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ABSTRACT 27 

Inflammatory syndromes, including those caused by infection, are a major cause of hospital 28 
admissions among children and are often misdiagnosed because of a lack of advanced molecular 29 
diagnostic tools. In this study, we explored the utility of circulating cell-free RNA (cfRNA) in plasma as an 30 
analyte for the differential diagnosis and characterization of pediatric inflammatory syndromes. We 31 
profiled cfRNA in 370 plasma samples from pediatric patients with a range of inflammatory conditions, 32 
including Kawasaki disease (KD), Multisystem Inflammatory Syndrome in Children (MIS-C), viral 33 
infections and bacterial infections. We developed machine learning models based on these cfRNA 34 
profiles, which effectively differentiated KD from MIS-C — two conditions presenting with overlapping 35 
symptoms — with high performance (Test Area Under the Curve (AUC) = 0.97). We further extended this 36 
methodology into a multiclass machine learning framework that achieved 81% accuracy in distinguishing 37 
among KD, MIS-C, viral, and bacterial infections. We further demonstrated that cfRNA profiles can be 38 
used to quantify injury to specific tissues and organs, including the liver, heart, endothelium, nervous 39 
system, and the upper respiratory tract. Overall, this study identified cfRNA as a versatile analyte for the 40 
differential diagnosis and characterization of a wide range of pediatric inflammatory syndromes. 41 
 42 
INTRODUCTION 43 

The differential diagnosis of inflammatory syndromes in children is complex owing to their 44 
overlapping clinical manifestations, non-specific symptoms and developmental age-related barriers to 45 
communication. These challenges often result in delayed or inaccurate diagnoses, thereby impeding 46 
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effective clinical management and increasing the risk of long-term adverse health effects. A key example 47 
is Kawasaki disease (KD), an inflammatory syndrome of unknown etiology that primarily affects children 48 
under five years of age. KD is often misdiagnosed because significant clinical signs overlap between KD 49 
and other inflammatory and/or infectious conditions. Accurate diagnosis is critical, as KD patients who do 50 
not receive intravenous immunoglobulin (IVIG) early in the course of illness have a substantially 51 
increased risk of developing coronary artery aneurysms, making KD the leading cause of acquired heart 52 
disease in children. Thus, there is a clear need for accurate molecular tests for inflammatory conditions 53 
such as KD to inform timely and appropriate treatment.  54 

Currently, the differential diagnosis of pediatric inflammatory syndromes relies on clinical 55 
assessment of signs and symptoms and results from a broad array of laboratory tests. Culture-based 56 
and molecular assays are routinely used to identify viral and bacterial pathogens, but these tests do not 57 
interrogate the host response and hence are unable to differentiate between infectious and non-infectious 58 
conditions. Serologic metabolic, and antigen biomarkers used for diagnosis often lack specificity1,2. To 59 
address these limitations, recent studies have explored the use of whole blood RNA transcriptome 60 
profiling of the human host response to assess disease severity and differentiate among inflammatory 61 
conditions including KD, MIS-C, viral, and bacterial infection3–6. However, while the whole blood profile is 62 
indicative of the host immune response, it provides little information regarding the extent of inflammation-63 
related cell injury or death in solid organ tissues. In contrast, cell-free nucleic acids in plasma, including 64 
cell-free DNA (cfDNA) and cell-free RNA (cfRNA) are promising analytes for evaluating inflammation as 65 
they are released by dead or dying cells originating from both the bloodstream and solid tissues7. Many 66 
recent studies have explored the use of cell-free nucleic acids for monitoring of pregnancy8,9, cancer10,11, 67 
transplantation12,13 and infection5,14–23, yet the potential of cell-free nucleic acids for the differential 68 
diagnosis of inflammatory syndromes remains largely unexplored. 69 

In this study, we applied plasma cell-free RNA (cfRNA) profiling by RNA sequencing to compare 70 
host immune and cellular injury responses associated with four different inflammatory and/or infectious 71 
syndromes in children. We identified shared signatures across multiple conditions, highlighting the 72 
importance of incorporating multiple comparison groups for the development of disease-specific 73 
biomarkers. Using cfRNA profiles, we built a machine learning model with high accuracy in differentiating 74 
between MIS-C and KD, two pediatric inflammatory syndromes with overlapping clinical presentations. 75 
We then expanded this methodology to construct a multi-class diagnostic classifier capable of 76 
distinguishing among KD, MIS-C, viral, and bacterial infections. In addition, we demonstrate that the 77 
cfRNA profile can be correlated with markers of tissue damage and may be able to differentiate among 78 
different viral infections. We propose an application of cfRNA profiling as a decision support tool for 79 
differential diagnosis of inflammatory syndromes in the clinical setting. 80 
 81 
RESULTS 82 
Clinical cohort. We collected and analyzed 370 plasma samples from pediatric patients with 83 
inflammatory and infectious conditions at four hospitals in the US, including Rad Children’s Hospital San 84 
Diego (UCSD), Emory, Children’s National Hospital (CNH), and University of California San Francisco 85 
(UCSF) (Figure 1A and B). This sample set included patients diagnosed with KD, MIS-C, viral infection, 86 
bacterial infection, and other hospitalized pediatric controls, some but not all with inflammatory disease 87 
(for example, arthralgia, Crohn’s disease flare, parenchymal lung disease, chronic lung disease, toxic 88 
shock syndrome, and post-vaccine myocarditis), as well as healthy children (Figure 1A and Table 1). 89 
Included cases of bacterial and viral infections were heterogeneous with respect to infection site and 90 
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pathogen (Supplementary File 1). All patient samples were collected within 4 days of hospitalization 91 
during the acute phase of disease (Methods). RNA next-generation sequencing was used to quantify the 92 
genes and cell types of origin of cfRNA in each sample, with an average of 20.7 million reads sequenced 93 
per sample (Methods). Machine learning models were built to identify biosignatures associated with 94 
different diseases. 95 

