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Abstract 

 

 Cognitive decline is a common adverse effect of the Coronavirus Disease of 2019 

(COVID-19), particularly in the post-acute disease phase.   The mechanisms of cognitive 

impairment after COVID-19 (COGVID) remain unclear, but neuroimaging studies provide 

evidence of brain changes, many that are associated with aging.  Therefore, we calculated Brain 

Age Gap (BAG), which is the difference between brain age and chronological age, in a cohort of 

25 mild to moderate COVID-19 survivors (did not experience breathlessness, pneumonia, or 

respiratory/organ failure) and 24 non-infected controls (mean age = 30 +/- 8) using magnetic 

resonance imaging (MRI).  BAG was significantly higher in the COVID-19 group (F = 4.22, p = 

0.046) by 2.65 years.  Additionally, 80% of the COVID-19 group demonstrated an accelerated 

BAG compared to 13% in the control group (X2 = 20.0, p < 0.001).  Accelerated BAG was 

significantly correlated with lower cognitive function (p < 0.041).  Females in the COVID-19 

group demonstrated a 99% decreased risk of accelerated BAG compared to males (OR = 0.015, 

95% CI: 0.001 to 0.300). There was also a small (1.4%) but significant decrease in risk for 

accelerated BAG associated with longer time since COVID-19 diagnosis (OR = 0.986, 95% CI: 

0.977 to 0.995).  Our findings provide a novel biomarker of COGVID and point to accelerated 

brain aging as a potential mechanism of this adverse effect.  Our results also offer further 

insight regarding gender-related disparities in cognitive morbidity associated with COVID-19.  
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Introduction 

 

Emerging studies have demonstrated that the Coronavirus Disease of 2019 (COVID-19) 

increase the risk for a range of neurological difficulties including cognitive impairment.  

Cognitive decline, or “brain fog”, is believed to be part of a cluster of symptoms that encompass 

difficulty with concentration, attention, and memory that persist beyond the acute disease 

phase.  These symptoms are known as Post-acute Sequelae of SARS-CoV-2 Infection (PASC) or 

Long COVID (1).  Cognitive impairment after COVID-19 (COGVID) reduces quality of life, extends 

disease related morbidity, and impairs ability to return to work (2, 3).  The precise mechanism of 

COGVID is unclear though neuroimaging studies have demonstrated significant alterations in 

brain structure and function (4-13), including studies of non-critical/non-hospitalized cases (14-

17).   

We previously showed that survivors of mild to moderate, non-hospitalized COVID-19 

have significantly lower functional brain connectivity compared to non-infected controls, and 

hypo-connectivity was correlated with lower cognitive performance (18). Prior studies have 

indicated that reduction in functional brain connectivity is associated with normal aging (19, 

20).  Given that our cohort of COVID-19 survivors was young (mean age = 30 years), accelerated 

brain aging may be a potential mechanism of cognitive impairment in this population.  Prior 

studies of COGVID have focused on older adults with severe disease as these are the most 

vulnerable patients.  However, this approach has created a gap in the literature regarding 

cognitive outcomes in survivors of mild to moderate COVID-19 (people that do not experience 

breathlessness, pneumonia, or respiratory/organ failure), as younger individuals also show 

significant COGVID and may in fact be more vulnerable to long-term impairment (18, 21, 22).  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 7, 2024. ; https://doi.org/10.1101/2024.03.05.24303816doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.05.24303816
http://creativecommons.org/licenses/by/4.0/


Brain age can be estimated using non-invasive neuroimaging in combination with 

artificial intelligence.  Comparing estimated brain age with chronological age provides a metric 

known as Brain Age Gap (BAG), which quantifies brain health as the divergence from the typical 

trajectory of aging (23, 24).  Multiple studies have shown that BAG is a sensitive biomarker for 

detecting various neurologic and neuropsychiatric conditions (25, 26).  We aimed to examine 

BAG in young and early middle-aged adults who had mild to moderate COVID-19.  We 

hypothesized that BAG would be higher in COVID-19 survivors compared to non-infected 

controls.  

