory and inhibitory
neurons, di- and mesensephalon exicitatory and inhibitory
neurons, and dentate gyrus granule neurons (Figure 4).

We conducted these enrichment analyses on a total of 265
fine-grain celltypes from the mouse nervous system42, and
identified a total of 44 that survived FDR correction (Sup-
plementary Table S10). We formed 35 groups of single cell
types where N ≥ 2 based on the ‘Description’ column from
the table in http://mousebrain.org/celltypes/ . We then took
the mean -log10 p-value from each group, and performed
FDR correction on these aggregated statistics in order to de-
termine if any of these groups carried a significant excess. We
identified a total of seven significant classifications, with key
results including D1 and D2 medium spiny neurons, along
with excitatory neurons from hippocampus C1, and cerebral
cortex (Figure 5).

MTAG analyses

Leveraging the shared heritability among the three char-
acteristically differing OCD sub-samples (freeze1+Nordic,
iPSYCH, 23andMe), we performed three separate multi-trait
analysis with MTAG, with the aim to extract specific genetic
underpinnings characteristic of a) clinically ascertained
OCD cases (freeze1+Nordic) b) OCD cases comorbid with
another psychiatric disorder (iPSYCH), and c) self-report
OCD status (23andMe).

For freeze1+NORDiC (clinically ascertained) we identified
seven genome-wide significant associated SNPs (see figure
1C for the Manhattan plot and figure 1D for the qq-plot).
Four of these SNPs overlap with the original GWAS meta-
analysis of OCD, one genetic region overlaps with the MTAG
analysis focusing on the iPSYCH sample (comorbid ascer-
tainment) and the MTAG analysis focusing on the 23andMe
sample (self-report), one SNP overlaps with the MTAG anal-
ysis focusing on the iPSYCH sample, and one is unique for
clinically ascertained OCD cases. Max FDR was calculated
at 0.0371. For iPSYCH we identified 15 significant SNPs,
of which 11 regions (the most significant SNP in a region
varied) overlap with the original GWAS meta-analysis, one
overlaps with the other two MTAG analyses, and four SNPs
overlap with one of the other two MTAG analyses. Max
FDR was calculated at 0.0154. For 23andMe we identified
18 genome-wide significant SNPs, of which 12 regions over-
lapped with the original GWAS meta-analysis, three over-
lapped with at least one of the other MTAG analyses and
three were uniquely significant in this analysis. Max FDR
was calculated at 0.0035.
A total of five loci were significant in all three runs of MTAG
(one locus was tagged by two different SNPs: rs13262595 in
freeze1+NORDiC and rs4129585 in iPSYCH and 23andMe)
and four of these were significant in the original meta-
analysis of these samples. Overall p-values of the lead SNPs
appeared more significant in the MTAG analyses when com-
pared to the original GWAS meta-analysis. See Supplemen-
tary Table S6 for an overview of all significant SNPs in
the MTAG analyses compared to the original GWAS meta-
analysis.
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SNP-based heritability and genetic correlation with
other disorders and traits

The SNP-based heritability of OCD, calculated using LD-
score regression (LDSC), was estimated to be 0.085 (SE
= 0.004) for the whole sample, assuming a 3% population
prevalence. Subdividing the sample into the three subsets
(freeze1+NORDiC, iPSYCH, 23andMe) and keeping the
population prevalence at 3% yielded liability scale heritabil-
ity estimates of 0.321 (SE = 0.039), 0.25 (SE = 0.045),
and 0.081 (SE = 0.005), respectively. Genetic correlations
between the three sub-samples were high, reaching rg = 0.88
(SE = 0.13, P = 2.01x10−12) between freeze1+NORDiC
and iPSYCH, rg = 0.64 (SE = 0.06, P = 5.56x10−29)
between freeze1+NORDiC and 23andMe, and rg = 0.85 (SE
= 0.09, P = 1.52x10−21) between iPSYCH and 23andMe.

Of the genetic correlations between OCD and 74 psychiatric,
personality, psychological, substance-use, neurological,
cognition, socioeconomic status, autoimmune, cardio-
vascular, anthropomorphic, and fertility traits, 40 exceeded
the FDR-corrected significance threshold (Figure 6, Sup-
plementary Table S7). OCD positively correlated with
all psychiatric disorders, with especially high correlations
with ANX, depressive disorder/MDD, PTSD, AN, and
TS. Also, alcohol- and nicotine dependence correlated
positively with OCD, as well as several other smoking
related phenotypes. While intelligence and educational
attainment correlated negatively, OCD correlated positively
with memory. Moreover, OCD was significantly positively
genetically correlated with neuroticism (especially with
the worry sub-cluster), conscientiousness, loneliness, and
tiredness, while the genetic correlation with household
income, subjective well-being, self-rated health, and sleep
duration was negative. Notable are also the significant
negative correlations with the three autoimmune disorders
ulcerative colitis, Crohn’s disease, and inflammatory bowel
disease and a positive correlation with adult-onset asthma.
Moreover, OCD showed a positive genetic correlation with
ALS and childhood maltreatment and a negative correlation
with BMI and age at first birth. Correlations with other
neurological, cardiovascular, anthropomorphic and fertility
traits did not demonstrate a significant correlation with OCD.

We further examined the genetic correlations of the three
OCD sub-samples, freeze1+NORDiC, iPSYCH, and
23andMe, and the 74 traits (Supplementary Figure S17, and
Supplementary Table S8). All three sub-samples showed
significant genetic correlations in the same direction for
most psychiatric disorders (except ADHD and PTSD),
neuroticism, neuroticism worry sub-cluster, and subjective
well-being. Across all trait-categories, the correlations of the
clinically ascertained sub-sample were generally lower than
the correlations of the other two sub-samples, with the ex-
ception of the three autoimmune disorders ulterative colitis,
Crohn’s disease, and inflammatory bowel disease, as well as
several anthropomorphic traits. Also for the substance-use

phenotypes we found divergence in the correlation pattern -
only the self-reported samples show a negative correlation
with IQ, educational attainment, verbal-numerical reasoning
and household income.

We also repeated the genetic correlation analyses for the
OCD summary statistics resulting from the three MTAG
analyses (Supplementary Figure S18, and Supplementary
Table S9). As expected, correlations with all three OCD
MTAG summary statistics were more uniform than the corre-
lations with the individual sub-samples (Supplementary Fig-
ure SS17) and similar to the genetic correlation estimates of
the over all OCD GWAS meta-analysis (Figure 6).