 
 

 
Figure 1. Sample Overview. A) Sample counts for each disease group. “Other” indicates other hospitalized 
pediatric controls. B) Distribution of collected samples based on hospital site. 
 
cfRNA signatures of disease. Our initial focus was on characterizing changes in cfRNA profiles in 96 
plasma that are common across the various inflammatory conditions. We performed pairwise differential 97 
gene abundance analysis between the healthy control group and each disease group (Methods, Figure 98 
2A and Supplementary File 2). This analysis identified differentially abundant genes (DAGs) for all 99 
comparisons (BH adjusted p-value < 0.05). The smallest number of DAGs was identified when comparing 100 
healthy controls to patients in the other hospitalized control group (n=2,686) and the greatest number 101 
when comparing healthy controls to patients with KD (n=6,591, Figure 2A). Further analysis of the DAGs 102 
for all conditions revealed a significant number of shared genes (1,877 DAGs, Figure 2A). Chief among 103 
these were histone protein coding genes that were elevated for all disease groups, indicating that an 104 
increase in histone transcripts is a universal indicator of inflammation (Figure S1A). The analysis also 105 
identified immune related transcripts MPO, ELANE, CD53, and CXCR2 elevated in each disease group, 106 
homeostasis related transcripts CDK19, ANAPC5, and 32 mitochondrial protein coding RNAs in the 107 
control group (Figure S2B). Pathway analysis of the 1,877 overlapping DAGs revealed an enrichment of 108 
neutrophil and cell replication transcripts related to inflammation (Figure 2B and Supplementary File 109 
3). These findings point to shared signatures of inflammation among disease groups and emphasize the 110 
need for inter-group comparisons to develop disease-specific biosignatures. 111 
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Figure 2. Shared cfRNA signatures among different inflammation syndromes. A) Differential abundance 
analysis using DESeq2 was performed between healthy controls and each other group individually. Vertical columns 
indicate the number of overlapping genes that are significantly differentially abundant between groups and controls 
(Benjamini-Hochberg (BH) adjusted p-values < 0.05). Dots below bars indicate the groups being intersected. 
Horizontal columns indicate the total number of DAGs between groups and controls. B) Significantly enriched 
pathways in the set of genes found to be differentially abundant between healthy controls and each disease group 
group. Average p-value and fold change used for pathway analysis (Qiagen, IPA). 
 
cfRNA can differentiate MIS-C and Kawasaki Disease. KD and MIS-C share many clinical 112 
characteristics: they are highly inflammatory, present with endothelial dysfunction, and have multiple 113 
overlapping signs, including skin rashes, mucosal involvement, and fever. There are currently no 114 
molecular tests to distinguish between KD and MIS-C. We therefore assessed if cfRNA could be used to 115 
differentiate these severe pediatric inflammatory syndromes. We divided the KD (n=100) and MIS-C 116 
(n=98) samples into training (60%), validation (20%), and test (20%) sets, ensuring a roughly equal 117 
representation of hospital of origin and disease subclassification across all 3 sets (Figure 3A). We used 118 
the training data for feature selection and to train machine learning models. We then used the validation 119 
set to select the final model, based on the model with the highest receiving operator characteristic Area 120 
Under the Curve (AUC). Last, we evaluated the performance of the final model using the test set. To 121 
prevent influence of the test set on the training data and to ensure unbiased results, we normalized each 122 
set separately using a variance stabilizing transformation (Methods). 123 

In our initial analysis using the training set, we identified 1,242 differentially abundant genes 124 
between KD and MIS-C (DESeq2, Benjamini-Hochberg (BH) adjusted p-value < 0.01 and base mean > 125 
10; Figure 3B and Supplementary File 4). We refined this gene list based on adjusted p-value, base 126 
mean, individual gene AUC, and fold change, resulting in a final tally of 132 genes for model input (Figure 127 
3C). We then trained 14 machine learning classification models, evaluating their performance on the 128 
validation set (Methods). The GLMNET model with LASSO regression exhibited the highest validation 129 
set AUC and was selected as our final model (Figure 3D). A unique feature of the GLMNET LASSO 130 
algorithm is the feature selection step, which selected 25 genes for the modeling (Table S1). Using this 131 
trained model, we tested the classification performance using the test set (ROC-AUC train=1.00, 132 
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validation=0.98, test=0.97) (Figure 3E). We also observed similar distributions in the classification scores 133 
across sample sets, further confirming that there was little to no overfitting of the training and test sets 134 
(Figure 3F).  135 
 
