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Abstract— Background and Objective: Detection of the dicrotic notch (DN) within a cardiac cycle is essential for assessment of cardiac output, 
calculation of pulse wave velocity, estimation of left ventricular ejection time, and supporting feature-based machine learning models for 
noninvasive blood pressure estimation, and hypotension, or hypertension prediction. In this study, we present a new algorithm based on the 
iterative envelope mean (IEM) method to detect automatically the DN in arterial blood pressure (ABP) and photoplethysmography (PPG) 
waveforms.  
Methods: The algorithm was evaluated on both ABP and PPG waveforms from a large perioperative dataset (MLORD dataset) comprising 17,327 
patients. The analysis involved a total of 1,171,288 cardiac cycles for ABP waveforms and 3,424,975 cardiac cycles for PPG waveforms. To 
evaluate the algorithm's performance, the systolic phase duration (SPD) was employed, which represents the duration from the onset of the 
systolic phase to the DN in the cardiac cycle. Correlation plots and regression analysis were used to compare the algorithm with an established 
DN detection technique (second derivative). The marking of the DN temporal location was carried out by an experienced researcher using the 
help of the 'find_peaks' function from the scipy PYTHON package, serving as a reference for the evaluation. The marking was visually validated 
by both an engineer and an anesthesiologist. The robustness of the algorithm was evaluated as the DN was made less visually distinct across 
signal-to-noise ratios (SNRs) ranging from -30 dB to -5 dB in both ABP and PPG waveforms. 
Results: The correlation between SPD estimated by the algorithm and that marked by the researcher is strong for both ABP (R2(87343) =.99, 
p<.001) and PPG (R2(86764) =.98, p<.001) waveforms. The algorithm had a lower mean error of dicrotic notch detection (s): 0.0047 (0.0029) for 
ABP waveforms and 0.0046 (0.0029) for PPG waveforms, compared to 0.0693 (0.0770) for ABP and 0.0968 (0.0909) for PPG waveforms for the 
established 2nd derivative method. The algorithm has high accuracy of DN detection for SNR of >= -9 dB for ABP waveforms and >= -12 dB for 
PPG waveforms indicating robust performance in detecting the DN when it is less visibly distinct. 
Conclusion: Our proposed IEM- based algorithm can detect DN in both ABP and PPG waveforms with low computational cost, even in cases 
where it is not distinctly defined within a cardiac cycle of the waveform (‘DN-less signals’). The algorithm can potentially serve as a valuable, 
fast, and reliable tool for extracting features from ABP and PPG waveforms. It can be especially beneficial in medical applications where 
DN-based features, such as SPD, diastolic phase duration, and DN amplitude, play a significant role. 

Keywords— Arterial Blood Pressure (ABP) waveforms, Photoplethysmography (PPG) waveforms, Dicrotic notch (DN), Systolic phase duration 
(SPD), Iterative envelope mean (IEM) method. 
 
1. Introduction 

In this paper we present a novel algorithm based on the 
iterative envelope mean (IEM) method [1] to detect the 
temporal location of dicrotic notch (DN) in arterial blood 
pressure (ABP) and photoplethysmography (PPG) waveforms. 
These waveforms are vital physiological parameters for health 
monitoring: ABP serves as a fundamental hemodynamic metric 
frequently used to guide therapeutic interventions especially in 
critically ill patients [2]; PPG, also known as the pulse 
oximetric wave, is a non-invasive technique used in anesthesia 
monitoring particularly for the assessment of blood 
oxygenation levels (SaO2) [3].  The presence of the DN in both 
ABP and PPG waveforms during the cardiac cycle holds 
valuable information about cardiovascular function and health. 
It is a small, downward deviation observed on the descending 
portion of these waveforms (see Fig. 1), occurring immediately 
after the systolic peak [4,5]. It is the result of the reflection of a  
wave at the aortic valve, following valve closure during the  

cardiac cycle [6,7,8, 9,10].  
Due to its crucial role as a reference point in the timing of 

systolic and diastolic events, the DN has been used in numerous 
applications, including pulse wave velocity calculations 
[6,7,11], determining left ventricular ejection time [6,7], and 
models estimating cardiovascular function [7,12,13,14,15]. The 
DN also plays a crucial role in feature extraction from ABP and 
PPG waveforms by segmenting the cardiac cycles into distinct 
phases: the systolic phase (duration from systolic onset to DN), 
the diastolic phase (duration from DN to end of diastolic 
phase), and the systolic decay phase (duration from systolic 
peak to DN). These segmented phases/features may 
subsequently be utilized in feature-based machine learning 
models, contributing to a range of applications, including 
hypotension prediction [16] and non-invasive blood pressure 
estimation [17]. Furthermore, the positioning of the DN within 
the cardiac cycle has shown association with vascular tone 
[18,19,20]. Additionally, Abushouk et. al [4] underscores the 
clinical significance of several DN parameters: (a) DN
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Fig. 1. ABP cardiac cycle showing five key points: systolic phase onset, systolic phase peak (systolic pressure), dicrotic notch, diastolic phase peak, and diastolic 
phase endpoint (diastolic pressure); DNa: DN amplitude; DNh: DN height; systolic decay phase. 

amplitude (DNa): Higher DNa is associated with elevated 
peripheral vascular resistance, increased diastolic blood 
pressure, and the potential for weakened aortic valve closure, 
(b) DN height (DNh): Higher DNh signifies greater elasticity in 
the large arteries and effective aortic valve closure, (c) DN time 
duration or systolic phase duration (SPD): Longer SPD 
indicates robust systolic function of the heart. These 
applications emphasize the critical significance of accurate DN 
detection for enhancing clinical outcomes.  

