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ABSTRACT 

Background: Genome-wide association studies (GWAS) have identified numerous genetic loci associated with mineral 

metabolism (MM) markers but have exclusively focused on single-trait analysis. In this study, we performed a multi-trait 

analysis of GWAS (MTAG) of MM, exploring overlapping genetic architecture between traits, to identify novel genetic 

associations for fibroblast growth factor 23 (FGF23). 

Methods: We applied MTAG to genetic variants common to GWAS of 5 genetically correlated MM markers (calcium, 

phosphorus, FGF23, 25-hydroxyvitamin D (25(OH)D) and parathyroid hormone (PTH)) in European-ancestry subjects. 

We integrated information from UKBioBank GWAS for blood levels for phosphate, 25(OH)D and calcium (n=366,484), 

and CHARGE GWAS for PTH (n=29,155) and FGF23 (n=16,624). We then used functional genomics to model 

interactive and dynamic networks to identify novel associations between genetic traits and circulating FGF23. 

Results: MTAG increased the effective sample size for all MM markers to n=50,325 for FGF23. After clumping, MTAG 

identified independent genome-wide significant SNPs for all traits, including 62 loci for FGF23. Many of these loci have 

not been previously reported in single-trait analyses. Through functional genomics we identified Histidine-rich 

glycoprotein (HRG) and high mobility group box 1(HMGB1) genes as master regulators of downstream canonical 

pathways associated with FGF23. HRG-HMGB1 network interactions were also highly enriched in left ventricular heart 

tissue of a cohort of deceased hemodialysis patients.  

Conclusion: Our findings highlight the importance of MTAG analysis of MM markers to boost the number of genome-

wide significant loci for FGF23 to identify novel genetic traits. Functional genomics revealed novel networks that inform 

unique cellular functions and identified HRG-HMGB1 as key master regulators of FGF23 and cardiovascular disease in 

CKD. Future studies will provide a deeper understanding of genetic signatures associated with FGF23 and its role in 

health and disease. 
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INTRODUCTION 

Mineral bone disorder related to chronic kidney disease (CKD-MBD) leads to impaired skeletal and 

cardiovascular homeostasis and is associated with higher fracture risk, vascular calcification, and cardiovascular-related 

morbidity and mortality [1]. Therapeutic strategies to prevent and treat CKD-MBD include maintenance of optimal 

circulating concentrations of mineral markers (MM) including parathyroid hormone (PTH), calcium, phosphate, and 25-

hydroxyvitamin D and fibroblast growth factor 23 (FGF23). However, therapeutic advances have not led to meaningful 

decrease in morbidity and mortality rates related to CKD-MBD.  

We and others have shown that genome-wide association studies (GWAS) in the general population and in CKD 

have identified common variants associated with circulating calcium, phosphate, PTH, vitamin D and FGF23 [2-6]. In 

addition, Mendelian randomization studies that leverages genetic determinants of a risk factor to determine causality have 

shown that genetic predictors of FGF23 excess was associated with higher heart failure risk in those with genetically 

predicted lower GFR [7]. However, previous studies have exclusively focused on single-trait analysis leaving gaps in 

comprehensive understanding of genetic drivers of CKD-MBD. In this study, we performed a multi-trait analysis of 

GWAS (MTAG) data of MM markers, exploring overlapping genetic architecture between the traits, to identify novel 

genetic associations for FGF23. We then performed a series of integrated network analyses to re-prioritize quantitative 

genetic traits and build relevant biological network models that identify core disease-associated genes. Through this 

omnigenic approach we have identified previously unknown genetic traits associated with novel biological networks at the 

cellular and tissue level that play a major role in cardiiovascular disease in CKD. 

 

METHODS 

Multi-trait analysis of GWAS 

We conducted multi-trait analysis of genome-wide association studies (MTAG) of five genetically correlated 

mineral metabolism markers (serum FGF23, PTH, phosphate, calcium, and vitamin D) using summary-level data from 5 

large-scale discovery GWAS. GWAS data for FGF23 and PTH were from 16,624 and 29,155 individuals of European 

ancestry in the Cohorts for Heart and Aging Research in Genetic Epidemiology (CHARGE) consortium [8], and 

summary-level GWAS of serum phosphate, 25(OH)D and calcium (n=366,484) were obtained from the UK Biobank [9]. 
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Details of the MTAG approach have been described elsewhere [10].  Briefly, this approach leverages the genetic 