 

 
Figure 3. cfRNA distinguishes KD and MIS-C. A) Overview of sample set and modeling scheme. B) Volcano plot 
of differentially abundant transcripts between MIS-C and KD. Analysis was performed using the training data set 
(DESeq2). C) Adjusted p-value, base mean, and gene ROC AUC distributions for all genes from the training KD vs 
MIS-C comparison. D) ROC AUC values for the 14 machine learning classification models applied to training and 
validation sets. E) ROC-AUC curves of the training, validation, and test sets using the GLMNET with LASSO 
regression algorithm. F) Violin plots of the classifier scores from the GLMNET with LASSO regression algorithm. 
 136 
Multi-disease classification using cfRNA. We next asked if cfRNA could be used in the more 137 
challenging scenario of multi-disease classification. For this, we developed a machine learning framework 138 
that combines the outputs of one-vs-one models using a random forest multiclass algorithm (Methods, 139 
Figure 4A). We first split our dataset into training (70%) and test (30%) sets, with roughly comparable 140 
proportions of samples from patients with KD, MIS-C, viral infection, or bacterial infection, while also 141 
stratifying the groups evenly with respect to hospital of origin and disease subclassification. We 142 
performed differential abundance analysis for each pairwise comparison using only the training data 143 
(Supplementary File 5). Next, we trained individual one-vs-one GLMNET models with LASSO 144 
regression for each sample group (MIS-C, KD, viral infection, or bacterial infection), using the top 100 145 
genes identified in the differential abundance analysis. These genes were selected based on gene 146 
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abundance AUC and level of significance (Methods). Each of the one-vs-one models demonstrated high 147 
performance with individual model scores classifying samples with high accuracy (Test AUC: min=0.86, 148 
max=0.99; Test Accuracy: min=0.83, max=0.92; Figure 4B). The union of genes used by each GLMNET 149 
model with LASSO regression generated a 109-gene panel (Supplementary File 6). To combine the 150 
outputs of the individual models, we trained a multiclass random forest classifier using the classification 151 
scores from the one-vs-one models. Using this framework, our multiclass machine learning model 152 
achieved high accuracy in both the training and test sets (Accuracy, train=100% and test=81%), with the 153 
highest rate of misclassified samples in the bacterial infection group. The high performance of the 154 
multiclass machine learning model on a relatively small number of genes points to the potential utility of 155 
cfRNA in differentiating complex inflammatory conditions in a clinical setting. 156 
 
Characterization of disease using cfRNA. We further investigated whether cfRNA could be employed 157 
not only for classification but also for disease characterization. Since inflammation and/or infection can 158 
impact multiple organ systems, understanding organ-specific damage and function is crucial for guiding 159 
clinical management. Previous work from our group and others has shown that quantifying the cfRNA 160 
cell-type-of-origin (CTO) is a viable non-invasive method to assess cell, tissue and organ-specific 161 
injury17,24. Here, we employed deconvolution of the cell types of origin of cfRNA using BayesPrism and 162 
the Tabula Sapiens human cell atlas as a reference. The CTO estimates were compared with known 163 
biomarkers and other indicators of specific organ injury or dysfunction (Methods, Figure 5A). We first 164 
compared hepatocyte and intrahepatic cholangiocyte contributions to the cfRNA in plasma to alanine 165 
transaminase measurements (ALT, n=141). We observed significantly elevated levels of cfRNA from 166 
hepatocytes and intrahepatic cholangiocytes in patients with high ALT (ALT > 100 IU/L) compared to 167 
patients with normal ALT (ALT < 40 IU/L, Figure 5A). To explore cardiac function and damage, samples 168 
were categorized as having either normal or abnormal cardiac function (Methods). In the abnormal group, 169 
we observed increased levels of cfRNA from cardiac muscle cells and pericytes, likely indicative of 170 
increased cardiac cell injury or death. Interestingly, this group also exhibited elevated cfRNA levels from 171 
kidney epithelial cells, intrahepatic cholangiocytes, club cells and type I pneumocytes, and bronchial 172 
epithelium, suggesting other end organ damage associated with impaired cardiac function (Figure 5A). 173 
Of note, patients with abnormal cardiac function did not have elevated levels of smooth or skeletal muscle 174 
cell derived cfRNA (Figure S2A). Last, to evaluate lung function and damage we focused on samples 175 
from healthy individuals and viral infection patients with COVID-19, further stratifying the COVID-19 176 
samples by disease severity (Methods). We observed elevated levels of cfRNA from club cells and type 177 
I pneumocytes in moderate COVID-19 cases compared to healthy individuals, with a greater increase for 178 
severe cases (Figure 5A). We observed similar trends in the levels of bronchial epithelium derived 179 
cfRNA; however, the difference was not statistically significant.  180 