As mentioned in [7], pressure waveforms undergo shape 
changes as they propagate away from the heart due to variations 
in blood vessel properties and the influence of reflected waves. 
This can lead to the DN becoming less pronounced, sometimes 
visually undetectable, or just causing a slight inflexion in the 
curve [7]. As a result, identifying the DN becomes more 
challenging in distal pressure waveforms [7]. Furthermore, it is 
recognized that the shape of the DN tends to degrade with age 
in both ABP [7,21], and PPG waveforms [22,23]. Additionally, 
in PPG waveforms, the absence of a DN is associated with 
prevalent cardiovascular disease [24]. Therefore, it is crucial 
not only to identify the DN when it is clearly visible, but also to 
detect it within signals where it is substantially less apparent. 
These are referred to as ‘DN-less signals’. It is important to 
note that ‘detecting the DN’ means determining its temporal 
location within the cardiac cycle. 

Many different algorithms have been developed to detect the 
DN [6,7,25,26,27,28,29,30]. However, either these methods 
were not thoroughly tested for noise robustness, or they were 
not examined for their ability to identify the DN in signals 
lacking a prominent notch (DN-less signals). Among these 
methods the 2nd derivative method is the most widely used 
method for DN detection in the literature [28,31,32]. This 
approach employs the e-peak, the third peak within the 2nd 
derivative of the PPG cardiac cycle, to estimate the DN within 
the cardiac cycle [31]. The primary limitation of the 2nd 
derivative approach is its high sensitivity to noise. Various 
forms of noise including low and high frequency noise, motion 

artifacts, and baseline drift can distort ABP and PPG 
waveforms, posing significant challenges in accurately 
detecting the DN in these waveforms, often resulting in false 
detections or unreliable measurements. This highlights the need 
for the development of a more noise robust DN detection 
method.  

In this paper, we present a new automatic DN detection 
algorithm based on the iterative envelope mean (IEM) method 
[1]. The IEM method divides a signal into two parts: the 
stationary and non-stationary contributions to the signal. The 
non-stationary output of the IEM method was used for 
detecting the DN. To evaluate its performance, we compare it 
with the 2nd derivative approach for DN detection [31], which is 
extensively employed in the literature as the primary approach 
for DN detection.  
The main contributions of this paper are: 

(1)  a novel algorithm based on the IEM method to detect 
DN. This algorithm utilizes the non-stationary output 
of the IEM method to detect DN. The IEM method can 
detect DN in both ABP and PPG waveforms.  

(2) the algorithm has a low computational cost and the 
ability to detect DN not only in waveforms where it is 
clearly defined but also in waveforms with less 
pronounced DN characteristics. 

(3) evaluation of the performance of the algorithm using 
data from the MLORD dataset [33]. The results 
demonstrate that our algorithm outperforms the 
widely used 2nd derivative method, highlighting its 
robust DN detection performance, and generalized 
applicability. 

 
The rest of the paper is organized as follows. Section 2 

describes the algorithm based on the IEM method. The dataset 
description and the performance evaluators are presented in 
Section 3. Sections 4 and 5 present the experimental results and 
discussion, respectively. Finally, we conclude our work in 
Section 6. 



 
 
 

 

3 

 

Fig. 2. Block diagram of the algorithm.

2. An automatic algorithm for dicrotic notch detection 
based on the iterative envelope mean method 

The DN is the transition point between the systolic and 
diastolic phases of the cardiac cycle, as illustrated in Fig. 1. A 
block diagram of the proposed IEM method-based algorithm 
for DN detection is shown in Fig. 2. In this study, we processed 
4-s windows of ABP and PPG waveforms using our algorithm. 
The waveforms are sampled at 256 Hz and the algorithm is 
implemented using the PYTHON programming language. Fig. 
3(a) illustrates a 4-s window of the ABP waveform containing 
four complete cardiac cycles. The following sections describe 
the pre-processing and the IEM method stages of the algorithm.  

2.1 Pre-processing 

To eliminate windows with artifacts, we excluded any 4-s 
window that met one or more of the following criteria: 
containing zero or negative values, having three or fewer peaks 
exceeding 75th percentile of the 4-s window amplitude, or 
having more than ten peaks. We used the 'find_peaks' function 
from the scipy PYTHON package for peak extraction. 
Secondly, each selected 4-s window was filtered using a 4th 
order Butterworth low pass filter with cut off frequency of 16 
Hz to remove high frequency noise [34]. Thirdly, the amplitude 
of the filtered and windowed signal was normalized using Eq. 
1.  