correlation between related traits to perform joint genome-wide analyses of multiple traits hence augmenting the available 

statistical power to detect novel genetic signals for each trait analyzed. As an extension of the inverse-variance meta-

analysis in the multi-trait setting, the MTAG estimator uses single-trait GWAS summary statistics as inputs and generates 

trait-specific SNP effects and P-values. Beyond the advantage of requiring only GWAS summary statistics, the MTAG 

estimator adequately accounts for potential sample overlap in the GWAS of the different traits included in the analysis 

using bivariate linkage disequilibrium (LD) score regression of each pair of traits. 

 

Datasets 

Genomic data deposited in NCBI (GSE160145) from explanted whole human hearts from the CAIN (Cardiac 

Aging IN CKD) Cohort were used for our comparison analysis. Details of CAIN study were previously described [11]. In 

brief, hearts from deceased donors >18 yrs of age with end stage kidney disease on hemodialysis (n=13) and healthy 

control subjects (n=5) who had no significant comorbidities were collected post mortem to conduct a comprehensive 

histopathologic and genomic analysis of the left ventricle. For our comparison analysis of network interactions associated 

with MTAG_FGF23, we used published genomic data from bulk RNA sequencing of left ventricular cardiac tissue 

obtained from the CAIN cohort. 

 

Functional Enrichment Analysis and Gene Ontology 

To delineate the potential biological implications of the genes in the MTAG_FGF23 dataset, we explored Gene 

Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes Pathway Enrichment (KEGG) pathways [12-15]. 

The three categories of biological process (BP), molecular function (MF), and cellular component (CC) constituted the 

GO term. GO and KEGG terms with a false discovery rate (FDR) of less than 0.05, were considered significant. The top 

150 genetic traits from MTAG_FGF23 were used as input data. Using either BP, CC, or MF analysis as a baseline, the top 

5 terms were selected and further annotated and visualized. KEGG enrichment analysis results are represented visually 

using a flowchart.  
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Pathway analysis 

We performed gene-based variant effect analysis considering direct and indirect relationships with IPA software 

(IPA®, QIAGEN Redwood City) to evaluate prior knowledge existing within IPA knowledge base and from published 

literature. This method maps over-representation of the top 150 MTAG_FGF23 genetic loci in various disease and 

functional pathways through SVM learning. To determine the top biological functions associated with MTAG_FGF23, we 

performed a downstream effect analysis from which we extracted the most significantly affected functions (p-value ≤ 

0.05; z-score ≥ 2). The right-tailed Fisher's exact test was used to estimate the probability that association between a set of 

molecules and a function or pathway might be due to random chance. The IPA z-score algorithm was used to predict the 

direction of change for a given function. A z-score ≥ 2 implies function is significantly increased/activated whereas a z-

score ≤ 2 indicates a significantly decreased/inhibited function. We selected the most statistically significant and enriched 

pathways and networks to display using IPA’s visualization tools. We then performed a comparison analysis of the 

enriched pathways within our dataset with published cardiac RNAseq data from the CAIN cohort described above. 

 

Network-wide association study (NetWAS) 

NetWAS is a support vector machine (SVM) learning approach that trains a classifier through grouped disease-

associated genes [16]. The SVM classifier locates an optimal hyperplane from the high-dimensional predictor space to 

separate positive genes from negative genes. The classifier is constructed using a tissue network relevant to a disease, 

where the features of the classifier are the edge weights of the labeled examples to all the genes in the network. Genes are 

re-ranked using their distance from the hyperplane, A score is then assigned to each gene, representing the distance from 

the gene to the hyperplane. Genes are re-ranked using their distance from the hyperplane, which represent a network-

based prioritization of a GWAS. Genes that score higher are more likely to be disease related. We used MTAG_FGF23 

variants as input data after conversion of the associated P value of SNP level to gene level via the versatile gene-based 

association study (VEGAS) web platform [17]. Genes were reprioritized and results were ranked according to their scores 

to create tissue-specific gene clusters for kidney, bone and heart. Genes with high scores and that obtained consistent 

results in sensitivity analysis were considered to be potential causal genes. 
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Statistical analyses  

We performed the MTAG analysis of the single-trait GWAS of 5 mineral metabolism markers with a focus on 