Discussion
Here we report results from the largest OCD GWAS to date.
We find support for 15 independent genome-wide signifi-
cant loci (14 new) and 79 protein coding genes in gene-
based tests. Tissue enrichment analyses implicate multi-
ple cortical regions, the amygdala and hypothalamus while
cell type analyses yielded 12 cell types linked to OCD (all
neurons). The SNP heritability of clinically ascertained
samples (freeze1+NORDiC; 0.318) was comparable to sam-
ples ascertained for a different co-morbid disorder (iPSYCH;
0.254) but higher than self-reported OCD samples (23andMe;
0.081), although all three sub-samples were highly corre-
lated. OCD was genetically correlated with 40 disorders or
traits – positively with all psychiatric disorders and nega-
tively with BMI, age at first birth and multiple related autoim-
mune diseases. Overall, OCD appears to be on a trajectory
similar to other psychiatric disorders in terms of common-
variant discovery as sample size grows.
We replicated the one previously described20 genome-wide
significant locus for OCD at (rs2581789 at 3p21.1) and re-
fined this hit (rs2564930 is now the lead SNP; see Supple-
mentary Figure S6). As described before20, this region has
previously been associated with a broad range of other psy-
chiatric disorders and related traits, including schizophre-
nia48, well-being49, and the worry-subcluster of neuroti-
cism50. This variant was genome-wide significant in all three
MTAG analyses. We also describe, for the first time, an asso-
ciation between OCD and the major histocompatibility com-
plex (MHC) region of chromosome 6 (Supplementary Fig-
ure S7). The lead SNP, rs9265969, is just 6kb away from
the HLA-B gene. This is notable for multiple reasons. First,
much attention has been devoted to the possible alterations of
the immune system in OCD51 and there is a familial link be-
tween autoimmune diseases and OCD52. Second, other psy-
chiatric disorders (e.g., schizophrenia and bipolar disorder)
have shown association with the MHC48;53, with schizophre-
nia’s association with the MHC locus arising in substantial
part from many structurally diverse alleles of the comple-
ment component 4 (C4) genes54. It will be interesting to see
whether imputation of C4 alleles using SNP data uncovers
an association with OCD, or like bipolar disorder, reveals no
association with C4.
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We further found OCD to be associated with rs4702 in the
5’ UTR of the gene FURIN (Supplementary Figure S9). This
variant is a known eQTL, with the OCD risk variant (G) asso-
ciated with decreased expression in the brain55. Of note, the
same variant has previously been associated with schizophre-
nia and bipolar disorder with the same direction of effect48;53.
There were 12 other genome-wide significant hits, includ-
ing 2 intergenic loci, 3 that are multigenic, and 7 where
a single gene is contained within the genome-wide signifi-
cant region (these 7 genes are HCN1, LINC00970, UNC5D,
LINC02106, BRWD1, SLC39A8 and LINC01122). Little is
known about the 3 LINC RNA genes, although LINC01122
is highly expressed in the brain relative to other tissues in
GTEx. HCN1 encodes a hyperpolarization-activated cation
channel that contributes to spontaneous rhythmic activity in
both heart and brain and rare variants in this gene have been
associated with epilepsy56. UNC5D is a receptor for netrin-1
and is thought to play a role in axon guidance by mediating
axon repulsion of neuronal growth cones in the developing
nervous system57. BRWD1 is thought to act as a transcrip-
tional regulator involved in chromatin remodeling and is lo-
cated within the Down syndrome region-2 on chromosome
2158. SLC39A8 encodes a plasma membrane transporter me-
diating the cellular uptake of zinc and manganese, two diva-
lent metal cations important for development, tissue home-
ostasis and immunity59. Of note, in a small study zinc was
used as an adjuvant to fluoxetine and produced improved re-
sponse60.

We performed three sets of gene-based tests using MAGMA
(standard MAGMA44, e-MAGMA61 and h-MAGMA39) to
link common variation to protein-coding genes. A total of 79
genes were implicated, including 21 genes that were found
with at least two versions of MAGMA, and one gene (WDR6)
that was found with all three methods (see Figure 2 and Fig-
ure 3). WDR6 is a member of the WD repeat protein family
which is implicated in cell growth arrest62. We further per-
formed three sets of multivariable GWAS (MTAG) to obtain
ascertainment specific estimates while gaining power through
leveraging the shared heritability among the subgroups. A
total of five loci were significant in all three runs of MTAG
(see Supplementary Table S6) and four of these were sig-
nificant in the standard GWAS. The one MTAG-significant
locus that was not significant in the standard GWAS con-
tains TSNARE1, which encodes a protein thought to play
a crucial role in intracellular protein transport and synap-
tic transmission63 and has been repeatedly associated with
schizophrenia and other neuropsychiatric traits64.

We used MTAG45 to conduct multivariable GWAS analy-
ses for the OCD samples. MTAG combines related traits
into a meta-analysis by leveraging the shared heritability
among the different traits. For this purpose we included
the same summary statistics that also formed the basis for
the meta-analysis using METAL, i.e., the freeze 1 data from
the original meta-analysis together with the NORDiC sam-
ples (freeze1+NORDiC, see above), the iPSYCH dataset, and
the 23andMe dataset. But unlike with the METAL-based
meta-analysis, the MTAG analysis results in three subgroup-

