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Abstract 
Background: Molecular biomarkers play a pivotal role in the diagnosis and treatment of 
oncologic diseases but staying updated with the latest guidelines and research can be challenging 
for healthcare professionals and patients. Large Language Models (LLMs), such as MedPalm-2 
and GPT-4, have emerged as potential tools to streamline biomedical information extraction, but 
their ability to summarize molecular biomarkers for oncologic disease subtyping remains 
unclear.  Auto-generation of clinical nomograms from text guidelines could illustrate a new type 
of utility for LLMs. 
Methods: In this cross-sectional study, two LLMs, GPT-4 and Claude-2, were assessed for their 
ability to generate decision trees for molecular subtyping of oncologic diseases with and without 
expert-curated guidelines. Clinical evaluators assessed the accuracy of biomarker and cancer 
subtype generation, as well as validity of molecular subtyping decision trees across five cancer 
types: colorectal cancer, invasive ductal carcinoma, acute myeloid leukemia, diffuse large B-cell 
lymphoma, and diffuse glioma. 
Results: Both GPT-4 and Claude-2 “off the shelf” successfully produced clinical decision trees 
that contained valid instances of biomarkers and disease subtypes. Overall, GPT-4 and Claude-2 
showed limited improvement in the accuracy of decision tree generation when guideline text was 
added. A Streamlit dashboard was developed for interactive exploration of subtyping trees 
generated for other oncologic diseases. 
Conclusion: This study demonstrates the potential of LLMs like GPT-4 and Claude-2 in aiding 
the summarization of molecular diagnostic guidelines in oncology. While effective in certain 
aspects, their performance highlights the need for careful interpretation, especially in zero-shot 
settings. Future research should focus on enhancing these models for more nuanced and 
probabilistic interpretations in clinical decision-making. The developed tools and methodologies 
present a promising avenue for expanding LLM applications in various medical specialties. 
 
Key Points 

- Large language models, such as GPT-4 and Claude-2, can generate clinical decision trees 
that summarize best-practice guidelines in oncology 

- Providing guidelines in the prompt query improves the accuracy of oncology biomarker 
and cancer subtype information extraction  

- However, providing guidelines in zero-shot settings does not significantly improve 
generation of clinical decision trees for either GPT-4 or Claude-2 
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Introduction 
Molecular biomarkers are becoming increasingly crucial in supporting the diagnosis and 
treatment of oncologic diseases but keeping up with the latest guidelines and relevant research 
can be time-consuming for physicians, researchers, and patients. The recent emergence of 
several new large language models (LLMs) present a unique opportunity to help streamline text-
heavy healthcare workflows, including medical information summarization and education. 
Previous studies have demonstrated that new LLMs are capable of extracting complex clinical 
information from oncology progress notes1, suggesting differential diagnoses2, or even 
generating decision trees from clinical trial criteria3 or for clinical decision support4. The 
generation of decision trees can provide clear visual guidelines for clinical support, which can 
significantly impact downstream clinical care. In this study, we aimed to assess the capabilities 
of two recently developed LLMs in generating diagnostic decision trees for the molecular 
subtyping of cancers, using published clinical guidelines. 
 
Methods 
Diagnostic trees describing cancer subtypes based on molecular biomarker status were generated 
for five cancers using GPT-4 (OpenAI) and Claude-2 (Anthropic), two LLMs with public 
Application Programming Interfaces (APIs). These cancers were selected based on the 
prevalence of known molecular biomarkers, and included two common solid organ cancers 
(colorectal cancer [CRC] and invasive ductal carcinoma [IDC]), a common hematologic cancer 
(acute myeloid leukemia, AML), a rare hematologic cancer (diffuse large B-cell lymphoma 
[DLBCL]), and a rare solid cancer (diffuse glioma). 
 
Trees were generated using a specific prompt that contained either only formatting guidelines 
(Figure 1) or also included information provided from recent classification guidelines for each of 
the five cancers5–9 (Table S2). Clinical trees were generated to contain molecular biomarker 
status as nodes, terminating at nodes that were molecular subtypes. Model temperature was set to 
0, and a new API call was made for each of the different prompts used. Additional details on 
models and parameters used are provided in Supplemental Table 1. Results were processed into 
Pydot graph objects10 and visualized using an interactive dashboard developed using Streamlit11.  
 