 

Methods 

Participants:  Between October 2021 and January 2023, we recruited adults with and 

without history of COVID-19 in central Texas.  Potential participants were recruited via social 

media, community boards, and outpatient referrals. Participants in the COVID-19 group were 

excluded for signs or symptoms of severe infection including self-rating of severity or 

hospitalization.   Any potential participant was excluded for pre-existing history of 

developmental, medical, or psychiatric disorders known to affect cognitive function, significant 

sensory impairment (e.g., blindness), or MRI contraindications (e.g., magnetic biomedical 

implants, certain orthodontia, claustrophobia). In total, we enrolled 50 adults (54% female) 

aged 21 to 50 years (mean = 30.7 +/- 8.7).  Twenty-six participants had a self-reported history of 

positive COVID-19 test and the remaining 24 participants self-reported no history of infection by 

test or associated symptoms.  We excluded one participant in the COVID-19 group for receiving 

treatment in a Post-COVID Clinic for Long COVID.  There were no significant differences between 
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the two groups in any demographic characteristics except for racial/ethnic minority status which 

was significantly higher in the control group (Table 1).  This study was approved by the 

University of Texas at Austin Institutional Review Board (protocol# 00001337), was conducted in 

accordance with the Declaration of Helsinki, and all participants provided written, informed 

consent. 

 Demographic and COVID-19 Measures:  We used instruments recommended by the 

National Institutes of Health to facilitate COVID-19-related research.  Specifically, from the NIH 

Repository of COVID-19 Research Tools, we administered the RADxUP Sociodemographic 

Questionnaire and the COVID-19 Experiences questionnaire to measure COVID-19 severity and 

symptoms during active infection (27). We also assessed current anosmia using the Pocket Smell 

Test (28). 

 Neuropsychiatric Function: We administered BrainCheck, a computerized battery of 

neuropsychological tests including Trails A (attention, processing speed, executive function), 

Trails B (attention, processing speed, executive function), Immediate List Recall (verbal memory 

learning), Delayed List Recall (verbal memory recall), Stroop (response inhibition), and Digit 

Symbol (graphomotor processing speed) (29).  BrainCheck provides age normalized test scores 

(mean = 100 +/- 15).  To measure subjective cognitive function, we administered the Patient 

Reported Outcome Measures Information System (PROMIS) Cognitive Function Short Form 8a 

(30).  This is an 8-item, self-rating questionnaire regarding the frequency of cognitive symptoms.  

We also administered PROMIS-57 Profile v2.1 to measure depressive symptoms, fatigue, 

anxiety, sleep disturbance, pain, and social role functioning (31). PROMIS provides standardized 

T-scores with a mean of 50 and standard deviation of 10.  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 7, 2024. ; https://doi.org/10.1101/2024.03.05.24303816doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.05.24303816
http://creativecommons.org/licenses/by/4.0/


Neuroimaging Pulse Sequence: T1-weighted anatomical MRI was collected using a high-

resolution magnetization prepared rapid gradient echo (MPRAGE) sequence: TR = 2400ms, TE = 

2.18, flip angle = 8 degrees, FOV 256 mm, parallel imaging with GRAPPA acceleration factor = 2, 

0.8mm isotropic resolution, 208 sagittal slices, scan time = 6:38min.  Resting state fMRI, 

diffusion tensor imaging and arterial spin labeling data were also collected during this 45-

minute scan session but are not reported here. 

Brain Age Gap (BAG).  We estimated brain age from brain volumes with brainageR v2.1, 

a publicly available algorithm that has been shown to be one of the most reliable for predicting 

age from brain MRI (32).  The algorithm implements a Gaussian Processes regression model to 

predict brain age from segmented brain volumes (33, 34).  The model was trained on 3,377 

healthy individuals (mean age = 40.6 years, SD = 21.4, age range 18-92 years) and tested on an 

independent dataset of 857 healthy individuals (mean age = 40.1 years, SD = 21.8, age range 18-

90 years).  The algorithm accepts raw, T1-weighted MRI scans, segments and normalizes them 

using Statistical Parametric Mapping v12 (Wellcome Trust Centre for Neuroimaging, London, UK) 

with custom templates.  We subtracted chronological age from estimated brain age to calculate 

BAG.  A positive BAG thus represents accelerated brain age and a negative BAG represents 

decelerated brain age (23).   