FGF23 as the primary analysis, using the conventional Python command line tool. The MTAG estimator is an efficient 

generalized method of moments estimator that generates trait-specific SNP effects by performing a weighted sum of the 

GWAS estimates while accounting for the correlation in true SNP effects and the correlation in their estimation error 

(related to phenotypic correlation with sample overlap and correlated biases in SNP effects). The stepwise algorithm 

estimates a variance-covariance matrix of the SNPs’ estimation error (using univariate and bivariate LD score regression), 

the variance-covariance matrix of the SNP effects (assumed to be homogeneous across all SNPs) and then computes 

individual SNP effects across all traits using a closed-form solution. Independent genetic signals for FGF23 were obtained 

by clumping genome-wide significant signals at an r2 of 0.01 in 500kb windows. We probed the credibility of our findings 

in our work, in part by computing the false discovery rate for each SNP.   

 

RESULTS 

General Characterization 

FGF23 MTAG 

The strength of genetic correlations is important for investigating the pleiotropic effect of genetic variants on 

traits. Multi-trait analyses augments the statistical power to detect novel genetic signals to yield plausible and replicable 

results. We performed MTAG analysis after combining GWAS of FGF23, PTH, 25(OH)D, phosphorus, and calcium and 

identified 62 genomic regions for FGF23, 57 loci were novel (not within ±500kb of previously known loci) (Figure 1, 

Table 1). The top locus was near TKT (rs73188394), where every additional copy of the G allele was associated with a 

21% higher circulating FGF23 (p=8.6 x 10-118).  

 

Network-wide association study (NetWAS) 

Although GWAS has transformed our understanding of complex human diseases like CKD, only a small fraction 

of total heritability can be explained by disease-associated variants identified by GWAS. To address this “missing 

heritability” we used NetWAS to identify the cumulative weak effects of variants, many of which fall below statistical 
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significance. Netwas integrates tissue-specific networks with GWAS and has an advantage of mitigating literature bias. 

Thus, candidate genes which are not well represented in the current literature but exhibit strong support for pathogenesis 

can be discovered agnostically [18]. We thus tested the omnigenic hypothesis which describes that genes can affect each 

other through their tightly interconnected networks, and as such, genes that have little direct bearing on a particular 

disease may, in aggregate, affect core disease pathways and influence disease risk. Using this approach we identified 

significant gene clusters in kidney, bone and heart using MTAG data. We found 9 distinct gene clusters in kidney and bone 

and 6 gene clusters in the heart including modules that regulate mineral and ion homeostasis. (Figure 3A) (A full list of 

gene clusters are available upon request). Given the intricate relationship between the 3 organ systems in the 

pathophysiology of CKD-MBD, we examined the modules for overlapping genes and found 533 genes were common in 

the netwas module discovery network (Figure 3B). The overlapping genes were subjected to further network analyses and 

we found aryl hydrocarbon signaling with estrogen receptor 2 as the top canonical pathway common to all 3 organ 

systems. In addition, HNF4α was identified as a top upstream regulator and signaling by HIFα, TGFβ, mitochondrial 

dysfunction, Nrf2-mediated oxidative stress response and PPAR α/RXR α were among the top canonical pathways 

(Figure 3C). 

 

Functional Enrichment Analysis 

We further explored biological implications of the variants in MTAG_FGF23 with GO and KEGG enrichment analyses. 

GO term “biological processes” was enriched for 2 key pathways; skeletal development and vitamin D (Figure 4) which 

confirms the biological relevance of MTAG variants given FGF23 is a potent regulator of vitamin D metabolism and 

skeletal mineralization [19-21]. We also queried the top genes from Table 1 with KEGG pathway analysis and found 

metabolic pathways for pentose phosphate, and phosphatidyl inositol signaling were highly enriched (Figure 5 and 6). 