𝑦!"#$(𝑛) =
𝑦(𝑛) − 𝑦$%!
𝑦$&' − 𝑦$%!

 
(1) 

where 𝑦(𝑛) represents the input signal, n is the sample index, 
𝑦$%!  is the minimum value of the input signal within the 

window, 𝑦$&'	is its maximum value, and 𝑦!"#$(𝑛) denotes the 
normalized input signal. The normalized input signal is shown 
in Fig. 3 (b). 

2.2 Iterative envelope mean method 

The IEM method decomposes a signal into non-stationary 
and stationary parts [1]. The process involves smoothing the 
input signal. Finding the sample-by sample-mean of the upper 
and lower envelopes of the smoothed input signal and 
subtracting that mean from the original input signal. The 
resulting signal is then used as the input for subsequent 
iterations. After multiple iterations (I iterations), the IEM 
method provides an estimate of the non-stationary part of the 
original signal. Additionally, by summing the envelope means 
obtained from each iteration, it provides an estimate of the 
original signal’s stationary part. The IEM has previously been 
used in conjunction with the fractal dimension (IEM-FD) filter 
[1], for analyzing lung sounds. However, this study reports the 
first application of the IEM method for analysis of PPG and 
ABP waveforms to detect the DN.  

The detailed working process of the IEM method for 
detecting the DN is as follows:    

Step (1): The input signal is smoothed using the 
Savizky-Golay (SG) family filter and its first and second 
derivatives are calculated. The SG filter parameters are chosen 
following the guidelines proposed by Vannuccini et al. [35], 
with a polynomial fitting degree (𝑝() of 4 and a number of 
coefficients (𝑛)) approximately one to two times the half-width 
of the shortest-duration feature of interest in the signal. In PPG 
and ABP cardiac cycle signals, the shortest duration may occur 
between any two consecutive key points within the cardiac
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Fig. 3. (a) ABP input signal with marked dicrotic notch locations by an 
experienced researcher; (b) Normalized ABP input signal; (c) IEM method 
non-stationary component; (d) IEM method stationary component. 

cycle. The cardiac cycle consists of five key points: systolic 
phase onset, systolic phase peak, DN, diastolic phase peak, and 
diastolic phase endpoint, as displayed in Fig. 1. Since the 
duration of a single cardiac cycle is approximately 0.8 s, the 
duration between two consecutive key points will be 
approximately 0.2 s. In our dataset for which the sampling 
frequency is 256 HZ, the half width is approximately equal to 
25 samples. The SG filter parameters used here are therefore 𝑝( 
=4, 𝑛)  = 25 and order of derivation (𝑑" ) =0, 1 and 2 for 
smoothing the input signal, and for estimating the first and 
second derivatives of that smoothed signal, respectively. 

Step (2): The locations of all the local extrema of the first 
derivative (𝑦*+(𝑛) are identified and classified as either maxima 
or minima by examining the sign changes in the second 
derivative (𝑦*++(𝑛)) of the smoothed input signal (𝑦*(𝑛)). 

Step (3): The coordinates in the smoothed input signal, 
corresponding to the positions of each of the local maxima and 
minima in the first derivative, are calculated. Using cubic spline 
interpolation, the upper envelope (𝑈𝑃,!-(𝑛)) is obtained by 
connecting the coordinates corresponding to local maxima of 
the first derivative, while the lower envelope (𝐿𝑊,!-(𝑛)) is 

derived by connecting the coordinates associated with local 
minima of the first derivative. The envelope mean value is then 
calculated using the estimated upper and lower envelopes (Eq. 
2).  

𝑚%(𝑛) =
𝑈𝑃,!-!(𝑛) +	𝐿𝑊,!-!(𝑛)

2  
(2) 

where n is the sample index in the input signal i.e. n =1, 2, …. N 
and i is the iteration number where i=1, 2,…, I. 

Step (4): The computed envelope mean value is subtracted from 
the unfiltered version of the input signal to obtain the estimate 
of its non-stationary part (Eq. 3).  

𝑅%(𝑛) = 𝑦%(𝑛) −𝑚%(𝑛) (3) 

Step (5) If the resulting signal satisfies the stopping criterion 
shown in Eq. 4 it is taken to be the non-stationary part of the 
input signal otherwise, it is used as a new input signal: 
𝑦%./(𝑛) = 𝑅%(𝑛) , and the process is repeated from step 1. The 
stopping criterion is given by: 

𝑆𝑇𝐶% = |𝐸{𝑅%0/1 (𝑛)} − 𝐸{𝑅%1(𝑛)}| < 𝛽,												1 > 𝛽 > 0 (4) 

where E{.} denotes the expected value and has an initial value 
of 𝑅%0/ = 0. In this study we have used 𝛽 = 0.1, and note that 
the IEM method employs the identical stopping criterion to that 
specified in [1,36,37,38]. 