Statistical Analysis.  We compared BAG between groups using two different approaches; 

ANCOVA controlling for total brain volume, and a Chi square test to evaluate the difference in 

frequency of accelerated BAG (BAG > 0).  We conducted exploratory Spearman correlation 

analysis between accelerated BAG (1 = yes, 0 = no) and cognitive test scores.  We used 

exploratory logistic regression to determine clinical and demographic characteristics (number of 
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days since COVID-19 diagnosis, number of COVID-19 symptoms, sex, COVID-19 severity, and 

racial/ethnic minority classification) associated with accelerated BAG.  Cognitive tests were 

compared using t-tests for continuous variables and Chi Squared tests for categorical variables 

during our previously study of this cohort with false discovery rate (FDR) correction for multiple 

comparisons (18).  Alpha level for all tests was set at p < 0.05 and all data visualizations and 

analyses were conducted in the R Statistical Package v4.3.1 (R Foundation, Vienna, Austria).  

 

Results 

 COVID-19 Group Characteristics:  As we previously reported for this cohort, participants 

with a history of COVID-19 infection were nearly evenly split between mild and moderate 

disease severity with relatively low symptom burden during the acute infection (18).  There was 

a wide range in the interval between COVID-19 diagnosis and study enrollment (12-719 days, 

mean of 10 +/- 7 months, Table 1). No participants demonstrated anosmia (Table 2). 

Neuropsychiatric Function.  The COVID-19 group also demonstrated lower performance 

on all cognitive tests (effect size r = 0.15 to 0.30) (18).  However, only PROMIS Cognitive score 

was significantly different between groups (p < 0.001, FDR corrected, effect size r = 0.58) and 

the COVID-19 group demonstrated significantly higher incidence of PROMIS Cognitive 

impairment (X2 = 10.8, p = 0.007, FDR corrected).  The COVID-19 group also endorsed greater 

symptoms of anxiety and depression; however, these were not significantly different between 

groups after correction for multiple comparisons (Table 2). 

Between Group Difference in BAG.  As shown in Figure 1, mean BAG was significantly 

higher in the COVID-19 group (F = 4.22, p = 0.046) by 2.65 years.  Additionally, there were N = 20 
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(80%) in the COVID-19 group who demonstrated an accelerated BAG compared to N = 3 (13%) 

in the control group, which was a significant difference (X2 = 20.0, p < 0.001).   

Relationship Between Accelerated BAG and Cognitive Function.  Accelerated BAG in the 

COVID-19 group was associated with lower Trails A performance (r = - 0.348, p = 0.041) as well 

as PROMIS Cognitive impairment (r = -0.306, p = 0.033), but no other cognitive test scores (p > 

0.127).  

Clinical and Demographic Characteristics of Accelerated BAG.  The overall logistic 

regression model was significant (X2 = 14.71, Nagelkerke R2 = 0.666, p = 0.012, Table 3).  An 

increased duration from COVID-19 diagnosis was associated with a small yet statistically 

significant decrease (1.4%) in the risk of accelerated BAG.  There was also a large (99%) and 

significant decreased risk of accelerated BAG in females compared to males with COVID-19.  

There were N = 9/14 females (64%) in the COVID-19 group with accelerated BAG compared to 

10/11 males (91%).  Increased number of symptoms during acute infection, moderate COVID-19 

severity, and racial/ethnic minority status were associated with increased risk for accelerated 

BAG but were not statistically significant and lacked precision in this small sample (i.e., large 

confidence intervals for odds ratios).  