We next assessed if cfRNA could be used to further stratify sample groups by distinguishing 181 
between COVID-19 infection from SARS-CoV-2 and infections from other viral pathogens (Influenza, 182 
RSV, EBV, Adenovirus, etc). We separated viral infection samples into COVID-19 and non-COVID-19 183 
viral infections and randomly split the data into training (70%) and testing (30%) data sets. Next, we 184 
trained a GLMNET with LASSO regression model to differentiate between these groups (Methods). The 185 
trained model had high performance on the training and test sets despite including only seven genes 186 
(train AUC = 0.99, test AUC = 0.93), demonstrating the potential of cfRNA for respiratory viral species 187 
differentiation (Figure S2B-C).  188 
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Figure 4. Multiclass Classification of pediatric disease using cfRNA. A) Overview of machine learning 
framework used for multiclass classification. B) ROC-AUC plots for each one-vs-one model trained, along with train 
(top) and test (bottom) classifier score distributions. C) Confusion matrix of reference and predicted diagnoses for 
train and test samples. Color indicates number of samples in each category. 
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Figure 5. cfRNA as a clinical decision support tool. A) Median scaled cell type of origin fractions for samples 
separated by liver damage, cardiac function, COVID-19 severity, and endothelial damage, and healthy controls 
(Methods). Stars indicate statistically significant differences between groups in comparison (Wilcoxon rank sum 
test, BH adjusted p-value < 0.05). B-E) Case studies of patients with example clinical decision support tool results 
from the multiclass algorithm, along with measurements of endothelium, heart, liver, lung, and neuronal damage 
from the deconvolution data. Sample shown in red and healthy donor samples in gray. Z-scores calculated relative 
to healthy donor sample distributions. Endothelium refers to endothelial cell, heart to cardiac muscle cells, liver to 
hepatocyte, lung to club cell and type I pneumocyte, and neuronal to Schwann cell cfRNA cell type of origin fractions. 
 
 
cfRNA profiling as a clinical decision support tool. We next simulated a cfRNA “report” for each 189 
patient in the multiclass test set (Supplementary File 7) and discuss four patient cases in detail to 190 
illustrate how cfRNA can be integrated to support clinical decision making. Each report includes 191 
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diagnostic predictions from the multiclass classification algorithm and predicted organ involvement levels 192 
as z-scores of CTO fractions in samples from patients with disease compared to healthy patients.  193 

The first case is a 10–15-year-old male with very-high-risk B-cell acute lymphoblastic leukemia in 194 
delayed intensification chemotherapy who presented with a 1-day history of fever (Figure 5B). His 195 
laboratory assessments were notable for leukopenia, anemia, thrombocytopenia, elevated C-reactive 196 
protein (CRP), mildly elevated alanine transaminase, normal kidney function, and developed hypotension 197 
following admission. He had known household contacts with COVID-19, and his nasopharyngeal PCR 198 
was positive for SARS-CoV-2, but he did not develop respiratory symptoms. The final diagnosis was 199 
COVID-19 in an immunocompromised host. Despite the immunocompromised state of the patient and 200 
lack of respiratory symptoms common in COVID-19, the cfRNA algorithm correctly identified the patient 201 
as having a viral infection. Furthermore, the elevated levels of liver and heart derived cfRNA are 202 
interesting given the clinical manifestations of mildly elevated ALT and hypotension.  203 
 In the second case, the cfRNA model correctly predicted the patient as having MIS-C, but the 204 
classifier score for MIS-C and viral infection were very comparable, producing what could be considered 205 
a “borderline” result (Figure 5C). The patient is a 0–5-year-old male who presented with a 1-week history 206 
of abdominal pain, vomiting, and watery diarrhea, with subsequent development of fever, conjunctival 207 
injection and swelling of the hands and feet. The patient had normal white blood cell counts (WBC), with 208 
lymphopenia, thrombocytopenia, hyponatremia, acidosis, and elevated brain natriuretic peptide (BNP), 209 
C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR), with normal liver and kidney function. 210 
He was SARS-CoV-2 PCR negative but SARS-CoV-2 immunoglobulin G positive. No additional viral 211 
testing was performed. His course was complicated by hypotension, but an echocardiogram was grossly 212 
normal. The final diagnosis was MIS-C, which was the top prediction from the cfRNA model. Interestingly, 213 
viral infection was the second most probable diagnosis from the cfRNA model. MIS-C is derived from a 214 
viral infection (SARS-CoV-2), and MIS-C and viral infection can be difficult to differentiate. There are at 215 
least 3 possible interpretations for these results: (1) the model is correctly identifying MIS-C along with a 216 
viral signature from SARS-CoV-2, (2) the patient is misdiagnosed with MIS-C and has only a viral 217 
infection, or (3) the detection of a viral signature is due to errors in the model. We also observed elevated 218 
liver cfRNA despite the patient having normal liver enzymes along with elevated heart tissue derived 219 
cfRNA, which is consistent with the elevated BNP. 220 