The iteration process ends when the stopping criterion is met, 
at iteration I, and at this point the resulting signal is assigned as 
the non-stationary signal (NSTS) contribution to the input 
signal (Eq.5) while the summation of envelope means obtained 
across all iterations (I) is assigned as the stationary signal (STS) 
of the input signal (Eq.6). 

𝑁𝑆𝑇𝑆(𝑛) = 𝑅2(𝑛) (5) 

𝑆𝑇𝑆(𝑛) =A𝑚%

2

%3/

(𝑛) 
(6) 

The IEM method non-stationary and stationary outputs are 
shown in Fig. 3(c) and (d), respectively. Although the 
non-stationary component of the IEM method can reveal the 
DN within a cardiac cycle, several further steps are required 
mark accurately the location in time of the DN. These involve 
identifying a valley within a cardiac cycle in the NSTS situated 
between the systolic peak and the diastolic endpoint (the end 
point of the cardiac cycle), as the DN location. As mentioned in 
[9], in addition to the DN, several other secondary waves are 
often generated by pressure reflections within the arterial 
system, which are frequently evident between the systolic peak 
and the diastolic endpoint in the ABP waveform, potentially 
introducing multiple valleys into each cardiac cycle within the 
NSTS. Moreover, non-physiological oscillations in both PPG 
and ABP waveforms can also contribute to the emergence of 
multiple valleys within the cardiac cycle. To address this issue, 
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Fig. 4. Block diagram of the analysis procedure using MLORD dataset.

two conditions have been established: (1) the valley must be at 
least 0.1 s (25 samples) from the systolic peak; and: (2) the 
y-axis value corresponding to this valley in the NSTS must be 
less than zero. The first valley that satisfies both conditions is 
designated the DN location. The combination of the IEM 
method with the process of locating the DN within cardiac 
cycles in the NSTS is therefore collectively referred to as the 
IEM-based algorithm. In Fig. 3, the black vertical dashed lines 
represent the DN positions located within a cardiac cycle by the 
IEM-based algorithm, and the green horizontal line in the 
non-stationary component of the NSTS represents the 
zero-normalized pressure axis. 

3. Analysis 

In this section, we describe the dataset and the quantitative 
evaluators used for assessing the DN detection performance of 
the IEM-based algorithm. 

3.1. Dataset 

A large perioperative dataset (MLORD), comprising 
physiologic waveforms collected from 17,327 patients who 
underwent surgeries between 2019 and 2022 at the David 
Geffen School of Medicine at the University of California Los 
Angeles (IRB# 19-000354) [33], was utilized to assess the 
performance of the proposed algorithm. The MLORD dataset 
includes waveform data totaling over 72,264 hours in duration 
and 7.6 terabytes in size. This waveform data contains sampled 

digital physiological waveforms obtained from vital sign 
monitoring devices, such as Electrocardiogram (ECG) and 
PPG, as well as data recorded by other devices, including 
invasive ABP monitors. The data was sampled at 256 Hz. For 
our analyses, we utilized ABP and PPG waveforms only. A 
detailed description of the MLORD dataset may be found in 
[33]. 

In the MLORD dataset out of 17,327 patients, 4,901 patients 
have ABP waveforms and 17,170 patients have PPG 
waveforms. In this study, a total of 352,257 4-s windows from 
ABP waveforms, including 1,171,288 full cardiac cycles, and 
1,100,689 4-s windows from PPG waveforms, representing 
3,424,975 full cardiac cycles were used for the analysis. 
However, the marking of the temporal location of DN on all the 
cardiac cycles to serve as a reference is not feasible due to the 
dataset’s large size. Additionally, in certain instances, the DN 
or diastolic phase peak may be less distinct, especially in PPG 
waveforms, making it challenging to establish their temporal 
location as a reference. Therefore, to compare the performance 
of the algorithm with the existing 2nd derivative method, we 
randomly selected 25,000 4-s windows from the ABP 
waveforms and the same number from the PPG waveforms 
where the DN could be observed within a cardiac cycle. After 
selecting the windows, an experienced researcher marked the 
temporal location of DN as well as the systolic phase onset 
within a cardiac cycle with the help of the 'find_peaks' function 
from the scipy PYTHON package. The first minimum before 
the systolic peak (largest peak in a cardiac cycle) was used as 
the onset point of the systolic phase. To ensure accuracy, the 
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Fig. 5. Three different cases of the process of DN detection using the IEM algorithm in ABP input signal: (i) where the DN is clearly observable within a cardiac 
cycle of ABP input signal; (ii) where DN is less evident within a cardiac cycle of ABP input signal; and (iii) where DN is absent within a cardiac cycle of ABP input 
signal. Plots labeled (a) depict the curves for 4-s ABP input signal window with marked DN locations by an experienced researcher in cases i and ii and with marked 
DN locations revealed by the IEM method in case iii, plots labeled as (b) depict the curves for the normalized input signal, plots labeled as (c) show the curves for 
the non-stationary component of the IEM method, and plots labeled as (d) display the curves for the stationary component of the IEM method. 