specific estimates (i.e., freeze1+NORDiC, iPSYCH, and
23andMe) that gain power by exploiting the high shared her-
itability across all subgroups compared to separate subgroup
specific analysis. Through this approach we aimed to ad-
dress potential concerns about heterogeneity in our pheno-
typing strategies for the three individual sub datasets (see be-
low in the discussion). We performed maxFDR analyses to
approximate the upper bound on the FDR of MTAG results.
Our tissue enrichment results are consistent with other psy-
chiatric disorders in that only brain tissues were found to be
enriched for OCD heritability (Figure 4). Specific tissues
were the anterior cingulate cortex, frontal cortex, amygdala,
and hypothalamus, although a number of other brain regions
approached significance, including sub-components of the
striatum. Imaging studies as well as neuropsychological and
treatment studies have implicated a cortico–thalamo–striato-
cortical (CTSC) circuit in the pathophysiology of OCD14.
Therefore, while there is some overlap in brain regions impli-
cated by OCD genetics and imaging, larger studies and more
precise brain tissue expression data are needed to clarify this
relationship. We next sought to identify cell-types enriched
for OCD heritability using single-cell RNA sequencing data.
As shown in Figure 5, a total of 12 cell types reached sig-
nificance, including multiple types of cortical neurons and
both dopamine D1 and D2 receptor-expressing medium spiny
neurons (MSNs) of the striatum. MSNs are a special type
of GABAergic inhibitory cells representing 95% of neurons
within the human striatum, a central structure of the CTSC
circuit mentioned above.
With regards to the difference in reported liability-scale heri-
tability for the three sub samples there could be multiple rea-
sons. For example, on average our freeze1+NORDiC sub
sample (as well as the iPSYCH sub sample) likely includes
more severely and more chronically affected individuals in
contrast to the 23andMe sub sample (which might represent
on average healthier individuals within the OCD spectrum).
The effect of such a difference on heritability estimates and
variance explained has been reported before65;66.
Our LDSC results revealed that OCD was genetically cor-
related with 40 disorders or traits (Figure 6). This included
positive correlations with all psychiatric disorders, most no-
tably anxiety, depression, PTSD, anorexia and Tourette syn-
drome. These results are consistent with prior studies of OCD
as well as known comorbidities. Negative correlations were
found for BMI and age at first birth (as described before20)
as well three related autoimmune disorders (ulcerative coli-
tis, Crohn’s disease and inflammatory bowel disease), which
is perhaps surprising given the association with the MHC and
the familial link between autoimmune diseases and OCD.
In summary, we report 15 independent genome-wide signif-
icant loci associated with OCD. The GWAS meta-analysis
implicates the MHC region, FURIN and other biologically
informative genes as important contributors to the etiology
of OCD. The results also highlight strong overlap with
the genetics of OCD-related disorders and traits in the
population, encouraging a multi-faceted view on the genetic
underpinnings of OCD and potentially a continuum of
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genetically distinctive sub-entities . Overall, we have begun
laying the groundwork through which the biology of OCD
and related phenotypes will be described.
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Table 1. Top SNP results of OCD meta-analysis showing all significant SNPs, and corresponding chromosome (CHR), basepair position (BP), effect allele and non-
effect allele (A1/A2), frequency of allele A1 for cases (FRQ cases), frequency of allele A1 for controls (FRQ controls), log odds ratio (log(OR) Meta), and p-value for
association results (P Meta). Also listing protein coding genes and/or microRNAs in a LD region of r2=0.6 around the lead SNP (±50 kb) in brackets distance to in-
dex SNP in kb (Genes). If more than one gene is contained within that region, only selected genes with a known association with OCD or a related disorder together
with the number of genes (in brackets) within that region are listed in the table, while the remaining genes are listed at the end of this description. Also listing FRQ
cases, log(OR), and P separately for freeze1+NORDiC, including 4417 OCD cases from NORDiC-NOR, NORDiC-SWE, and freeze1 (OCGAS, IOCDF-GC, and IOCDF-
GC_trios); for iPSYCH (including 2678 OCD cases), and for 23andMe (including 30167 OCD cases). Genome-wide significant p-values are in bold. * List of genes
in a LD region of r2=0.6 around the lead SNPs (±50 kb): rs674094: SERPING1(-233.0), MIR130A(-206.6), YPEL4(-197.9), CLP1(-186.0), ZDHHC5(-146.7), MED19(-
135.5), TMX2(-106.9), TMX2-CTNND1(-28.7), SELENOH(-104.3), BTBD18(-96.1), CTNND1(-28.3); rs9840050: SLC26A6(-410.4), MIR6824(-412.2), CELSR3(-383.0),
MIR4793(-401.6), LINC02585(-376.7), NCKIPSD(-360.0), IP6K2(-328.6), PRKAR2A(-198.0), PRKAR2A-AS1(-193.9), SLC25A20(-147.0), ARIH2OS(-126.5), ARIH2(-59.5),
P4HTM(-38.7), WDR6(-29.9), DALRD3(-24.8), MIR425(-25.6), NDUFAF3(-22.4), MIR191(-25.2), IMPDH2(-16.5), QRICH1(0.0), QARS(0.0), MIR6890(0.0), USP19(0.0),
LAMB2(0.0), LAMB2P1(7.0), CCDC71(16.7), KLHDC8B(25.7), C3orf84(31.8), CCDC36(52.5), C3orf62(122.7), MIR4271(128.2), USP4(131.3); rs2564930: NEK4(-162.4),
ITIH1(-141.2), ITIH3(-124.3), ITIH4(-102.6), ITIH4-AS1(-108.0), MUSTN1(-98.3), STIMATE-MUSTN1(-35.7), STIMATE(-35.7), MIR8064(-86.7), SFMBT1(0.0), RFT1(55.2),
PRKCD(127.9); rs9265969: HCG20(-505.7), LINC00243(-467.3), LINC02570(-449.8), DDR1(-397.8), MIR4640(-407.0), GTF2H4(-383.8), VARS2(-371.5), SFTA2(-
365.8), MUCL3(-343.7), HCG21(-343.1), MUC21(-308.0), MUC22(-262.5), HCG22(-238.1), C6orf15(-185.4), PSORS1C1(-157.8), CDSN(-177.5), PSORS1C2(-158.9),
CCHCR1(-139.7), TCF19(-133.7), POU5F1(-127.2), PSORS1C3(-111.6), HCG27 (-94.0), HLA-C(-25.8), LINC02571(0.0), HLA-B(0.0), MIR6891(0.0), MICA-AS1(0.0),
MICA(2.8), LINC01149(43.7), HCP5(65.2), HCG26(73.3), MICB-DT (82.0), MICB(97.0), MCCD1(131.0), ATP6V1G2-DDX39B(132.3), DDX39B(132.3), SNORD117 (138.4),
SNORD84(143.2), DDX39B-AS1(144.4), ATP6V1G2(146.5), NFKBIL1(148.9), LOC100287329(161.6), LTA(174.2), TNF (177.6), LTB(182.6), LST1(188.3), NCR3(191.0),
AIF1(217.3), PRRC2A(222.8), SNORA38(225.1), MIR6832(235.9), BAG6(241.1), APOM(254.5), C6orf47 (260.4), GPANK1(263.3), CSNK2B(267.9), LY6G5B(273.0),
LY6G5C(278.8), ABHD16A(289.0), MIR4646(303.1), LY6G6F (308.9), LY6G6F-LY6G6D(308.9), LY6G6E(314.0), LY6G6D(317.4), LY6G6C(320.7), MPIG6B(325.4),
DDAH2(329.1), CLIC1(332.7), MSH5(342.0), MSH5-SAPCD1(342.0), SAPCD1(365.1), SAPCD1-AS1(366.2), VWA7 (367.7), VARS(379.6), LSM2(399.5), HSPA1L(411.7),
HSPA1A(417.6), HSPA1B(429.8), SNHG32(437.0), SNORD48(437.3), SNORD52(439.1), NEU1(459.7), SLC44A4(465.3), EHMT2(481.8), C2(499.9), ZBTB12(501.7), C2-
AS1(536.5), CFB(548.0), NELFE(554.2), MIR1236(558.9), SKIV2L(561.2), DXO(571.9), STK19(573.2), C4A(584.1), C4B(584.1), C4B_2(584.1), LOC110384692(584.1),
CYP21A1P(607.7), TNXA(610.5), TNXB(610.5), CYP21A2(640.4), ATF6B(717.3), FKBPL(730.8); rs4702: FURIN(0.0), FES(0.0), MAN2A2(0.0), HDDC3(0.0),
UNC45A(0.0); rs3899258: PARP8(-64.2), LINC02106(0.0); rs2836950: PSMG1(0.0), BRWD1(0.0), BRWD1-AS2(31.4), BRWD1-AS1(33.2), HMGN1(59.8), GET1(97.7),
WRB-SH3BGR(97.8); rs4460629: DCST1(-61.9), DCST1-AS1(-48.9), ADAM15(-50.1), EFNA4(-43.3), EFNA3(-25.3), EFNA1(0.0), SLC50A1(0.0), DPM3(0.0), KRT-
CAP2(0.0), TRIM46(0.0), MUC1(0.0), MIR92B(0.0), THBS3(0.0), MTX1(0.0), GBAP1(0.0), GBA(18.9), FAM189B(31.7), SCAMP3(40.4)