 

Discussion 

 Cognitive impairment after COVID-19 (COGVID) appears to be one the most common 

long-term side effects of infection (1) yet the mechanisms of this problem are an area of active 

research.  In this study, we identified accelerated brain aging as a potential contributor to 

COGVID. Individuals with a history of COVID-19 infection demonstrated a 2.65-year accelerated 
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BAG compared to the control group. We also found that poorer performance on an objective 

measure of attention, processing speed, and executive function (Trails A), as well as greater 

subjective cognitive problems were associated with higher BAG. Finally, we identified a 

significantly higher risk of accelerated BAG among males compared to females with mild to 

moderate COVID-19 infection. 

COVID-19 induced upregulation of angiotensin-converting enzyme 2 (ACE2) expression 

in the brain is a potential mechanism for our finding of accelerated BAG.  SARS-CoV-2, the virus 

responsible for COVID-19, uses ACE2 receptors to enter human cells (35).  Furthermore, ACE2 

expression is upregulated in the brain after COVID-19, especially in patients with significant 

neurologic symptoms (36).  ACE2 is primarily involved in the renin-angiotensin system (RAS). 

While the RAS is primarily known for its role in regulating blood pressure and fluid balance, it is 

also crucial for brain health and cognitive function (37).  The RAS system becomes dysregulated 

with increasing age, contributing to the pathogenesis of neurodegenerative diseases (38, 39).  

The specific role of ACE2 in neurodegeneration is complex given that its expression is associated 

with neuroprotective effects, yet several studies have noted elevated ACE2 levels in patients 

with Alzheimer’s disease (40-42).  These studies suggest that chronic elevation of ACE2 may 

result in dysregulation of the RAS system, increasing the risk for accelerated brain aging. To 

further evaluate this hypothesis, future studies should assess ACE2 level in Long COVID patients 

with cognitive impairment. 

Alternatively, the impact of ACE2 expression may vary depending on its distribution 

across different brain regions (43). Some areas might be more sensitive to changes in ACE2 

levels, leading to localized neurodegeneration despite the overall neuroprotective effects of 
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ACE2.  Our group and others have shown that prefrontal cortex is preferentially susceptible to 

COVID-19 (9, 14, 15, 18).  Under normal conditions, ACE2 expression is extremely low in 

prefrontal cortex (44) and thus this region may be exceptionally vulnerable to ACE2 elevation. 

Currently available brain age algorithms do not provide regional BAGs, but these could be 

estimated using custom models in large samples.  

COGVID may also result from accelerated aging due in part to chronic inflammation, or 

“inflammaging” (45, 46).  Inflammation is well-known to play a critical role in 

neurodegeneration (47, 48).  Patients with COVID-19 demonstrate post-infection upregulation 

of inflammatory biomarkers (49, 50) with the extent of the inflammatory response depending 

on disease severity (49, 50). Research among middle-aged COVID-19 survivors has shown 

significant inflammation-related astrocytic damage and neural dysfunction regardless of disease 

severity (51).  Inflammation after COVID-19 infection may also impair cognition via reduced 

serotonin levels (52). The prefrontal cortex is particularly vulnerable to inflammation due to its 

unique reliance on glutamate receptor/calcium mediated neurotransmission (53). The 

relationship between inflammation and BAG over time in mild and moderate COVID-19 

survivors requires further study. 

BAG is associated with certain genetic as well as lifestyle factors and may therefore be 

useful in treatment monitoring and development (23, 54, 55). Dietary and nutritional 

interventions have been effective in reducing brain aging, particularly calorie restriction and low 

consumption of processed food and sweets (56, 57).  Physical activity has consistently been 

associated with improved cognitive function and decreased brain aging (58, 59).  However, using 

physical activity to treat Long COVID is currently highly controversial in clinical practice because 
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of the risk for inducing post-exertional malaise.  There appears to be a complex interaction 

between exercise and immune-mediated symptoms, especially among younger COVID-19 

survivors (49) and therefore, physical activity may not be the best recommendation for many 

patients.  Current guidance on Long COVID emphasizes that physical activity should be 

individualized and structured, titrated carefully to avoid post-exertional malaise (60). However, 

other modifiable factors associated with brain age include sleep disruption, anxiety, and 

depression (59). Interventions that address these symptoms, such as cognitive behavioral 

therapy may protect against accelerated brain aging (61, 62).  Future research is necessary to 

elucidate the protective mechanisms of healthy lifestyle habits on brain health and aging among 

patients with COVID-19. 