Genes within the pentose phosphate pathway were also found in the overlapping gene clusters for kidney, bone and heart 

in the NetWAS analyses described above.  Interestingly, we found the top SNP, rs73188394, was in proximity to 

Transketolase (TKT) gene that belongs to the pentose phosphate pathway and was the most strongly associated SNP in the 

MTAG. Transketolase enzyme catalyzes reactions in the non oxidative component of pentose phosphate pathway and 

plays a critical role in energy metabolism and oxidative stress response. Pentose phosphate pathway is highly conserved in 

evolutionary biology, and metal ions including iron and calcium, are vital for the non enzymatic reactions in this pathway 

[22].  
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Secondly, we also found the top SNP, rs73743401, was in proximity to inositol hexakisphosphate kinase 3 (IP6K3) and 

inositol 1,4,5-trisphosphate receptor type 3 (ITPR3) genes which are involved in inositol phosphate biosynthesis . IP6K3 

encodes a protein that is involved in AKT signaling.  ITPR3 gene encodes a receptor for inositol 1,4,5-trisphosphate, a 

second messenger that mediates the release of intracellular calcium. Every additional T allele at rs73743401 was 

associated with ~ 22% higher FGF23 concentrations in the MTAG analysis (MAF 0.14, Beta coefficient 22.0, P value 

5x10-60). Thus, functional enrichment analyses identified known links to biological functions of FGF23 and discovered 

novel pathways linked to pentose phosphate and phosphatidyl inositol signaling pathways. 

 

Integrated Network Modeling 

Sequence models of disease predicton (eg RNA-seq, GWAS, genome sequencing) can describe the molecular effects of 

gene mutations and expressions, but the interpretation of how these gene variations leads to disease phenotypes requires 

understanding of the dysregulated pathways and processes.  Using an integrated network modeling approach massive 

collections of omics data can be summarized to create genome-scale functional maps and find novel gene-interaction 

networks specific to a biological context. To this end, we utilized a supervised machine learning method that integrates 

signal from GWAS together with signal in tissue-specific functional networks to reprioritize genes potentially associated 

with the disease/trait of interest. We found the top canonical pathways were associated with cardiac hypertrophy, multiple 

sclerosis and hematopoiesis (Figure 7). VDR and TGFβR2 signaling pathways were identified as the top regulator effect 

networks and MAPK signaling molecules were common to the top 5 causal networks (data not shown). Among the 

canonical pathways that regulate cell metabolism, pathways for pentose phosphate, phosphatidyl inositol biosynthesis and 

citrulline-nitric oxide had the highest predicted activation z-scores. Signaling pathway with FGF6, FGF7 and FGF23 had 

the highest predicted inhibition z-scores ( z-score -2.0, P value 5.4.E-03). We discovered a novel pathway that was 

previously unreported in the literature involving Coordinated Lysosomal Expression and Regulation (CLEAR) signaling 

to have the highest predicted activation score ( z-score 2.24, P value 7.7.E-03)  (Figure 7) and was among the overlapping 

gene clusters also identified in NetWAS in kidney, bone and heart tissues. CLEAR pathway regulates lysosomal function, 

and cellular response to nutrient sensing, and 6 genes (FNIP1, GBA1, GUSB, ITPR3, PPP2R3A, RALB) in CLEAR 

pathway were found to have significant z scores (Tabe 2). Of note,  ITPR3 in proximity to SNP, rs73743401, was 

associated with ~ 22% higher FGF23. Next we queried Ingenuity knowledge database for disease states associated with 

high activation z-scores for CLEAR pathway and found that 22 genes in this pathway were upregulated in heart tissue 
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obtained from deceased hemodialysis patients with left ventricular hypertrophy (CAIN cohort) and proceeded with an 

indepth comparison analysis of the two datasets.  

  

Comparison Analysis of MTAG_FGF23 with cardiac disease in advanced CKD 

To further analyze the top signals identified by integrative network modeling, we explored tissue-specific functional 

networks and patterns in the heart, an organ system that is directly impacted by CKD-MBD and FGF23 excess [23]. We 

performed comparison analyses of genomic data from MTAG_FGF23 with a publicly available cardiac dataset of CKD. 

In the CAIN cohort, bulk RNA-seq was performed on left ventricular heart tissue obtained from deceased hemodialysis 

patients and controls [11]. In this cohort, patients on hemodialysis had significantly larger heart tissue weight and 

ventricular wall thickness, and greater myocardial fibrosis on histology compared to controls. In the comparison analysis, 

we found overlapping and distinct pathways; specifically, CLEAR signaling pathway was the top canonical pathway in 

both datasets with high predicted activation z-scores and multiple sclerosis pathway was predicted to be activated in 

MTAG_FGF23 but inhibited in left ventricular heart tissue (Figure 8) . Cardiac hypetrophy and estrogen receptor 

signaling (aryl hydrocarbon signaling) were common to both datasets. Among the pathways for disease and functions, 

organismal death had the highest predicted activation score and cell migration had the highest inhibition score in the left 

ventricle gene expression dataset. We found top genes (KPNA1, PARP9, ITPR3, TKT, Rgs14, FGF23, PTH, DGKD, 

DNMT3A) in the MTAG dataset from Table 1 overlapped in this network for organismal death from the CAIN cohort 

(Figure 9). 