Meta freeze1+NORDiC iPSYCH 23andMe

SNP CHR BP A1/A2 FRQ
cases

FRQ
controls log(OR) P FRQ

cases log(OR) P FRQ
cases log(OR) P FRQ

cases log(OR) P Genes

rs10877425 12 60751330 G/A 0.514 0.518 -0.051 1.14E-10 0.508 -0.044 0.128 0.481 -0.086 0.006 0.518 -0.049 9.16E-09 -
rs674094 11 57665336 C/A 0.701 0.705 -0.055 1.39E-10 0.691 -0.099 0.001 0.674 -0.122 2.44E-04 0.705 -0.046 8.06E-07 many (11)
rs11953498 5 45240783 G/C 0.18 0.184 -0.065 3.36E-10 0.172 -0.077 0.038 0.148 -0.064 0.138 0.184 -0.063 6.87E-09 HCN1(0.0)
rs9840050 3 49133310 G/A 0.655 0.66 -0.05 6.09E-10 0.639 -0.04 0.171 0.624 -0.064 0.046 0.66 -0.05 1.12E-08 CELSR3; many (31)
rs2564930 3 53017307 T/C 0.338 0.341 -0.051 7.45E-10 0.317 -0.143 1.98E-06 0.33 -0.063 0.057 0.341 -0.042 2.33E-06 many (12)
rs9265969 6 31315706 G/A 0.874 0.874 0.072 2.34E-09 0.881 0.082 0.057 0.86 0.077 0.079 0.874 0.07 5.57E-08 many (103)
rs6660196 1 168874798 T/G 0.638 0.637 0.048 3.26E-09 0.651 0.071 0.017 0.623 0.024 0.456 0.637 0.048 4.32E-08 LINC00970(0.0)
rs4702 15 91426560 G/A 0.456 0.456 0.045 5.82E-09 0.458 0.046 0.109 0.451 0.067 0.04 0.456 0.044 1.56E-07 many (5)
rs2198140 8 35039646 T/C 0.493 0.494 -0.046 6.39E-09 0.483 -0.045 0.113 0.497 -0.046 0.137 0.494 -0.046 7.24E-08 UNC5D(3.3)
rs3899258 5 50256551 G/A 0.779 0.777 0.055 6.90E-09 0.788 0.055 0.113 0.781 0.008 0.84 0.777 0.059 8.84E-09 many (2)
rs66818976 5 90900362 G/A 0.28 0.284 -0.05 1.45E-08 0.261 -0.092 0.005 0.275 -0.03 0.396 0.284 -0.048 4.25E-07 -
rs2836950 21 40604429 G/C 0.361 0.361 -0.046 2.40E-08 0.362 -0.008 0.795 0.363 -0.039 0.226 0.360 -0.05 1.88E-08 many (7)
rs35518360 4 103146890 T/A 0.0874 0.0899 0.076 3.78E-08 0.084 0.115 0.035 0.059 0.109 0.109 0.091 0.071 1.13E-06 SLC39A8(0.0)
rs4460629 1 155135335 T/C 0.526 0.526 0.043 3.96E-08 0.54 0.025 0.375 0.5 0.036 0.239 0.526 0.045 9.28E-08 many (18)
rs1922782 2 58916336 T/C 0.427 0.426 0.043 4.89E-08 0.44 0.098 5.8E-04 0.419 0.069 0.028 0.426 0.036 2.09E-05 LINC01122(0.0)
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Fig. 1. Genome-wide association results for the OCD meta-analysis (37.015 OCD cases and 948.616 controls; Manhattan plot in (A) and quantile-quantile plot in (B)) and for
the MTAG analysis with freeze1+NORDiC as the primary phenotype (Manhattan plot in (C) and quantile-quantile plot in (D)). The x-axis in (A) and (C) shows the position in
the genome (chromosomes 1-22), while the y-axis represents –log10(p) values for the association of variants with OCD, The horizontal red line represents the threshold for
genome-wide significance. Each dot represents one SNP that was tested in the GWAS, with green diamonds indicating the lead SNP in regions harboring a genome-wide
significant SNP. In (B) and (D) the expected -log10(p) under the null is plotted against the observed -log10(p), qq-plots (B) and (D) belong to Manhattan lots (A) and (C),
respectively. The shading indicates 95% confidence region under the null. Lambda indicates the genomic inflation factor.
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Fig. 2. Manhattan plots for single-gene results from MAGMA, e-MAGMA and h-MAGMA analyses. Single gene result significance levels (-log10 p-values) are shown for
MAGMA (top), e-MAGMA (middle) and h-MAGMA (bottom) approaches. A total of 79 distinct single protein coding genes passed the significance threshold shown in at least
1 of 3 sets of tests.
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Fig. 3. Overlaps of genes called as significant in MAGMA, e-MAGMA and h-MAGMA. Overlaps between the three methods for conducting gene-based tests using GWAS
summary statistics are depicted via a venn diagram, with the numbers representing the number of genes called as significant across methods.
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Fig. 4. OCD heritability enrichment p-values across tissue/celltype expression profiles. Test result p-values are shown for heritability enrichment tests with genes
representing expression profiles of 37 different tissues from GTEx (left) and 39 broad nervous system celltypes from mice (right) The p-value shown for each result is
averaged between MAGMA and LDSC approaches, and is considered to be significant only if FDR-adjusted p < 0.05 in both. A total of 5 broad tissue types from GTEx (all
from brain), and a total of 5 broad neuronal celltypes from Zeisel et al. are significantly enriched for OCD heritability based on these criteria.
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Fig. 5. Heritability enrichment p-values between OCD and neuronal celltype groups. P-values for OCD heritability enrichment across 265 celltypes from Zeisel et al.
were generated, and grouped into 35 groups of single cell types where n>=2 based on the ‘Description’ column from the table in http://mousebrain.org/celltypes/. We first
tested each of the 265 celltypes and found that a total of 44 were significant at an FDR < 0.05. We then took the mean -log10 p-value from each of the 35 groups and found
that of these a total of 7 were significant at FDR < 0.05. We indicate in blue the single celltypes and overall celltype groups that are significant after FDR adjustment.
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Fig. 6. Genetic correlations (rg) between OCD and 74 behavioral, cognitive, psychiatric, neurologic, immunologic, metabolic, and anthropomorphic phenotypes.
Error bars represent standard errors and red asterisks indicate significant associations after FDR correction for multiple testing.
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GWAS details for NORDiC-NOR & NORDiC-SWE