Each branch of LLM-generated decision trees were evaluated against subtyping decision trees 
generated by clinical reviewers based on clinical guidelines. Evaluators were blinded to which 
language model generated which tree, and each tree was evaluated by two reviewers, with 
discrepancies resolved by discussion. We report mean accuracies of subtyping trees, as well as 
proportions of subtypes and biomarkers correctly extracted by the two LLMs for each cancer. 
Hallucinations, identified as values not mentioned in recent guidelines for use in  molecular 
cancer subtype diagnosis, were also quantified by clinical evaluators. Accuracy of LLM trees 
with and without guidelines were compared with two-sided T-tests using Scipy12. A p-value less 
than 0.05 was considered statistically significant.   
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Results 
Both Claude-2 and GPT-4 were able to create properly formatted decision trees with or without 
being provided actual clinical guideline text. Including guideline text improved the proportion of 
cancer subtypes and biomarkers that each model was able to extract. Mean accuracy of cancer 
subtype extraction increased when guidelines were provided, with the Claude-2 model increasing 
from 45% (SD: 44.7%, n=5) to 81.9% (SD: 20.8%, p=0.13) and GPT-4 from 36.1% (SD: 33.3%) 
to 82.0% (SD: 24.2%, p=0.035). Without guidelines, both GPT-4 and Claude-2 were best at 
generating accurate cancer subtypes in decision trees for IDC (80% and 100%, respectively) and 
neither were able to produce subtypes of CRC. By providing guideline text, both GPT-4 and 
Claude-2 were able to extract and visualize all expected subtypes for IDC and CRC (Figure 
S1A). 
 
Regarding hallucinations, GPT-4 and Claude-2 produced the greatest proportion of hallucinated 
subtypes, which were subtypes not present in clinical trees generated by clinical annotators, for 
CRC and AML when not provided  guideline text. Subtypes that were not mentioned in recent 
guidelines, such as “NPM1 Wildtype, FLT3-ITD Wildtype and CEBPA Mutated AML,” were 
considered hallucinations. On average, 40% (SD: 54.8%) of subtypes extracted by Claude-2 
without guidelines were deemed to be hallucinations, which decreased to 21.0% (SD: 23.7%, 
p=0.50) when provided guideline text . GPT-4 referenced hallucinated cancer subtypes 37.1% 
(SD: 54.8%) of the time when not provided guideline text, which dropped to  2.9% (SD: 6.3%, 
p=0.17) when provided with guideline text  (Figure S1B). 
 
For accurate biomarker extraction, Claude-2 extracted 55.3% of expected biomarkers on average 
(SD: 24.6%) without guideline text and 86.2% with (SD: 16.4% , p=0.07), while GPT-4 
extracted 50.3% (SD: 27.3%) of biomarkers without guideline text and 83.3% with (SD: 23.5%, 
p=0.048). Without guideline text, both GPT-4 and Claude-2 both showed 75% accuracy for 
biomarker extraction for IDC and were least accurate in extracting biomarkers for AML (4.2% 
and 12.5%, respectively). With guideline text, both GPT-4 and Claude-2 were able to extract all 
expected subtypes for IDC and diffuse gliomas (Figure S2A). 
 
On average, without guideline text, Claude-2 and GPT-4 produced biomarkers that were 
considered hallucinations (for example, “RBM15::MKL1” and “TP53”) in 16.3% (SD: 17.1%) 
and 16.0% (SD: 35.8%) of generated values, respectively. With provided guideline text, 
hallucinations decreased to 12.5% (SD: 13.6%) for Claude-2 and 13.0% (SD: 15.9%) for GPT-4. 
The largest proportion of hallucinated biomarkers was produced for AML, with 40% 
hallucinations for Claude-2 and 80% for GPT-4, although providing guidelines reduced model 
hallucination down to 8.7% for Claude-2 and 7.7% for GPT-4 (Figure S2B).  
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Assessment of average overall accuracy of decision trees showed that, without guidelines, GPT-4 
produced valid branches 46.7% (SD: 46.2%) of the time, while decision tree branches were 
39.3% (SD: 40.1%) valid for Claude-2. Substantial increases in decision tree accuracy were seen 
for AML, going from 0% to 92.3% for GPT-4 and 0% to 61.7% for Claude-2. However, adding 
in guideline text did not significantly increase overall accuracy of decision tree generation for 
either GPT-4, which increased to 72.5% (SD: 41.1%, p=0.38) or Claude-2 (54.2%, SD: 30.5%, 
p=0.52). 
 
A streamlit dashboard was developed to provide a user interface for exploration of GPT-4 and 
Claude-2 model performance on subtyping tree extraction for user-specified cancer types and 
guidelines (Figure 3).  
 