HRG-HMGB1 identified as master regulators of downstream canonical pathways linked to both FGF23 and cardiac 

disease in advanced CKD 

We examined the 2 datasets (MTAG_FGF23 and hypertrophied left ventricular heart tissue differential gene expression) 

for upstream molecules that potentially function as master regulators of disease/trait of interest (ie cardiac diease in CKD). 

We discovered a novel causal network with histidine-rich glycoprotein and high-mobility group protein box 1 (HRG-

HMGB1) as the master regulator of downstream canonical pathways in both datasets. In disease states, HMGB1 is pro-

inflammatory and causally associated with renal and cardiovascular injury [24]. Consistent with reported literature, HRG-

HMGB1 was upstream of major signaling pathways shown in Figure 10. Activation of HRG is predicted to inhibit 

HMGB1 and downregulate signaling pathways for TGFβ1, TLR, IL-2, IL-6, NFKB, HIFα, and to activate AKT and 
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stat5a/b signaling. In addition, we identified several top genes from Table 1 within this HRG-HMGB1 network as shown 

in Figure 10. Specifically, FAM162a, TKT, PARP9 and DTX3L genes were activated and FGF23, ST3GAP, USP8, 

BCAS3, GNAQ, PCGRT and PPP1R1B were inhibited by HRG-HMGB1 signaling networks.  

DISCUSSION 

Computational biology has revolutionized our capabilities to understand complex pathophysiology such as CKD [25]. We 

leveraged a comprehensive list of computational and deep machine learning tools to expand networks and pathways 

linked to genetic traits associated with CKD-MBD. In this study we used a novel methodology, MTAG, to analyze GWAS 

from multiple large consortiums, to boost the number of genome-wide significant loci for FGF23. We then used a multi-

pronged functional genomics approach to model interactive and dynamic networks to discover novel associations between 

these genetic traits and FGF23 signaling. Using NetWAS, we identified tissue-specific gene clusters in kidney, bone and 

heart including modules that regulate mineral ion homeostasis. Using integrative network modeling, we identified known 

(VDR,TGFβR2 and MAPK) and novel (CLEAR, pentose phosphate, phosphatidyl inositol biosynthesis) pathways linked 

to FGF23. Lastly, we explored tissue-specific functional networks and patterns to discover novel genetic traits (CLEAR, 

HRG-HMGB1, cardiac hypetrophy and estrogen receptor signaling) that overlapped between MTAG_FGF23 and in 

cardiac tissue of deceased patients with advanced CKD. Thus, combining clinical and experimental data with insilico 

analysis we have advanced our understanding of genetic drivers of CKD-MBD and shed light on potential novel 

mechanisms that mediate cardiovascular disease in CKD. 

MTAG was developed to boost the statistical power of GWAS by incorporating information from effect estimates across 

traits. Advantages of MTAG over other analyses include unique capability to combine analysis of multiple, genetically 

correlated traits (e.g. Ca, P, vit D, PTH and FGF23) using summary statistics of GWAS rather than requiring individual 

genotypes. MTAG mitigates bias from sample overlap which is often present when using discovery samples for different 

traits to calculate linkage disequilibrium (LD) score regression [10]. With this approach we identified novel genetic traits 

previously unreported to be associated with circulating FGF23 (Table 1). 