marking was validated by an engineer and an anesthesiologist. 
They conducted a visual examination of marked ABP and PPG 
windows. The selected ABP windows contained a total of 
87,345 cardiac cycles; the PPG windows contained 86,766 
cardiac cycles.  To evaluate the performance of the IEM-based 
algorithm, the systolic phase duration (SPD) was used, which is 
defined as the time difference between the onset of the systolic 
phase and the occurrence of DN in the cardiac cycle [6]. The 
measured SPD, based on the marking, served as a reference. It 
is important to note that the systolic phase onset marked by the 
researcher is also used as the onset point for the SPD measured 
by the algorithm. Thus, any difference in SPD between the 
reference and the estimate from the algorithm is due to 
differences in the location identified as the DN only. 

To evaluate the algorithm's robustness in detecting the DN 
when it was less visibly distinct, we included all 352,257 4-s 
windows of ABP waveforms and 1,100,689 4-s windows of 
PPG waveforms. The algorithm's robustness was tested across a 
range of signal-to-noise ratios (SNR) ranging from -30 dB to -5 
dB in steps of 1 dB where ‘signal’ is defined as the root mean 
square amplitude of the non-stationary output of the IEM filter 
and ‘noise’ is its root mean square amplitude of the stationary 
output.   

For the robustness analysis, to evaluate the performance of 
the algorithm, the reference SPD was calculated by initially 
decomposing each 4-s window into its non-stationary and 
stationary components. Subsequently, within each cardiac 
cycle in a 4-s window, we marked the temporal location of DN 
using the non-stationary component of the IEM method. We 
also employed the 'find_peaks' function from the scipy 
PYTHON package to identify the first minimum before the 
systolic peak (the largest peak in a cardiac cycle), which served 
as the onset point of the systolic phase. Using the marked DN 
and the identified systolic phase onset point, the reference SPD 
was calculated. Next, the stationary component of the IEM 
method was multiplied by a scaling factor and then added to the 
(un-scaled) non-stationary component. Scaling factors were 
chosen to give an SNR (ratio of non-stationary to scaled 
stationary component) ranging from -30 dB to -5 dB in steps of 
1 dB. This had the effect of making the DN less visibly distinct. 
The IEM-based algorithm was then applied to this new signal 
and the temporal location of DN was detected. Using the 
detected DN after scaling and the systolic phase onset point 
calculated before scaling, the SPD for each sample was again 
calculated and compared with the reference SPD calculated 
before scaling to evaluate the robustness of the proposed 
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Fig. 6. Three different cases of the process of DN detection using the IEM algorithm in PPG input signal: (i) where the DN is clearly observable within a cardiac 
cycle of PPG input signal; (ii) where DN is less evident within a cardiac cycle of PPG input signal; and (iii) where DN is absent within a cardiac cycle of PPG input 
signal. Plots labeled (a) depict the curves for 4-s PPG input signal window with marked DN locations by an experienced researcher in cases i and ii and with marked 
DN locations revealed by the IEM method in case iii, plots labeled as (b) depict the curves for the normalized input signal, plots labeled as (c) show the curves for 
the non-stationary component of the IEM method, and plots labeled as (d) display the curves for the stationary component of the IEM method. 

algorithm. A block diagram of the analysis procedure in this 
study using the MLORD dataset is shown in Fig. 4 for better 
understanding. 

3.2. Performance evaluators 

The algorithm's performance was assessed by comparing its 
estimates of SPD with those marked by an experienced 
researcher (as discussed in section 3.1). The evaluation was 
conducted using regression analysis [39], box plots [40], the 
rate of detectability (𝐷4) [1,36], and the error of DN detection.  
Box plots were used to visually compare the difference between 
the reference SPD, as marked by the researcher, and the 
measured SPD obtained using the algorithm [1]. Additionally, 
comparisons were made between the proposed IEM-based 
algorithm and the existing 2nd derivative method.  

The closer the SPD difference is to zero, the greater the 
accuracy of the estimation method (algorithm or 2nd derivative 
method) at collocating the DN with its position in the reference 
signal. The regression analysis demonstrates the strength of the 
linear association between the SPD measured by the algorithm 
and that measured by the researcher, The rate of detectability 
(𝐷4) was used to assess the number of DNs detected by the 

algorithm, or by the 2nd derivative method, within each 4-s 
window compared to the true number of DNs. We also 
calculated the error in DN detection, which is determined by the 
absolute value of the SPD difference. 

In the context of robustness analysis, we used rate of 
detectability (𝐷4) metric to measure the number of DNs within 
a 4-s window detected by the algorithm, after scaling compared 
to the number detected in the same window before scaling. We 
also computed error of DN detection using the difference in 
SPD before and after scaling at a given SNR. It is important to 
note that the systolic phase onset point detected by the 
algorithm for calculating SPD before scaling is also used as the 
onset point for calculating SPD after scaling. Thus, any 
difference in SPD between the before and after scaling is due to 
differences in the location identified as the DN only.  