In the third case, the model incorrectly predicted the diagnosis in an immunocompromised patient, 221 
but the correct diagnosis of bacterial infection was the second most likely prediction (Figure 5D). The 222 
patient is a 0-5-year-old male with a history of Wiskott-Aldrich syndrome requiring a bone marrow 223 
transplant. He was admitted with fever, fatigue, pancytopenia with severe thrombocytopenia, elevated 224 
CRP, and blood cultures positive for Klebsiella pneumoniae. The source of the infection is unknown but 225 
was believed to be secondary to bacterial gut translocation or central line infection. His pancytopenia and 226 
thrombocytopenia were attributed to his history of Wiskott-Aldrich syndrome. He was treated with 227 
cefepime and responded clinically to a full course of antibiotics. The final diagnosis was bacterial 228 
infection, which was the second ranked prediction by the cfRNA model. Interestingly, the patient 229 
presented with some symptoms characteristic of MIS-C, the apparently erroneous top prediction made 230 
by the cfRNA model; specifically with severe thrombocytopenia and elevated CRP, which are part of the 231 
MIS-C case definition25.  232 

In the last case, the model predicted an incorrect diagnosis, but the cfRNA organ damage scores 233 
in the patient were consistent with what was observed clinically (Figure 5E). The patient is a 0-5-year-234 
old female presenting with 2 months of fever, progressive fatigue, and diffuse muscle pain. On admission, 235 
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the patient was found to have peripheral leukocytosis (WBC count of 24.6) with >20% blasts, relative 236 
neutropenia and tumor lysis syndrome. The leukemia was subtyped as B-cell acute lymphocytic leukemia 237 
by flow cytometry. The patient was positive for methicillin-sensitive Staphylococcus aureus (MSSA) 238 
bacteremia with 1 of 1 culture positive. Hazy opacities observed on the chest x-ray raised concerns about 239 
pulmonary edema, while the echocardiogram indicated coronary dilation and cardiac hypertrophy which 240 
was attributed to chronic anemia. The patient responded to a full course of antibiotics, and the final 241 
diagnosis was MSSA bacterial infection, which the cfRNA model did not correctly predict. However, 242 
despite the incorrect diagnosis, organ damage scores clearly show elevated levels of heart derived 243 
cfRNA, consistent with the abnormal cardiac hypertrophy observed in this patient.  244 
 245 
DISCUSSION 246 
 In this work, we established a proof-of-concept that cfRNA can be used to differentiate among 247 
inflammatory syndromes in children across both one-on-one and multiclass comparisons. Interest in the 248 
use of blood-borne nucleic acids for diagnosis of inflammatory conditions is driven by continual 249 
advancements in sequencing technology, the ease of drawing blood, and the critical need for better 250 
diagnostic tools. Coote et al. recently introduced whole blood RNA multi-classification models for pediatric 251 
illnesses, distinguishing 6 broad and 18 granular categories. However, whole blood RNA biosignatures 252 
are primarily derived from immune cells, and do not provide information on cell, tissue, and organ 253 
damage. In contrast, cfRNA signals derive from dead and dying cells in blood and tissues, thus providing 254 
insight into immune dynamics and underlying tissue involvement8–10,17–19,24,26,27. Kalantar et al. used a 255 
combination of cfRNA, cfDNA, and whole blood RNA for differentiating sepsis and other causes of critical 256 
illness5. However, the approach used by Kalantar et al. lacks consolidation into a unified multi-class 257 
model, requires the use of two different analytes (whole blood and plasma), and did not analyze cfRNA 258 
to characterize tissue and organ injury. Our work expands on these recent studies by presenting a 259 
multiclass framework using only cfRNA to differentiate, diagnose, and better characterize inflammatory 260 
syndromes in children. 261 

The data from this study provides opportunities to better understand cfRNA profiles in health and 262 
disease. We observed cfRNA signatures that are common to all inflammatory conditions, including 263 
elevated histone related RNAs, neutrophil extracellular trap (NET) components MPO and ELANE28, as 264 
well as immune markers ILF2, IFI16, CD53, and CXCR2. NETs are composed of DNA, histones, and 265 
other proteins, and act to trap and neutralize pathogens while minimizing host cell damage29. Our 266 
observation of cfRNA signatures of NET formation is consistent with the reported role of NETs in KD and 267 
MIS-C30,31.  268 

To test the ability of cfRNA profiles to distinguish among pediatric inflammatory syndromes, we 269 
compared cfRNA profiles for patients diagnosed with KD and MIS-C, conditions that are very similar 270 
clinically. There is a need for improved molecular tools to discriminate between these two conditions as 271 
exemplified by a recent study from Day-Lewis et al. which reported significant overlap in signs and 272 
symptoms between KD and MIS-C (based on the 2023 case definition), with an estimated false positive 273 
rate of 8%25. The cfRNA signature presented here has near-perfect accuracy and therefore has high 274 
potential for translation into a useful clinical molecular test. Furthermore, the identified gene signature 275 
provides new mechanistic insight into KD and MIS-C. For example, two genes included in the machine 276 
learning signature are EEF2, elevated in KD, and FKBP5, elevated in MIS-C. EEF2 is an elongation 277 
factor that has previously been implicated in senescence32 and exposure to bacterial toxins33. This is 278 
compelling given that it has been suggested that an inhaled toxin or pathogen may be one of the triggers 279 
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of KD. FKBP5 is a member of the immunophilin family and has been implicated in immune-stress 280 
response and other cellular processes in the brain and peripheral nervous system34. This observation is 281 
relevant given the neuronal involvement reported for MIS-C35. Beyond KD and MIS-C, we show that 282 
cfRNA can similarly differentiate between COVID-19 and other viral infections, opening the door for future 283 
studies to create more granular classification algorithms that can differentiate among pathogens at the 284 
species level based on cfRNA host profiling. 285 