Given that CKD-MBD is a complex disease process. we utilized multiple analyticial tools to understand how genetic traits 

identified with MTAG align with biological networks in a tissue- and cell-specific manner in the context of FGF23. First, 

we used NetWAS analyses to minimize bias from “missing heritability” to identify the cumulative weak effects of variants 

and to minimize literature bias where candidate genes not found in the literature but exhibit strong support for 
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pathogenesis can be discovered agnostically [16, 18]. Throught this approach. we built gene clusters and modules for 3 

organ systems; kidney, bone and heart, that are intricately involved in CKD-MBD. Some of the gene modules were 

distinct (i.e tissue-specific) whereas others overlapped across organ systems suggesting that similar pathways are involved 

in pathogenesis of CKD-MBD in the kidney , bone and heart. Notably, we found aryl hydrocarbon signaling pathway 

common to all 3 organ systems and transcription factor, HNF4α, was identified as a top upstream regulator. HNF4α2 

isoform was recently implicated in the pathogenesis of renal osteosystrophy and plays a critical role in cell death and 

osteogenesis [26]. HIF1α, TGFβ, mitochondrial dysfunction, Nrf2-mediated oxidative stress response and PPAR α/RXR α 

were also among the top signaling pathways common to all 3 tissues of interest. 

Using a series of enrichment analysis and network modeling we discovered known (skeletal development and vitamin D) 

pathways associated with FGF23 confirming the SNPs in the MTAG dataset are biologically relevant. We also found 

novel pathways including pentose phosphate pathway and phosphatidyl inositol signaling were highly enriched in both 

KEGG and IPA analyses. The top SNP, rs73188394, was in proximity to TKT gene that belongs to pentose phosphate 

pathway, and, rs73743401, was in proximity to IP6K3 and ITPR3 genes that belongs to the phosphatidyl inositol signaling 

and CLEAR pathway. Both SNPS were associated with 21- 22% higher FGF23 concentrations in the GWAS consortium. 

TKT encodes for transketolase enzyme that plays a critical role in energy metabolism and oxidative stress response. Little 

is known about role of TKT in CKD but pentose phosphate pathway is high conserved in evolutionary biology [22].   Iron, 

calcium and phosphate are required to support non enzymatic reactions in the pentose phosphate pathway which also 

provides substrates for glycolysis, fatty acid, steroid, DNA and RNA synthesis. Recently, it was reported that kidney-

specific glycolysis pathway serves as a phosphate sensor and its by product, glycerol-3-phosphate (G-3-P) released into 

circulation upregulates FGF23 production in bone [27]. Given that pentose phosphate pathway is tightly linked to 

glycolysis by providing substrates and energy via NADPH, TKT may play a central role connecting FGF23 and MM to 

vital cellular functions including glucose, lipid, energy metabolism, renal tubular phosphate transport and response to 

hypoxia. 

Our analyses identified CLEAR signaling pathway as a key causal network with the highest predicted activation z-scores 

and 6 genes (FNIP1, GBA1, GUSB, ITPR3, PPP2R3A, RALB) within this pathway belonged to our dataset. In addition, 

we found 22 genes in CLEAR pathway were upregulated in cardiac tissue obtained from deceased hemodialysis patients 

(CAIN cohort) and thus proceeded with an in depth comparison analysis of the 2 genomic datasets. In the CAIN cohort, 

cause of death was not reported but histology confirmed the diagnosis of left ventricular hypertrophy and fibrosis in 
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hemodialysis patients compared to controls [11]. Gene expression data revealed that CLEAR signaling pathway was the 

top canonical pathway with high predicted activation z-scores in the CAIN dataset. Cardiac hypetrophy and estrogen 

receptor signaling pathway activation were also common to both datasets. Among the pathways for disease and functions, 

organismal death had the highest predicted activation score in the left ventricle gene expression dataset which is expected 

since the patients died on dialysis. Interestingly, we found several genes (KPNA1, PARP9, ITPR3, TKT, Rgs14, FGF23, 

PTH, DGKD, DNMT3A,) in the MTAG dataset were present in this network for organismal death from the CAIN cohort. 

Notably, FGF23 and PTH are associated with cardiovascular disease and mortality in patients with CKD [28-30]. FGF23 

directly induces left ventricular hypertrophy via FGFR activation [23, 31] and induces cardiac fibrosis via TGFβ signaling 

pathway [32]. Recently, DNMT3a  was shown to play an important role in kidney development and DNMT3a-induced 

methylation of specific DNA regions was found to be enriched in kidney disease risk loci in GWAS studies of humans 

with CKD. This suggests that DNMT3a plays a key role in epigenitic modification that contributes to CKD progression 

[33]. Through GWAS studies of circulating mineral markers in the general population, we and others have shown that 

rs4074995 (RGS14) SNP was the top SNP associated with circulating PTH, calcium, phosphate, and FGF23 [2-5, 34].  