pre-GWAS Quality Control

NORDiC-SWE
We formed a case/control dataset by merging PLINK filesets
for four different cohorts (one case-only, three control-only)
using PLINK v1.90b3n. This merged fileset consisted of
647,335 variant calls across a total of 1107 cases and 3,500
controls.

We first identified a subset of samples that will be usable
in the final GWAS based on a lack of cryptic relatedness
patterns with other samples and likely european ancestry.
In preparation for this we used PLINK v1.90b3n to extract
common (MAF > 5%), and used the LD-pruned (–indep
50 5 2) subset of these variants for relatedness checks,
implemented via PLINK’s ‘genome’ function. As part of
relatedness QC we first removed a total of 48 samples with
mean pi hat values observed with other samples >= 0.02,
which we considered to be evidence of systemic issues
with the sample including but not limited to overall high
genotype missingness. Next we pruned instances of sample
duplication, defined as pi hat >= 0.95. For a set of samples
which based on these criteria are duplicates, we selected the
one sample to keep based on which sample carried the lowest
genotype missingness, as computed in PLINK. A total of 3
samples were removed in the duplicate pruning process. In
the remaining samples we identified all pairs where a cryptic
relatedness pattern (defined here as pi hat > 0.2) is present.
To resolve these relatedness issues in a manner that mini-
mizes the total number of samples removed from the cohort,
we used an iterative strategy that for each round, 1) defined
rel_max as the maximum number of cryptic relationships
observed across single samples, 2) removed samples where
the number of cryptic relationships equaled rel_max, 3)
recomputes rel_max in the pruned sampleset. Once rel_max
equals 1, then for each pairwise cryptic relationship, we
selected the sample to keep based on which sample carried
the lower overall genotype missingness, as computed in
PLINK. A total of 102 samples that carried cryptic related-
ness issues were marked for exclusion from the final GWAS,
leaving behind 1074 cases and 3380 controls. To identify
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the subset of samples that are of likely European ancestry,
we utilized PEDDY v0.4.3, which allows for PCA of input
samples with 1000 genomes sample data and subsequent
classification per sample of its most likely general ethnicity.
While PEDDY was originally designed primarily for exome
and whole genome sequence data, it should be sufficient for
identification of and pruning of samples that clearly are not
of European ancestry. We found that a total of 6,039 variants
overlapped between the merged PLINK fileset and the 1000
genomes data included in PEDDY, and used these to conduct
PCA and PEDDY’s classification algorithm. We kept all
samples with an ancestry classification of EUR. From the
relatedness and ethnicity classification steps we identified
a total of 989 cases and 3200 controls suitable for the final
NORDIC GWAS.

To prepare our merged cohort dataset for the GWAS
pipeline, we pruned single variants from our relatedness-
pruned dataset (1,074 cases, 3,380 controls) where there
was suggestive evidence of technical biases or batch effects.
For this we first collect cohort level allele frequency and
genotype missingness values for the QC-passing subset
of input samples, and look for instances where an input
cohort has an extreme value which might be consistent with
batch effects or technical problems. We defined variants
as QC-failing if they met one of the following criteria: 1)
maximum genotype missingness in a cohort > 0.02; 2)
allele frequency <0.001 in at least one cohort; 3) max – min
allele frequency > 0.1 across all four cohorts; 4) max – min
allele frequency > 0.03 across all three control cohorts; 5)
genome-wide significant in a control vs. control synthetic
GWAS. A total of 154,791 variants met at least one of these
criteria were excluded, leaving us with a final case/control
dataset consisting of genotype calls across 492,554 variants
across the 1074 cases and 3,380 controls.

NORDiC-NOR
The pre-GWAS QC applied to the NORDiC-NOR dataset
(482 cases, 343 controls in the raw data) was nearly identical
to that applied to NORDiC-SWE data after the merging
of separate genotype data, consisting of pruning of cryptic
relatedness, marking of samples that are of likely European
ancestry and pruning of the dataset for single variants where
there was suggestive evidence of technical biases or batch
effects. In our cryptic relatedness QC step we identified 4
samples that had a mean pi_hat with other samples >= 0.1,
74 samples that had evidence of being a sample duplicate
(pi_hat >= 0.95) and 8 samples from the remaining cohort
with evidence of cryptic relatedness (pi_hat >= 0.2), leaving
behind 404 cases and 335 controls. We found a total of 6263
variants overlapped between the merged PLINK fileset and
the 1000 genomes data included in PEDDY, and identified
a total of 368 cases and 315 controls with likely European
ancestry. We performed variant-level QC on a PC-pruned
subset of 340 cases and 307 controls, defining variants as
failing if they met one of the following criteria : 1) maximum
genotype missingness in a cohort > 0.02; 2) allele frequency

of 0 in at least one cohort; 3) max – min allele frequency
> 0.1. A total of 136,525 variants met at least one of these
criteria were excluded, leaving us with a final case/control
dataset consisting of genotype calls across 479,358 variants.
We used calls across these variants in samples that had
been pruned for relatedness issues (not including standard
pairwise relatedness issues as ricopili can detect these) as
input for the GWAS (407 cases, 340 controls).