The case studies focusing on both correct and incorrect predictions made by the classification 286 
model highlight the potential utility of cfRNA profiling in the clinical setting. They also underscore the 287 
importance of inclusion of as many “real-life” cases as possible during the development of classification 288 
models to maximize the specificity of their predictions. In particular, immunocompromised patients exhibit 289 
altered immune and tissue/organ damage responses, and more data will likely need to be collected and 290 
classifications models tailored to optimize performance of cfRNA profiling in this subgroup. However, we 291 
are encouraged that our results suggest that cell, tissue, and/or organ injury based on cfRNA levels can 292 
be detected even for those cases for which the model disease classification is incorrect. 293 

Here we present the first multiclass model for differential diagnosis of inflammatory syndromes 294 
using plasma cfRNA. The final model includes just 109 genes, suggesting that translating the model to a 295 
multiplexed qRT-PCR based platform with a rapid turnaround time of a few hours is likely practical. 296 
Furthermore, one of the most compelling aspects of cfRNA profiling is the ability to quantify the extent of 297 
organ involvement. We demonstrate this concept with simultaneous quantification of injury to multiple 298 
organ systems (liver, cardiac, lung, endothelium). Available clinical tests for evaluating tissue injury (for 299 
example, alanine aminotransferase levels in the liver) enabled us to confirm the accuracy and cfRNA-300 
based detection of organ injury. Even more compelling is the potential clinical utility of cfRNA in 301 
quantifying injury to tissues where current tests are not available or lack adequate sensitivity, such as 302 
endothelial and neuronal injury. In the future, simultaneous diagnosis and characterization of tissue injury 303 
may be critical in informing clinicians on the optimal management and treatment of their patients with 304 
inflammatory syndromes of unknown etiology.  305 

 306 
METHODS 307 
Ethics Statement. The University of California, San Francisco (UCSF) Institutional Review Board (IRB) 308 
(#21-33403), San Francisco, CA; Emory University IRB (STUDY00000723), Atlanta, GA; Children’s 309 
National Medical Center IRB (Pro00010632), Washington, DC; and Cornell University IRB for Human 310 
Participants (2012010003), New York, NY each approved the protocols for this study. All samples and 311 
patient information were de-identified for analysis and shared with collaborating institutions. At Emory 312 
University,  the IRB approved protocol was a prospective enrollment study under which parents provided 313 
consent and children assent as appropriate for age. At Children’s National Medical Center and UCSF, 314 
the IRB protocols were “no subject contact” sample biobanking protocols under which consent was not 315 
obtained and data was extracted from medical charts.  At University of California, San Diego (UCSD), 316 
the IRB reviewed and approved collection and sharing of samples and data (IRB #140220). Signed 317 
consent and assent were provided by the parent(s) and pediatric patient, respectively. 318 
  319 
Sample Acquisition. Samples were acquired from UCSF as previously described17. Briefly, hospitalized 320 
pediatric patients were identified as having COVID-19 by testing positive with SARS-CoV-2 real-time 321 
PCR (RT-PCR). Residual whole blood samples were collected in EDTA lavender top tubes and diluted 322 
1:1: in DNA/RNA shield (Zymo Research). The remaining blood was centrifuged at 2500 rpm for 15 min 323 
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and the available plasma was retained. All samples were stored at -80℃ freezer until used. Samples 324 
were acquired from Emory and Children’s Healthcare of Atlanta as previously described17. Briefly, 325 
pediatric patients were classified as having COVID-19 by SARS-CoV-2 RT-PCR and as having MIS-C if 326 
they met the CDC case definition. Controls were healthy outpatients with no known history of COVID-19 327 
who volunteered for specimen collection. Whole blood was collected in EDTA lavender top tubes and 328 
aliquoted for plasma extraction via centrifugation at 2500 rpm for 15 min. Samples were stored at -80°C 329 
and shipped on dry ice to either UCSF or Cornell for analysis. Samples were acquired from UCSD prior 330 
to any treatment in all subjects in EDTA lavender top tubes and centrifuged at 2,000g for 10 minutes. 331 
Plasma was collected and stored at -80F. Samples were acquired from Children’s National Hospital as 332 
previously described17. Briefly, pediatric patients were classified as having MIS-C if they met the CDC 333 
case definition.  Whole blood samples were collected and centrifuged at 1300 xG for 5 minutes at room 334 
temperature. Plasma was aliquoted into a cryovial and frozen at -80°C.  335 
  336 
Clinical Data. Patients were stratified as previously described17. For the purposes of this study, patients 337 
were classified as having MIS-C by multidisciplinary teams that adjudicated whether a patient met the 338 
CDC case definition of MIS-C. COVID-19 was defined as any patient with PCR-confirmed SARS-CoV-2 339 
infection within the preceding 14 days who did not also meet the MIS-C case definition. Kawasaki Disease 340 
patients at UCSD met the AHA definition for complete or incomplete KD. Viral and bacterial infection 341 
patients enrolled at UCSD were adjudicated and a final diagnosis assigned by the research team (one 342 
ED clinician and one pediatric infectious disease expert) 2-3 months after the acute illness to allow time 343 
for serologies, recurrence, and clinical recovery to be assessed. Patients with a self-limited illness that 344 
resolved without treatment and for whom viral studies were either negative or not done were classified 345 
as having a “viral syndrome”. Clinical data was abstracted from the medical record and submitted into a 346 
REDCap databases housed at UCSF or UCSD. 347 