Moreover, in adults with CKD, the minor allele of rs4074995 (RGS14) was associated with lower phosphorus and FGF23 

levels and lower prevalence of hyperparathyroidism [3]. We performed expression quantitative trait loci analysis (eQTL) 

and showed that rs4074995 was associated with lower RGS14 gene expression in the kidneys and colocalization studies 

demonstrated strong correlations between RGS14 gene expression and circulating FGF23 and PTH [3]. These findings 

align with recent preclinical studies that provide evidence for RGS14 to play a key role in convergence of FGF23- and 

PTH-dependent signaling in the renal proximal tubule to inhibit phosphate reabsorption via sodium phosphate co 

transporter, Npt2a [35, 36]. Further studies are needed to understand the role of Rgs14 in cardiovascular disease in CKD. 

Another key finding from our analysis was the identification of HRG-HMGB1 as the master regulator of downstream 

canonical pathways in both datasets. Activation of HRG is predicted to inhibit HMGB1 and regulates several downstream 

signaling pathways including TGFβ1, TLR, IL-2, IL-6, NFKB, HIF1α and to activate AKT and stat5a/b signaling. We 

found FAM162a, TKT, PARP9 and DTX3L genes are activated and FGF23, ST3GAP, USP8, BCAS3, GNAQ, PCGRT 

and PPP1R1B are inhibited by HRG-HMG signaling networks. HMGB1 is a member of the high-mobility group proteins 

that are secreted and can be detected in blood and urine [24]. HMGB1 is ubiquitously expressed and is involved in cellular 

damage and repair. The biological activity of HMGB1 depends on its subcellular localization. In the nucleus, HMGB1 

regulates DNA repair chromatin remodeling and maintains nucleosome and telomere homeostasis. In the cytoplasm, 
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HMGB1 regulates autophagy and mitchondrial function to regulate cell death. Extracellular HMGB1 acts as a damage-

associated molecular pattern (DAMPs)/alarmin to promote cell migration and proliferation but one of its key functions is 

to accelerate cell death by inducing lysosomal membrane permeabilization. In a cohort of non diabetic CKD, serum 

HMGB1 was significantly elevated and independently correlated with asymmetric dimethylarginine (ADMA), a marker of 

endothelial dysfunction and cardiovascular diseases, indicating that HMGB1 is actively involved in CKD progression and 

might lead to the development and progression of cardiovascular disease [37]. In our study, we show that HRG-HMGB1 

complex is a master regulator of canonical pathways in patients with advanced CKD and LVH and the same pathways are 

associated with FGF23 signaling networks. Future studies will investigate the precise role for these novel genetic traits in 

the pathophysiology of cardiovascular disease in CKD and FGF23 excess. 

In conclusion, our study has shed light on key genetic drivers of CKD-MBD, identifiying novel SNPs associated with 

circulating FGF23 and with the aid of computational tools and machine learning we have generated a catalog of 

established and novel networks and pathways that link FGF23 to complications of CKD. 
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Table 1. Top 30 independent genetic loci associated with circulating FGF23 from MTAG analyses 