QC and imputation implemented in Ricopili

We used the ricopili pipeline to run an automated round
of pre-imputation QC on the genotype data from 492,554
QC-passing variants across the full unpruned datasets of
NORDiC-SWE (1107 cases and 3500 controls) and 479,358
QC-passing variants across NORDIC-Norway (407 cases and
340 controls), and conducted imputation on the genotype data
using the Haplotype Reference Consortium (HRC) reference
panel. All subsets of the analysis involved ricopili were done
using ricopili v2018_Dec_7.001. The pre-imputation ricopili
QC step involved a series of hard filters on variant and sample
level data, including removing variants with pre-sample prun-
ing call rate < 0.95, samples with call rate < 0.98, FHET out-
side of +/- 0.20, samples with discrepancies between reported
and derived sex, and post sample-pruning variants that meet
any of the following : 1) call rate < 0.98, 2) missing differ-
ence > 0.02, 3) invariant positions, 4) MAF > 0.01, 5) HWE
p < 1e-6 in controls, and 6) HWE p < 1e-10 in cases. After
the QC described we were left with 481,323 QC-passing vari-
ants across 1077 cases and 3486 controls in NORDiC-SWE,
and 469,618 QC-passing variants across 404 cases and 340
controls in NORDIC-Norway.
After sample and variant pruning we next used ricopili’s
impute_dirsub module to perform imputation using HRC
genotypes as a reference panel. In our imputation run we
used eagle v2.3.5 for pre-phasing, and minimac3 v2.0.1
for imputation. We derived 3 different imputed callsets
from this process: 1) a set of high confidence imputed
genotypes (2,771,425 in NORDiC-SWE, 3,043,464 in
NORDIC-Norway), 2) a set of imputed best-guess genotypes
with medium level accuracy (7,112,906 in NORDiC-SWE,
7,277,174 in NORDIC-Norway), and 3) a set of for variants
where imputation accuracy is lowered in order to increase
the total number of variants included in the imputation
(9,021,638 in NORDiC-SWE, 8,964,589 in NORDIC-
Norway).
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Supplementary Figures
Fig. S1. Genome-wide association results for the MTAG OCD with cases ascertained for another disorder as the primary phenotype (iPSYCH; Manhattan plot
in (A) and quantile-quantile plot in (B)) and for the MTAG OCD analysis with the biobank cases (23andMe) as the primary phenotype (Manhattan plot in (C) and
quantile-quantile plot in (D)). The x-axis in (A) and (C) shows the position in the genome (chromosomes 1-22), while the y-axis represents –log10(p) values for the
association of variants with OCD, The horizontal red line represents the threshold for genome-wide significance. Each dot represents one SNP that was tested in
the GWAS, with green diamonds indicating the lead SNP in regions harboring a genome-wide significant SNP. In (B) and (D) the expected -log10(p) under the null
is plotted against the observed -log10(p), qq-plots (B) and (D) belong to Manhattan lots (A) and (C), respectively. The shading indicates 95% confidence region
under the null. Lambda indicates the genomic inflation factor. .
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Fig. S2. Forest plot (top) and regional association plot (bottom) of SNP rs10877425. Forest plot: Shows the imputation score (info), p-value (p_value), A1 allele
frequency in cases and number of cases (f_ca(n)), A1 allele frequency in controls and number of controls (f_co(n)), effect of the association (ln(OR)), and standard error of
the effect (STDerr) for each individual dataset and the over-all meta-analysis. On the right side, effects (ln(OR)) and 95% confidence intervals (CI) are plotted. At the top, the
direction of effect for each study is shown (+ for positive effect of A1, - for negative effect of A1), and results of a test of heterogeneity (het_P and het_I) of effect across the
individual datasets are displayed. Regional association plot: The –log10(P) of SNPs in the OCD meta-analysis GWAS is shown on the left y axis. The recombination rates
expressed in centimorgans (cM) per Mb (Megabase) (blue line) are shown on the right y axis. Position in Mb is on the x axis. Only the SNPs with association p-value less
than 0.1 were plotted. The lead SNP in the region is shown as a red diamond. Colour coding indicates LD to the lead SNP.

OCD_medRxiv2_full_21042021.12.chr12

Chromosome 12 (kb)

60200 60400 60800 61200

0

2

4

6

8

10

O
bs

er
ve

d 
(−

lo
gP

)

0

20

40

R
ec

om
bi

na
tio

n 
ra

te
 (c

M
/M

b)