 348 
Sample processing and sequencing. Samples were processed as described previously17. Briefly, 349 
samples were received on dry ice, RNA was extracted, and libraries prepared and sequenced on a 350 
NextSeq or NovaSeq Illumina sequencer. Reads were trimmed to 61 bp and sequencing data was 351 
processed using a custom bioinformatics pipeline which included quality filtering and trimming, alignment 352 
to the human GRCh38 reference genome, and counting of gene features. 353 
  354 
Sample quality filtering. Using the sequencing data, quality control was performed by analyzing DNA 355 
contamination, rRNA contamination, total counts, and RNA degradation. DNA contamination was 356 
estimated by calculating the ratio of reads mapping to introns and exons. rRNA contamination was 357 
measured using SAMtools (v1.14). Total counts were calculated using featureCounts30 (v2.0.0). 358 
Degradation was estimated by calculating the 5’-3’ bias using Qualimap31 (v2.2.1). Samples were 359 
removed from analysis if either the intron to exon ratio was greater than 3, if a sample had less than 360 
75,000 total feature counts, or if the 5’-3’ read alignment ration bias was greater than 2. 361 
 362 
Differential abundance analysis. Gene transcript abundances were compared using a negative 363 
binomial model implemented using the DESeq2 R package36. Gene transcript base mean abundance, 364 
adjusted p-value, and log2 fold change were taken from the DESeq2 Results output. Gene transcript 365 
AUC was calculated using VST transformed counts and the pROC R package37. 366 
 367 
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Sample partitioning. Samples were partitioned for machine learning applications taking into 368 
consideration diagnosis, hospital of origin, and disease subclassification. MIS-C and COVID-19 samples 369 
were subclassified by severity, as previously defined17. KD samples were subclassified by phenotypic 370 
subclusters, as previously defined38. Non-COVID-19 Viral and bacterial infection samples were evenly 371 
partitioned by diagnosis and hospital of origin only. 372 
 373 
Machine learning: MIS-C vs KD. Samples were partitioned into training, validation, and test sets at a 374 
ratio of 60:20:20, partitioning evenly based on factors such as diagnosis, severity/subgroup, and hospital 375 
of origin. Subsequently, differential abundance analysis was conducted on the training data. Genes were 376 
filtered based on specific criteria (adjusted p-value < 0.01, base mean abundance > 100, gene transcript 377 
AUC > 0.65, and absolute log2 fold change > 0.25) and the top 150 genes, as ordered by gene transcript 378 
AUC, were selected as inputs for machine learning analyses. 379 

Raw counts for the training, validation, and test sets were individually normalized using variance 380 
stabilizing transformation, and subsets were created based on the chosen transcript features. Fourteen 381 
machine learning classification algorithms were employed using the R package Caret 382 
(10.18637/jss.v028.i05), including generalized linear models with Ridge and LASSO feature selection 383 
(GLMNETRIDGE and GLMNETLASSO), support vector machines with linear and radial basis function 384 
kernel (SVMLin and SVMRAD), random forest (RF), random forest ExtraTrees (EXTRATREES), neural 385 
networks (NNET), linear discriminant analysis (LDA), nearest shrunken centroids (PAM), C5.0 (C5), k-386 
nearest neighbors (KNN), naive bayes (NB), CART (RPART), and generalized linear models (GLM). 387 
Training was performed using 5-fold cross-validation and grid search hyperparameter tuning. 388 