Discussion 
Here, we demonstrate the capability for language models to generate accurate and 
comprehensive decision trees from clinical  guideline text for molecular diagnosis across 
multiple cancer types. Additionally, we showed that adding clinical guideline text into prompts 
improves extraction of molecular biomarkers and oncology disease subtypes, but did not 
significantly improve clinical decision tree generation. 
 
While this brief report identifies opportunities for LLMs in supporting biomedical information 
review and visualization in oncology, the results are focused on molecular diagnosis, which is 
only a part of clinical decision making. Furthermore, not all molecular features are binary in 
nature, and future iterations of these decision trees may be assessed for their ability to include 
probabilities at each branch along the decision tree. Finally, another limitation to this study is the 
use of API-based models, which are not as interpretable and are more costly to run compared to 
open-source alternatives. We also did not perform any prompt engineering, and further 
exploration of strategies like chain-of-thought may help improve decision tree generation, which 
involves significant reasoning capabilities. 
 
Despite these limitations, our initial evaluation of GPT4 for oncology molecular information 
extraction shows significant potential for further development. Additionally, we provide open 
access to the tools assessed and developed here, and for future studies to  use similar approaches 
to evaluate summarization of guidelines for treatment or other aspects of clinical workflows 
across different medical specialties. Future work might even include being able to summarize 
many raw clinical studies and results from clinical trials into more accessible guideline texts and 
visualizations.  
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Data availability 
All prompts and text guidelines used are referenced or provided in supplemental materials. All 
code used to generate and visualize the clinical trees can be found at 
https://github.com/BMiao10/clincial-decision-trees. The streamlit dashboard for exploration of 
decision trees for other values can be found at https://clinicaltrees.org/ 
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Figures 
 
Figure 1. Prompts to generate clinical decision trees. 
Prompt used to generate clinical cancer subtyping trees. Values highlighted in green are replaced 
with cancer specific information for each of the five cancers evaluated, and values highlighted in 
yellow are only included if guidelines are present. 
 

 
 

 
  

You are a clinically-trained expert in creating decision trees describing cancer subtypes
based on clinically-relevant molecular biomarkers. Create a detailed and
comprehensive molecular diagnostic decision tree using the guidelines provided to
identify all <cancer> subtypes. Only use the following JSON format:
{"biomarker_name":
{"biomarker_status": {

"biomarker_name": {
"biomarker_status" : {
"cancer_subtype":str

},
...

...
},

}
}

Guidelines: """<guidelines>"""
Decision tree:

System message:

Query:
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Figure 2. Accuracy of clinical decision tree generation using LLMs. 
Clinical evaluators assessed the A) accuracy of cancer subtype extracted by each LLM with and 
without guidelines. B) Clinical evaluators also assessed the overall accuracy of clinical decision 
trees generated. A tree was only considered correct if all biomarkers and subtypes were clinically 
appropriate, and the biomarkers accurately described the associated cancer subtype. 
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Figure 3. Clinical decision tree dashboard.  
A streamlit dashboard was created to enable exploration of subtyping decision trees for other 
cancers and guidelines. The dashboard can be found at https://clinicaltrees.org/ 
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Supplemental figures 
 
Supplemental table 1. Language model overview. 
Overview of language models used, context length, date accessed, training data cutoff, and 
parameters used. 

 GPT4 Claude 

Company OpenAI Anthropic 

Model name GPT4 Claude 2 

Model version 0613 2023-06-01 

Model context length 8,192 100,000 

Temperature 0 0 

Top p 1 1 

Maximum output tokens 4500 4500 

Training data cutoff date September 2021 December 2022 

Cost $0.03/1k input tokens 
$0.06/1k output tokens 

$11.02/1M input tokens 
$32.68/1M output tokens 

Date accessed October 3, 2023 October 3, 2023 
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Supplemental table 2. Guideline references and sections used. 
 

Cancer type and reference 
used Sections used 

Acute Myeloid Leukemia6 

“Acute myeloid leukaemia” section 1 (Enhanced grouping 
framework permitting scalable genetic classification and 
deemphasizing blast enumeration where relevant) and 
section 2 (AML with defining genetic abnormalities) 

Diffuse large B-cell lymphoma5 “Overview,” “Diagnosis,” and “Workup” 

Diffuse gliomas8 “Integrated histomolecular classification” 

Colorectal cancer7 “CMS1,” “CMS2,” “CMS3,” and “CMS4” 

Invasive ductal carcinoma9 “Molecular classification” section 1 (Intrinsic Subtypes) and 
section 2 (Integrative Clusters) 
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Supplemental figure 1. Accuracy and hallucinations of biomarker extraction 
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Supplemental figure 2. Accuracy and hallucinations of cancer subtype extraction 
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