The process of calculating the rate of detectability, SPD 
difference, and the error of DN detection is as follows: 

3.2.1 Rate of detectability 

The Rate of Detectability (𝐷4) measures the ability of the 
IEM based algorithm to detect the DN within a cardiac cycle. 
𝐷4 was calculated using (Eq. 7).   
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                   (i) 

 
                                                    (ii) 

Fig. 7. (i) (a) Regression analysis for the ABP waveforms, for the IEM method estimated systolic phase duration; (b) Regression analysis for the PPG waveforms, 
for the IEM method estimated systolic phase duration. (ii) Box Plots, comparison with the 2nd derivative for ABP waveforms (a) and PPG waveforms (b).

𝐷4 =
𝑁5
𝑁4
	× 	100	% (7) 

where 𝑁5  is the number of DNs detected by the proposed 
algorithm within a 4-s window and 𝑁4  is the number of 
reference DNs in the same window. 

3.2.2 Systolic phase duration (SPD) difference and error of 
dicrotic notch (DN) detection 

 
The difference in SPD between the reference and the 

measured, or between before and after scaling was calculated 
using Eq. (8).  

𝑆𝑃𝐷5 = 𝑆𝑃𝐷4	"#	78 − 𝑆𝑃𝐷9	"#	:8 (8) 

Where 𝑆𝑃𝐷4	"#	78 is the reference SPD or SPD before scaling 
in the context of robustness analysis and 𝑆𝑃𝐷9	"#	:8  is the 
measured SPD by the algorithm or SPD after scaling in the 
context of robustness analysis. 

Note that as mentioned earlier, any difference, in SPD 
between the reference and the estimate from the algorithm or in 
SPD between before and after scaling, is due to differences in 
the location identified as the DN only. Therefore, the absolute 

value of difference in SPD can be referred to as the error of DN 
detection (Eq. 9). 

𝑒𝑟𝑟𝑜𝑟5; = |𝑆𝑃𝐷5| (9) 

4. Experimental results 

This section presents the results obtained from the 
IEM-based algorithm for DN detection in ABP and PPG 
waveforms, along with its performance comparison with the 
existing 2nd derivative method and an analysis of its robustness 
in detecting the DN when it is less visibly distinct. 

4.1. Performance of the IEM based algorithm in ABP and 
PPG waveforms 

In Figs. 5 and 6, three different cases of ABP and PPG input 
signals are presented to demonstrate the algorithm's 
performance. First, cases where the DN is clearly observable 
within a cardiac cycle are illustrated in Fig. 5(i) and Fig. 6(i) for 
ABP and PPG inputs, respectively. Plots labeled as (a) in these 
figures depict the input signal window, each lasting 4 s, with 
DN locations marked by an experienced researcher. Following 
this, cases where DN is less evident within a cardiac cycle are 
shown in Fig. 5(ii) and Fig. 6(ii) for ABP and PPG inputs,
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Table 1 
Evaluation of DN detection of the IEM based algorithm in ABP and PPG cardiac cycles. 

Cases 𝑁! 𝑆𝑃𝐷%%%%%%!	(𝑆𝐷) 
(s) 

IEM based algorithm 2nd derivative method 

𝑁" 𝐷! 
(%) 

𝑆𝑃𝐷%%%%%%#	(𝑆𝐷) 
(s) 

𝑒𝑟𝑟𝑜𝑟%%%%%%%%"$	(𝑆𝐷) 
(s) 

𝑁" 𝐷! 
(%) 

𝑆𝑃𝐷%%%%%%#	(𝑆𝐷) 
(s) 

𝑒𝑟𝑟𝑜𝑟%%%%%%%%"$	(𝑆𝐷) 
(s) 

ABP (𝑛%=87,345) 87,345 0.3448 
(0.0336) 

87,345 100 % 0.3448 
(0.0333) 

0.0047 (0.0029) 87,345 100 % 0.3675 
(0.1005) 

0.0693 (0.0770) 

PPG (𝑛%=86,766) 86,766 0.3564 
(0.0286) 

86,766 100 % 0.3565 
(0.0283) 

0.0046(0.0029) 86,766 100 % 0.4212 
(0.1154) 

0.0968 (0.0909) 

ABP: Arterial blood pressure; PPG: Photoplethysmography; 𝑛%: Number of input cardiac cycles; 𝑆𝑃𝐷%%%%%%!: Mean of reference systolic phase duration; SD: standard 
deviation; 𝑆𝑃𝐷%%%%%%#: Mean of measured systolic phase duration by an algorithm; 𝑒𝑟𝑟𝑜𝑟%%%%%%%%"$: mean error of DN detection; 𝑁!: Reference dicrotic notches marked by an 
experienced researcher; 𝑁": Detected dicrotic notches by an algorithm; 𝐷!: Rate of detectability. 