p = 5.0e−08

filter: p < 0.1

1 0.8 0.6 0.4 0.2 0.1

snp / p / or / maf / info / directions

a . rs10877425 / 1.14e−10 / 1.05 / 0.48 / 0.984 / 7−0−0aa

database: gwascatalog.Sep_2019.rp.txt, refGene.txt.Sep_2019.out

Strom et al. | OCD meta-analysis medRχiv | 27



DRAFT

Fig. S3. Forest plot (top) and regional association plot (bottom) of SNP rs674094. Forest plot: Shows the imputation score (info), p-value (p_value), A1 allele frequency
in cases and number of cases (f_ca(n)), A1 allele frequency in controls and number of controls (f_co(n)), effect of the association (ln(OR)), and standard error of the effect
(STDerr) for each individual dataset and the over-all meta-analysis. On the right side, effects (ln(OR)) and 95% confidence intervals (CI) are plotted. At the top, the direction
of effect for each study is shown (+ for positive effect of A1, - for negative effect of A1), and results of a test of heterogeneity (het_P and het_I) of effect across the individual
datasets re displayed. Regional association plot: The –log10(P) of SNPs in the OCD meta-analysis GWAS is shown on the left y axis. The recombination rates expressed in
centimorgans (cM) per Mb (Megabase) (blue line) are shown on the right y axis. Position in Mb is on the x axis. Only the SNPs with association p-value less than 0.1 were
plotted. The lead SNP in the region is shown as a red diamond. Colour coding indicates LD to the lead SNP.
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Fig. S4. Forest plot (top) and regional association plot (bottom) of SNP rs11953498. Forest plot: Shows the imputation score (info), p-value (p_value), A1 allele
frequency in cases and number of cases (f_ca(n)), A1 allele frequency in controls and number of controls (f_co(n)), effect of the association (ln(OR)), and standard error of
the effect (STDerr) for each individual dataset and the over-all meta-analysis. On the right side, effects (ln(OR)) and 95% confidence intervals (CI) are plotted. At the top, the
direction of effect for each study is shown (+ for positive effect of A1, - for negative effect of A1), and results of a test of heterogeneity (het_P and het_I) of effect across the
individual datasets re displayed. Regional association plot: The –log10(P) of SNPs in the OCD meta-analysis GWAS is shown on the left y axis. The recombination rates
expressed in centimorgans (cM) per Mb (Megabase) (blue line) are shown on the right y axis. Position in Mb is on the x axis. Only the SNPs with association p-value less
than 0.1 were plotted. The lead SNP in the region is shown as a red diamond. Colour coding indicates LD to the lead SNP.
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Fig. S5. Forest plot (top) and regional association plot (bottom) of SNP rs9840050. Forest plot: Shows the imputation score (info), p-value (p_value), A1 allele frequency
in cases and number of cases (f_ca(n)), A1 allele frequency in controls and number of controls (f_co(n)), effect of the association (ln(OR)), and standard error of the effect
(STDerr) for each individual dataset and the over-all meta-analysis. On the right side, effects (ln(OR)) and 95% confidence intervals (CI) are plotted. At the top, the direction
of effect for each study is shown (+ for positive effect of A1, - for negative effect of A1), and results of a test of heterogeneity (het_P and het_I) of effect across the individual
datasets re displayed. Regional association plot: The –log10(P) of SNPs in the OCD meta-analysis GWAS is shown on the left y axis. The recombination rates expressed in
centimorgans (cM) per Mb (Megabase) (blue line) are shown on the right y axis. Position in Mb is on the x axis. Only the SNPs with association p-value less than 0.1 were
plotted. The lead SNP in the region is shown as a red diamond. Colour coding indicates LD to the lead SNP.
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Fig. S6. Forest plot (top) and regional association plot (bottom) of SNP rs2564930. Forest plot: Shows the imputation score (info), p-value (p_value), A1 allele frequency
in cases and number of cases (f_ca(n)), A1 allele frequency in controls and number of controls (f_co(n)), effect of the association (ln(OR)), and standard error of the effect
(STDerr) for each individual dataset and the over-all meta-analysis. On the right side, effects (ln(OR)) and 95% confidence intervals (CI) are plotted. At the top, the direction
of effect for each study is shown (+ for positive effect of A1, - for negative effect of A1), and results of a test of heterogeneity (het_P and het_I) of effect across the individual
datasets re displayed. Regional association plot: The –log10(P) of SNPs in the OCD meta-analysis GWAS is shown on the left y axis. The recombination rates expressed in
centimorgans (cM) per Mb (Megabase) (blue line) are shown on the right y axis. Position in Mb is on the x axis. Only the SNPs with association p-value less than 0.1 were
plotted. The lead SNP in the region is shown as a red diamond. Colour coding indicates LD to the lead SNP.
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Fig. S7. Forest plot (top) and regional association plot (bottom) of SNP rs9265969. Forest plot: Shows the imputation score (info), p-value (p_value), A1 allele frequency
in cases and number of cases (f_ca(n)), A1 allele frequency in controls and number of controls (f_co(n)), effect of the association (ln(OR)), and standard error of the effect
(STDerr) for each individual dataset and the over-all meta-analysis. On the right side, effects (ln(OR)) and 95% confidence intervals (CI) are plotted. At the top, the direction
of effect for each study is shown (+ for positive effect of A1, - for negative effect of A1), and results of a test of heterogeneity (het_P and het_I) of effect across the individual
datasets re displayed. Regional association plot: The –log10(P) of SNPs in the OCD meta-analysis GWAS is shown on the left y axis. The recombination rates expressed in
centimorgans (cM) per Mb (Megabase) (blue line) are shown on the right y axis. Position in Mb is on the x axis. Only the SNPs with association p-value less than 0.1 were
plotted. The lead SNP in the region is shown as a red diamond. Colour coding indicates LD to the lead SNP.
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Fig. S8. Forest plot (top) and regional association plot (bottom) of SNP rs6660196. Forest plot: Shows the imputation score (info), p-value (p_value), A1 allele frequency
in cases and number of cases (f_ca(n)), A1 allele frequency in controls and number of controls (f_co(n)), effect of the association (ln(OR)), and standard error of the effect
(STDerr) for each individual dataset and the over-all meta-analysis. On the right side, effects (ln(OR)) and 95% confidence intervals (CI) are plotted. At the top, the direction
of effect for each study is shown (+ for positive effect of A1, - for negative effect of A1), and results of a test of heterogeneity (het_P and het_I) of effect across the individual
datasets re displayed. Regional association plot: The –log10(P) of SNPs in the OCD meta-analysis GWAS is shown on the left y axis. The recombination rates expressed in
centimorgans (cM) per Mb (Megabase) (blue line) are shown on the right y axis. Position in Mb is on the x axis. Only the SNPs with association p-value less than 0.1 were
plotted. The lead SNP in the region is shown as a red diamond. Colour coding indicates LD to the lead SNP.
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Fig. S9. Forest plot (top) and regional association plot (bottom) of SNP rs4702. Forest plot: Shows the imputation score (info), p-value (p_value), A1 allele frequency
in cases and number of cases (f_ca(n)), A1 allele frequency in controls and number of controls (f_co(n)), effect of the association (ln(OR)), and standard error of the effect
(STDerr) for each individual dataset and the over-all meta-analysis. On the right side, effects (ln(OR)) and 95% confidence intervals (CI) are plotted. At the top, the direction
of effect for each study is shown (+ for positive effect of A1, - for negative effect of A1), and results of a test of heterogeneity (het_P and het_I) of effect across the individual
datasets re displayed. Regional association plot: The –log10(P) of SNPs in the OCD meta-analysis GWAS is shown on the left y axis. The recombination rates expressed in
centimorgans (cM) per Mb (Megabase) (blue line) are shown on the right y axis. Position in Mb is on the x axis. Only the SNPs with association p-value less than 0.1 were
plotted. The lead SNP in the region is shown as a red diamond. Colour coding indicates LD to the lead SNP.
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Fig. S10. Forest plot (top) and regional association plot (bottom) of SNP rs2198140. Forest plot: Shows the imputation score (info), p-value (p_value), A1 allele