For each model, classification score thresholds were determined using Youden’s index on the 389 
training data. The trained models were then employed to predict labels for the validation set, and 390 
performance was assessed using the area under the receiver operating characteristic curve area under 391 
the curve (ROC-AUC). The model achieving the highest AUC on the validation set was selected as the 392 
final model and subsequently applied to the test set, which had not been utilized in any phase of model 393 
training or selection. Prediction on both the validation and test sets utilized the Youden’s index threshold 394 
derived from the training set. 395 
 396 
Machine learning: Multi-Classification. Samples were partitioned into train and test sets at a ratio of 397 
70:30, considering factors such as diagnosis, severity/subgroup, and hospital of origin. One-vs-one 398 
GLMNET LASSO models were trained for each pairwise comparison of samples groups (eg. KD vs Viral 399 
Infection) using the top 150 significant features (adjusted p-value <0.05, base mean abundance > 50, 400 
and absolute log2 fold change > 1) ordered by gene transcript AUC calculated using the training data. 401 
Trained models were used to calculate classification scores for all samples in the train and test data set, 402 
resulting in six classification scores for each sample. Classification scores were used to train a multiclass 403 
Random Forest algorithm which assigned probability scores for each condition. The final condition with 404 
the highest probability score from the Random Forest was assigned as the prediction for each sample. 405 
 406 
CTO analysis. Cell type deconvolution was performed using BayesPrism (v1.1)39 with the Tabula 407 
Sapiens single-cell RNA-seq atlas (Release 1)27 as a reference. Cells from the Tabula Sapiens atlas were 408 
grouped as previously described in Vorperian et al.24. Cell types with more than 100,000 unique molecular 409 
identifiers (UMIs) were included in the reference and subsampled to 300 cells using ScanPy (v1.8.1)40.  410 
Deconvolution values were scaled from 0-1 for each cell type and medians calculated for plotting. 411 
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For liver damage assessment, samples were separated as having normal or high ALT 412 
measurements (normal: ALT < 40 IU/L, high: ALT > 100 IU/L). The ALT measurements were taken from 413 
the same blood draw as the plasma for cfRNA processing. For cardiac function, patients were categorized 414 
as abnormal if they had abnormal EKG/ECG and/or echocardiogram results. EKG/ECG and 415 
echocardiogram results were categorized as abnormal in the context of the patient narrative and final 416 
interpretation of the studies. For endothelial damage, samples were separated as either having KD/MIS-417 
C or bacterial/viral infection. COVID-19 patients were determined to have moderate or severe disease 418 
using the following criteria:  419 

Moderate: The patient must have been hospitalized due to COVID-19 respiratory disease and/or 420 
any systemic/non-respiratory symptoms attributed to COVID-19 (e.g., neonatal fever, dehydration, new 421 
diagnosis diabetes, acute appendicitis, necrosis of extremities, diarrhea, encephalopathy, renal 422 
insufficiency, mild coagulation abnormalities, etc.).  423 

Severe: The patient must have been hospitalized for COVID-19 with either high-flow oxygen 424 
requirement (high-flow nasal cannula (NC), continuous positive airway pressure (CPAP), bilevel positive 425 
airway pressure (BIPAP), intubation with mechanical ventilation, or extracorporeal membranous 426 
oxygenation (ECMO)) and/or evidence of end-organ failure (acute renal failure requiring dialysis, 427 
coagulation abnormalities resulting in bleeding or stroke, diabetic ketoacidosis (DKA), hemodynamic 428 
instability requiring vasopressors) and/or dying from COVID-19. These patients were almost always 429 
admitted to the ICU. 430 
 431 
Machine learning: COVID-19 vs non-COVID19 viral infection. Training was done using the same 432 
method as the KD vs MIS-C model. Briefly, viral infection samples were partitioned into train and test 433 
sets at a ratio of 70:30, considering factors such as COVID-19 status, severity/subgroup, and hospital of 434 
origin. Subsequently, differential abundance analysis was conducted on the training data. Genes were 435 
filtered based on specific criteria (adjusted p-value < 0.01, base mean abundance > 100, gene transcript 436 
AUC > 0.65, and absolute log2 fold change > 0.25) and the top 150 genes, as ordered by gene transcript 437 
AUC, were selected as inputs for machine learning analysis. 438 

Raw counts for the train and test sets were individually normalized using variance stabilizing 439 
transformation, and subsets were created based on the chosen transcript features. A GLMNET with 440 
LASSO regression was trained on the training set using 5-fold cross-validation and grid search 441 
hyperparameter tuning. Classification score thresholds were determined using Youden’s index on the 442 
training data. The trained models were then employed to predict labels for the test set using the Youden’s 443 
index threshold derived from the training set. 444 
 445 
Quantification and statistical analyses. The programming language R (v4.1.0) was utilized for all 446 
statistical analyses. Statistical significance was assessed through two-sided Wilcoxon signed-rank tests 447 
and Mann-Whitney U tests, unless specified otherwise. Machine learning algorithms were trained using 448 
the Caret R package and pipelines were run using the Snakemake workflow management system41,42. In 449 
boxplots, boxes denote the 25th and 75th percentiles, the band within the box signifies the median, and 450 
whiskers extend to 1.5 times the interquartile range of the hinge. The alignment of all sequencing data 451 
was performed against the GRCh38 Gencode v38 Primary Assembly, with feature counting conducted 452 
using the GRCh38 Gencode v38 Primary Assembly Annotation43. 453 
 454 
DATA AVAILABILITY 455 
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Raw sequencing data in this study cannot be deposited in a public repository due to patient privacy 456 
concerns and lack of consent for a subset of the patient samples. Instead, de-identified RNA-seq count 457 
matrices have been uploaded to the NCBI (National Center for Biotechnology Information) GEO (Gene 458 
Expression Omnibus) database and will be publicly available upon publication (GSE255555). All code 459 
has been deposited on GitHub and will be available upon publication. 460 
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