respectively. Plots labeled as (a) in these figures also display 
the input signal windows with marked DN locations, providing 
a reference for validation. Lastly, cases where DN is absent 
within a cardiac cycle, referred to as DN-less signals, are 
presented in Fig. 5(iii) and Fig. 6(iii) for ABP and PPG inputs, 
respectively. In Figs. 5 and 6, plots labeled as (b) depict the 
curves for the normalized input signal, plots labeled as (c) show 
the curves for the non-stationary component of the IEM 
method, and plots labeled as (d) display the curves for the 
stationary component of the IEM method. Importantly, the IEM 
method not only demonstrates the presence of DN within a 
cardiac cycle in its non-stationary component when DN is 
clearly visible but also reveals the location of DN within a 
cardiac cycle even when it is not visibly present in the input 
signal. The vertical dashed lines in Fig. 5 and Fig. 6 display the 
DN positions within a cardiac cycle estimated by the 
IEM-based algorithm. Moreover, Figs 7 (i-a) and 7 (i-b) 
demonstrate strong correlation for both ABP (R2(87343) =.99, 
p<.001) and PPG (R2(86764) =.98, p<.001) waveforms. R2 
values close to 1 for both the ABP and PPG waveforms indicate 
a strong linear association between the SPD estimate by the 
algorithm and that marked by researcher as a reference. 

4.2. Comparison of the IEM based algorithm with the 2nd 
derivative method  

The DN detection ability of the IEM-based algorithm was 
compared with the 2nd derivative method using the rate of 
detectability (DR) and the difference in SPD 
(reference-measured), as shown by box plots (Fig. 7 (ii)). As 
presented in Table 1, both methods achieved a 100 % D<	for 
both ABP and PPG cardiac cycles, but the IEM-based 
algorithm gives, on average, estimates for the SPD which are 
closer to the reference estimates than the 2nd derivative method. 
As mentioned earlier, the absolute value of the difference in 
SPD can be referred to as the error of DN detection. To assess 
the error on comparing it to three different permitted error 
ranges: 30 ms (the strict permitted error range), 50 ms (typical 
permitted error range), and 70 ms (tolerant permitted error 
range) [30], the IEM-based algorithm achieved an average error 
well below the strict permitted error range (30 ms) in both ABP 
(4.7 ms) and PPG (4.6 ms) cases. However, in the 2nd derivative 
method, the average error was slightly below the tolerant 

permitted error range (70 ms) for ABP cases (69.3 ms), but for 
PPG cases (96.8 ms), it even exceeded the tolerant permitted 
error range (70 ms) significantly (see Table 1). 

4.3. Robustness analysis of the IEM based algorithm  

To assess the IEM-based algorithm's robustness when the 
DN is not visibly distinct, we conducted a test across an SNR 
range from -30 dB to -5 dB. Fig. 8(i) and Fig. 8(ii) show the 
robustness performance of the proposed algorithm for ABP 
(𝑛+ = 1,171,288) and PPG (𝑛+ = 3,424,975	) cardiac cycles, 
respectively, in terms of two quantitative evaluators: rate of 
detectability, and error of DN detection at the given SNR. 
Figures 8 (i-a) and 8 (ii-a) display curves for the average rate of 
detectability of ABP and PPG waveforms, respectively, across 
all cardiac cycles against SNR. Plots labeled (b) display the 
averaged error of DN detection over all cardiac cycles against 
SNR. We defined robust performance of the algorithm when 
the DN was not visibly distinct using the criterion:  𝐷4 ≥ 0.8, 
and error range of ≤ 0.045 s or 45 ms. For ABP cardiac cycles, 
the algorithm demonstrated robust performance for SNR values 
greater than or equal to -9 dB, while for PPG cardiac cycles, the 
algorithm indicated robust performance for SNR values greater 
than or equal to -12 dB.  

To further illustrate the effectiveness of the proposed 
algorithm for detecting indistinct DNs, we present one example 
at the threshold SNR value: ABP with SNR = -9 dB in Fig. 9 (i), 
and PPG with SNR = -12 dB in Fig. 9 (ii). Figs. 9 (a) display the 
4-s window of the normalized input signals before scaling. The 
nonstationary component after applying the IEM method is 
shown in Figs. 9 (b). Figs 9 (c) display the normalized input 
signals after scaling at SNR=-9 dB for ABP and at SNR=-12 dB 
for PPG. The nonstationary component after applying the IEM 
method on the scaled and normalized input signals is displayed 
in Figs. 9 (d). Comparing the plots, we can see that the DN, 
clearly identifiable before scaling is less distinct afterwards for 
both ABP and PPG cardiac cycles. However, in both cases the 
IEM-based algorithm locates the DN in the same position.   