frequency in cases and number of cases (f_ca(n)), A1 allele frequency in controls and number of controls (f_co(n)), effect of the association (ln(OR)), and standard error of
the effect (STDerr) for each individual dataset and the over-all meta-analysis. On the right side, effects (ln(OR)) and 95% confidence intervals (CI) are plotted. At the top, the
direction of effect for each study is shown (+ for positive effect of A1, - for negative effect of A1), and results of a test of heterogeneity (het_P and het_I) of effect across the
individual datasets re displayed. Regional association plot: The –log10(P) of SNPs in the OCD meta-analysis GWAS is shown on the left y axis. The recombination rates
expressed in centimorgans (cM) per Mb (Megabase) (blue line) are shown on the right y axis. Position in Mb is on the x axis. Only the SNPs with association p-value less
than 0.1 were plotted. The lead SNP in the region is shown as a red diamond. Colour coding indicates LD to the lead SNP.
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Fig. S11. Forest plot (top) and regional association plot (bottom) of SNP rs3899258. Forest plot: Shows the imputation score (info), p-value (p_value), A1 allele
frequency in cases and number of cases (f_ca(n)), A1 allele frequency in controls and number of controls (f_co(n)), effect of the association (ln(OR)), and standard error of
the effect (STDerr) for each individual dataset and the over-all meta-analysis. On the right side, effects (ln(OR)) and 95% confidence intervals (CI) are plotted. At the top, the
direction of effect for each study is shown (+ for positive effect of A1, - for negative effect of A1), and results of a test of heterogeneity (het_P and het_I) of effect across the
individual datasets re displayed. Regional association plot: The –log10(P) of SNPs in the OCD meta-analysis GWAS is shown on the left y axis. The recombination rates
expressed in centimorgans (cM) per Mb (Megabase) (blue line) are shown on the right y axis. Position in Mb is on the x axis. Only the SNPs with association p-value less
than 0.1 were plotted. The lead SNP in the region is shown as a red diamond. Colour coding indicates LD to the lead SNP.
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Fig. S12. Forest plot (top) and regional association plot (bottom) of SNP rs66818976. Forest plot: Shows the imputation score (info), p-value (p_value), A1 allele
frequency in cases and number of cases (f_ca(n)), A1 allele frequency in controls and number of controls (f_co(n)), effect of the association (ln(OR)), and standard error of
the effect (STDerr) for each individual dataset and the over-all meta-analysis. On the right side, effects (ln(OR)) and 95% confidence intervals (CI) are plotted. At the top, the
direction of effect for each study is shown (+ for positive effect of A1, - for negative effect of A1), and results of a test of heterogeneity (het_P and het_I) of effect across the
individual datasets re displayed. Regional association plot: The –log10(P) of SNPs in the OCD meta-analysis GWAS is shown on the left y axis. The recombination rates
expressed in centimorgans (cM) per Mb (Megabase) (blue line) are shown on the right y axis. Position in Mb is on the x axis. Only the SNPs with association p-value less
than 0.1 were plotted. The lead SNP in the region is shown as a red diamond. Colour coding indicates LD to the lead SNP.
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Fig. S13. Forest plot (top) and regional association plot (bottom) of SNP rs2836950. Forest plot: Shows the imputation score (info), p-value (p_value), A1 allele
frequency in cases and number of cases (f_ca(n)), A1 allele frequency in controls and number of controls (f_co(n)), effect of the association (ln(OR)), and standard error of
the effect (STDerr) for each individual dataset and the over-all meta-analysis. On the right side, effects (ln(OR)) and 95% confidence intervals (CI) are plotted. At the top, the
direction of effect for each study is shown (+ for positive effect of A1, - for negative effect of A1), and results of a test of heterogeneity (het_P and het_I) of effect across the
individual datasets re displayed. Regional association plot: The –log10(P) of SNPs in the OCD meta-analysis GWAS is shown on the left y axis. The recombination rates
expressed in centimorgans (cM) per Mb (Megabase) (blue line) are shown on the right y axis. Position in Mb is on the x axis. Only the SNPs with association p-value less
than 0.1 were plotted. The lead SNP in the region is shown as a red diamond. Colour coding indicates LD to the lead SNP.
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Fig. S14. Forest plot (top) and regional association plot (bottom) of SNP rs35518360. Forest plot: Shows the imputation score (info), p-value (p_value), A1 allele
frequency in cases and number of cases (f_ca(n)), A1 allele frequency in controls and number of controls (f_co(n)), effect of the association (ln(OR)), and standard error of
the effect (STDerr) for each individual dataset and the over-all meta-analysis. On the right side, effects (ln(OR)) and 95% confidence intervals (CI) are plotted. At the top, the
direction of effect for each study is shown (+ for positive effect of A1, - for negative effect of A1), and results of a test of heterogeneity (het_P and het_I) of effect across the
individual datasets re displayed. Regional association plot: The –log10(P) of SNPs in the OCD meta-analysis GWAS is shown on the left y axis. The recombination rates
expressed in centimorgans (cM) per Mb (Megabase) (blue line) are shown on the right y axis. Position in Mb is on the x axis. Only the SNPs with association p-value less
than 0.1 were plotted. The lead SNP in the region is shown as a red diamond. Colour coding indicates LD to the lead SNP.
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Fig. S15. Forest plot (top) and regional association plot (bottom) of SNP rs4460629. Forest plot: Shows the imputation score (info), p-value (p_value), A1 allele
frequency in cases and number of cases (f_ca(n)), A1 allele frequency in controls and number of controls (f_co(n)), effect of the association (ln(OR)), and standard error of
the effect (STDerr) for each individual dataset and the over-all meta-analysis. On the right side, effects (ln(OR)) and 95% confidence intervals (CI) are plotted. At the top, the
direction of effect for each study is shown (+ for positive effect of A1, - for negative effect of A1), and results of a test of heterogeneity (het_P and het_I) of effect across the
individual datasets re displayed. Regional association plot: The –log10(P) of SNPs in the OCD meta-analysis GWAS is shown on the left y axis. The recombination rates
expressed in centimorgans (cM) per Mb (Megabase) (blue line) are shown on the right y axis. Position in Mb is on the x axis. Only the SNPs with association p-value less
than 0.1 were plotted. The lead SNP in the region is shown as a red diamond. Colour coding indicates LD to the lead SNP.
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Fig. S16. Forest plot (top) and regional association plot (bottom) of SNP rs1922782. Forest plot: Shows the imputation score (info), p-value (p_value), A1 allele
frequency in cases and number of cases (f_ca(n)), A1 allele frequency in controls and number of controls (f_co(n)), effect of the association (ln(OR)), and standard error of
the effect (STDerr) for each individual dataset and the over-all meta-analysis. On the right side, effects (ln(OR)) and 95% confidence intervals (CI) are plotted. At the top, the
direction of effect for each study is shown (+ for positive effect of A1, - for negative effect of A1), and results of a test of heterogeneity (het_P and het_I) of effect across the
individual datasets re displayed. Regional association plot: The –log10(P) of SNPs in the OCD meta-analysis GWAS is shown on the left y axis. The recombination rates
expressed in centimorgans (cM) per Mb (Megabase) (blue line) are shown on the right y axis. Position in Mb is on the x axis. Only the SNPs with association p-value less
than 0.1 were plotted. The lead SNP in the region is shown as a red diamond. Colour coding indicates LD to the lead SNP.
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Fig. S17. Genetic correlations (rg) between OCD, divided into three sub-groups, and behavioral, cognitive, psychiatric, neurologic, immunologic, metabolic, and
anthropomorphic phenotypes. Error bars represent standard errors and red asterisks indicate significant associations after FDR correction for multiple testing.
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Fig. S18. Genetic correlations (rg) between three MTAG analyses of OCD, and behavioral, cognitive, psychiatric, neurologic, immunologic, metabolic, and
anthropomorphic phenotypes. Error bars represent standard errors and red asterisks indicate significant associations after FDR correction for multiple testing.
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