COVID-19 mortality and morbidity are higher in men compared to women (63).  Some 

studies have observed sex differences in COGVID (64) while others have not (65, 66).  We found 

that males scored more poorly than females on a measure of attention and processing speed 

during a prior case series study involving a different sample at approximately 4 months post-

infection (67).  In the present cohort, at approximately 10 months post-infection, we found no 

sex differences in cognitive outcomes (18) but males had a 99% greater risk of accelerated BAG.  

The mechanisms of this sex difference remain unclear but may involve ACE2 pathways (68).   For 

example, Swärd et al. showed that peripheral ACE2 expression is higher in males and increases 

more with age compared to females, at least in early adulthood (69).  It is unknown if there is 

greater cerebral ACE2 upregulation in males, but it is plausible given the peripheral difference, 

and would potentially support ACE2 targeted therapies for this population. 
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We also found that there was a statistically significant decrease in risk of accelerated 

BAG associated with longer time since COVID-19 diagnosis.  Given that this was only 1.4%, it 

may not be clinically meaningful.  Alternatively, this finding may point to one or more subgroups 

of patients whose brain health significantly improves over time.  If so, BAG may be useful in 

larger samples for biotyping (biologically stratifying) patients with different trajectories of brain 

health after COVID-19.  Thus, BAG biotypes could improve precision medicine by identifying 

subgroups of patients at highest risk for COGVID (70).  Evidence shows that a significant number 

of patients with post-COVID symptoms have considerable symptom resolution within a year 

after infection (71-73). Thus, longitudinal studies of COVID-19 survivors are needed to 

determine if BAG also improves over time and if so, in which patients.  

Strengths of our study include the focus on mild to moderate COVID-19, whereas prior 

neuroimaging research has focused on post-hospitalization patients, the emphasis on younger 

survivors who may be more vulnerable to long-term cognitive effects, the novel examination of 

brain age in this population, the use of a well-established algorithm for estimating brain age, the 

inclusion of a control group, and the use of both objective and subjective cognitive assessments.  

Weaknesses include small sample, cross-sectional design which precludes insight regarding how 

participants functioned cognitively prior to COVID-19 and what individual cognitive trajectories 

may exist, self-reported nature of COVID diagnosis/symptoms, and the lack of data regarding 

lifestyle factors associated with brain aging (e.g., diet, smoking status) and other post-acute 

symptoms such as post-exertional malaise, ageusia, chronic cough, etc. that could be used to 

determine if any participants had other characteristics of Long COVID.  There are several 

alternative algorithms available for estimating brain age that may yield different results, 
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although we chose the one with the highest reliability based on the existing literature.  

Additionally, the brainageR algorithm utilizes gray, white, and CSF volumes whereas other 

algorithms use only gray matter.  However, BAGs derived from different imaging modalities may 

represent different endophenotypes (23) and thus multimodal BAGs may be informative within 

larger, future COVID-19 studies.  

In summary, our findings support our hypothesis that brain age is accelerated in 

survivors of COVID-19 infection compared to non-infected controls.  This study represents the 

first examination of this innovative biomarker in post-COVID-19 neurocognitive dysfunction.  

Whereas samples from previous works have primarily included older adults, our study focused 

on a younger group of individuals to examine their specific cognitive vulnerabilities and 

associated neural mechanisms.  Our cohort, observed on average after a longer duration post-

COVID-19 infection than those in previous studies, offers distinct insights into the protracted 

effects of COVID-19 on brain health.  Additionally, our findings contribute significant new 

information regarding the disparity in outcomes for men post-COVID-19.  
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Table 1. Demographic and COVID-19 Characteristics.  Data are shown as mean (standard 

deviation) unless otherwise indicated.   