5. Discussion  

We have proposed a novel IEM-based algorithm for 
detecting the DN in ABP and PPG waveforms. The DN appears 
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                                                          (i) 

 
                                                                (ii) 

Fig. 8. (i) (a) Rate of detectability plots for ABP waveforms with a signal to noise ratio in the range of -30 dB to -5 dB; (b) Systolic phase duration difference plots 
for ABP waveforms with a signal to noise ratio in the range of -30 dB to -5 dB. (ii) (a) Rate of detectability plots for PPG waveforms with a signal to noise ratio in 
the range of -30 dB to -5 dB; (b) Systolic phase duration difference plots for PPG waveforms with a signal to noise ratio in the range of -30 dB to -5 dB. 

within the cardiac cycle, situated between the systolic peak and 
the diastolic endpoint, marking the transition from the systolic 
phase to the diastolic phase. Accurate detection of the DN in 
these waveforms is a crucial aspect of cardiovascular 
monitoring and clinical research. For example, as discussed in 
[9], ABP waveforms contain a range of information, including 
morphological features such as the position of the DN, which 
can provide valuable insights into overall hemodynamic status 
and may prove beneficial in managing complex hemodynamic 
situations. Furthermore, Abushouk et al. [4] mentioned that 
changes in DN parameters often appear early in the progression 
of vascular disease, potentially aiding in its early recognition. 
He et al. [41] noted that the DN in PPG waveforms may be 
useful for estimating blood pressure. Hermeling et al. [42] 
utilized the DN as a temporal reference point to measure 
arterial stiffness, which is essential for assessing cardiovascular 
risk. However, as shown in [23, 43], the DN tends to diminish 
with advancing age, which can make it challenging to locate in 
measurements from older subjects. Therefore, it is not only 
important to detect the DN when it is prominent within a 
cardiac cycle, but also in DN-less cardiac cycle [30].   

The IEM-based algorithm has demonstrated the ability to 
locate the DN in both DN-present and DN-less ABP and PPG 
waveforms with a high rate of detectability and good robustness 

above SNRs of -9 dB for ABP and -12 dB for PPG waveforms. 
Moreover, in terms of computational cost, the IEM method 
requires only O (IN) operations for number of iterations I and 
signal length of N. This suggests that the IEM-based algorithm 
could serve as a trustworthy signal processing approach for 
precise DN localization and has the potential to support the 
clinical exploitation of DN as a valuable diagnostic and 
prognostic marker, ultimately enhancing patient care and 
medical research. In comparison to the existing 2nd derivative 
method [32], where the reference for both methods was the 
DNs marked by an experienced researcher, the IEM-based 
algorithm offers an equally high rate of detectability but 
provides a closer estimate of SPD and lower error of DN 
detection in both ABP and PPG waveforms.  

Our study has several limitations. First, the SG filter 
parameters in the IEM method are not adaptive. This lack of 
adaptability can be problematic, particularly in cases with 
high-frequency background noise, as mentioned in [1]. In such 
situations, it may lead to inappropriate estimation of the 
envelope mean value. Consequently, this can make it difficult 
for the IEM-based algorithm to accurately locate the DN in the 
non-stationary output of the IEM method; second, the 
dependency of the IEM method stopping criteria on the 
non-adaptive accuracy level (𝛽), may affect whether the DN 
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(i)                                                                                                           (ii) 

Fig. 9. (i) (a) Normalized ABP input signal with marked dicrotic notch locations by an experienced researcher; (b) IEM method non-stationary 
component; (c) Normalized ABP input signal at SNR = -9 dB; (d) IEM method non-stationary component. (ii) ((a) Normalized PPG input signal 
with manually marked dicrotic notches; (b) IEM method non-stationary component; (c) Normalized PPG input signal at SNR = -12 dB; (d) IEM 
method non-stationary component. 

location is accurately identified in the non-stationary 
component of the IEM output; third, the algorithm depends on 
two empirically set conditions for assigning the valley 
corresponding to the DN location in the non-stationary 
component of the IEM method. This may affect whether the 
correct valley is assigned as the DN location. 

6. Conclusions 

This study presents the IEM-based algorithm for the 
detection of DN in both DN-present and DN-less ABP and PPG 
waveforms. The IEM-based algorithm was evaluated using a 
large perioperative dataset (MLORD) and compared with the 
existing 2nd derivative method. The key findings of the study 
are: (1) The IEM-based algorithm has low computational cost, 
and demonstrates high accuracy in DN detection, achieving 100 
% accuracy in both ABP and PPG waveforms; (2) The 
IEM-based algorithm can locate the DN even when it is not 
visibly identifiable in the input signal; (3) The IEM-based 
algorithm can determine the temporal location of DN within a 
cardiac cycle with lower error in DN detection in both ABP and 
PPG waveforms compared to the 2nd derivative method.  

We conclude that the IEM-based algorithm is suitable to use 
in a clinical context for accurately locating DN within a cardiac 
cycle. This information can be used to estimate time-domain 
features related to DN in both ABP and PPG waveforms, which 
in turn can contribute to cardiovascular research and clinical 
studies. Ultimately, this could enhance patient care and inform 
treatment decisions. Future research will focus on evaluating 
the performance of the IEM-based algorithm on a more diverse 
dataset collected from multiple centers that will further test its 
generalizability and real-world applicability. 

Data Accessibility 

The interested parties may reach out to the corresponding 
author (mcannesson@mednet.ucla.edu) of this article to 
request the access to the MLORD dataset.  
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