 COVID N=25 Control N=24 stat p value 

Age (years) 30.3 (8.0) 30.3 (9.0) t = -0.003 0.997 

Education (years) 16.4 (1.8) 16.9 (1.6) t = 0.995 0.325 

Female gender N = 14 (56.0%) N = 13 (54.2%) X2 = 0.017 0.897 

Income < $100K N = 12 (48%) N = 8 (33.3%) X2 = 1.113 0.292 

Racial/ethnic 

minority 

N = 3 (12.0%) N = 11 (45.8%) X2 = 6.868 0.009 

Time since 

diagnosis (days) 

307 (223) 

range: 12-719 

   

COVID severity 

moderate 

N = 11 (44.0%)    

No. of symptoms 

during active 

COVID infection 

median = 8.0, 

IQR = 4.6 

range = 1-16 out 

of 20 possible 
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Table 2. Neuropsychiatric Testing Performance.  Data are shown as mean (standard deviation). 

Rank biserial correlation is the effect size.  FDR = false discovery rate correction for multiple 

comparisons. 

 COVID 

N=25 

Control N 

= 24 

stat 

(W/X
2
) 

uncorrected 

p value 

FDR 

corrected 

p value 

rank biserial 

correlation 

Trails A 97.2 

(11.9) 

104.4 

(13.7) 

372.5 0.081 0.211 0.296 

Trails B 98.6 

(11.9) 

100.8 

(15.5) 

333.0 0.353 0.386 0.158 

Digit symbol 

substitution 

95.0 

(14.8) 

99.2 (15.1) 353.5 0.289 0.386 0.178 

Stroop 94.4 

(19.4) 

101.1 

(15.8) 

341.5 0.269 0.386 0.188 

Immediate 

recall 

100.2 

(18.9) 

106.5 (9.8) 344.0 0.356 0.386 0.147 

Delayed recall 102.4 

(13.8) 

106.5 

(10.5) 

359.5 0.219 0.386 0.198 

PROMIS 

cognitive 

49.4 

(11.4) 

60.1 (6.2) 475.0 0.000 < 0.001 0.583 

Impaired 

PROMIS 

cognitive (T 

score < 55) 

18 (72%) 6 (25%) 10.8 0.001 0.007 - 

PROMIS social 

role 

performance 

57.2 (9.7) 59.1 (8.4) 332.0 0.494 0.494 0.107 

PROMIS 

anxiety 

55.0 

(11.6) 

48.0 (9.4) 195.0 0.035 0.199 -0.350 

PROMIS 

depression 

48.9 (8.9) 43.7 (5.4) 202.5 0.046 0.199 -0.325 

PROMIS 

fatigue 

49.9 (9.9) 44.4 (9.2) 212.0 0.078 0.211 -0.293 

PROMIS sleep 

disturbance 

50.9 (9.8) 46.5 (7.2) 236.0 0.202 0.386 -0.213 

PROMIS pain 45.5 (7.1) 43.8 (6.0) 260.0 0.333 0.386 -0.133 

Anosmia 

(Pocket Smell 

Test score < 2) 

0 (0%) 0 (0%) - - - - 
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Table 3. Clinical and Demographic Characteristics of Accelerated Brain Age Gap (BAG). The 

logistic regression model was significant (X2 = 14.71, Nagelkerke R2 = 0.666, p = 0.012).  

 

 Odds Ratio 95% CI lower 95% CI upper 

Time since COVID diagnosis (days) 0.986 0.977 0.995 

Number of COVID symptoms* 1.35 0.873 2.09 

Female biological sex 0.015 0.001 0.300 

Moderate COVID severity 6.82 0.088 526 

Racial/ethnic minority 31.52 1.55 642 

 

*During acute infection  
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Figure 1. Brain Age Gap (BAG).  A: BAG was significantly higher in the COVID-19 group 

compared to non-infected controls (p = 0.046).  B: Accordingly, the proportion of individuals 

with accelerated BAG (BAG > 0) was significantly higher in the COVID-19 group (p < 0.001).  
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