Genetic 
Variant chr pos 

Ref 
Allele 

Effect 
Allele MAF BETA  SE P Nearest Gene 

rs73188394 3 122129203 A G 15.4% 21% 0.9 8.6E-118 TKT 

rs73743401 6 33716945 G T 5.7% 22.5% 1.4 4.9E-60 IP6K3 

rs838717 2 234296444 G A 44% -8.8% 0.6 2.4E-43 DGKD 

rs1976403 1 21766453 A C 41.9% 8.5% 0.6 5.8E-40 NBPF3 

rs11063207 12 4603698 T C 10% -12.2% 1 9.5E-38 C12orf4 

rs6727384 2 97400324 A G 38.6% -7.2% 0.6 7.5E-29 LMAN2L 

rs7742369 6 34165721 A G 17.5% 9.2% 0.8 1.1E-28 KRT18P9 

rs72786681 10 9318246 T C 10.3% 11.9% 1.1 3.8E-28 LINC00709 

rs3091842 20 39344272 G A 6.7% 16.8% 1.5 7.1E-28 RP4-644L1.2 

rs453639 6 132049657 C A 39.7% 7.1% 0.7 2.0E-27 ENPP3 

rs4263551 6 74486371 T C 49.7% -6.8% 0.6 8.4E-27 CD109 

rs17216707 20 52732362 T C 22.7% -8.1% 0.8 8.6E-24 CYP24A1 

rs308032 19 3102748 G T 21.5% 6.9% 0.7 1.3E-20 GNA11 

rs4782302 16 88524389 A C 41.5% -5.9% 0.6 1.9E-20 ZFPM1 

rs12411216 1 155164480 C A 45.2% 5.7% 0.6 1.7E-19 MIR92B 

rs10819178 9 129294976 T G 35.2% 5.8% 0.7 8.8E-19 AL356309.1 

rs34257685 17 37621053 A C 26.1% -6.2% 0.7 9.0E-18 CDK12 

rs12366257 11 13593857 G A 17.2% 7.5% 0.9 2.0E-17 HMGN2P36 

rs4937122 11 126228659 T G 7.4% -10.2% 1.2 2.5E-17 ST3GAL4 

rs11752385 6 134522487 C T 39.6% -5.4% 0.6 5.2E-17 SGK1 

rs7686873 4 40564730 A G 18.3% -6.8% 0.8 8.7E-16 RBM47 

rs4718275 7 65220463 T C 43.5% 5.1% 0.6 1.0E-15 CCT6P1 

rs1858800 16 73024276 C T 34.8% 5.3% 0.7 1.1E-15 ZFHX3 

rs145032242 15 50995847 C T 19% -6.3% 0.8 1.2E-15 SPPL2A 

rs841572 1 43436051 G A 40.4% 5.1% 0.6 1.5E-15 SLC2A1-AS1 

rs6539287 12 107297650 C A 47.1% -5% 0.6 3.4E-15 EEF1B2P4 

rs4841132 8 9183596 A G 7.4% 8.5% 1.1 6.7E-15 RP11 

rs544630567 5 176757962 A G 34.1% 5.2% 0.7 4.3E-14 RGS14 

rs8025182 15 69601919 C T 36.9% -4.9% 0.7 1.0E-13 PAQR5 
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Table 2. Canonical Pathway for CLEAR signaling 

Symbol Entrez Gene Name SNP variant Beta 
coefficient 

p-value Location Type(s) 

FNIP1 folliculin interacting protein 
1 

rs11950815  
3.66 

 

1.63E-08 Cytoplasm other 

GBA1 glucosylceramidase beta 1 rs12411216  
5.71 

 

8.69E-12 Cytoplasm enzyme 

GUSB glucuronidase beta rs4718275  
5.08 

 

9.49E-38 Cytoplasm enzyme 

ITPR3 inositol 1,4,5-trisphosphate 
receptor type 3 

rs73743401  
22.45 

 

2.25E-08 Cytoplasm ion channel 

PPP2R3A protein phosphatase 2 
regulatory subunit B''alpha 

 rs1393787  
5.05 

 

9.49E-38 Nucleus phosphatase 

RALB RAS like proto-oncogene 
B 

rs6542581  
-3.91 

 

1.28E-20 Cytoplasm enzyme 
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Figure 1.  Overall Study Design  
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Figure 1. Plot shows 62 loci from FGF23 MTAG. In these plots, the y axis shows the P values of SNPs in log–log scale. The red 
horizontal line is the genome-wide significance level at P = 5 × 10−8. SNPs with P < 1 × 10−4 are not shown in the plots. 
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Figure 3. NetWAS: A Tissue-specific network-based functional interpretation of gene variants from MTAG. A Module 
discovery network at tissue level for kidney, bone and heart. B.  Venn diagram for overlapping genes in the NetWAS
modules. C. Top canonical pathways common to kidney, bone and heart tissues for the NetWAS gene clusters.
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Figure 4. Gene Ontology and Enrichment Analysis. Top GO term  identified in GO_Biologic Process for skeletal 
development and Response to Vitamin D.

BA
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Figure 5. KEGG enrichment analysis flow diagram for pentose phosphate pathway. The red star indicates 
transketolase enzyme (2.2.2.1) enriched in the MTAG dataset. 
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Figure 6. KEGG enrichment analysis flow diagram for phosphatidyl inositol pathway. The pink box indicates 
genes in the pathway enriched in the MTAG dataset PIP5K, IP3R (ITPR3), 2.7.4.21 (IP6K3), 2.7.1.107 (DGKD)
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Figure 7. Canonical pathway analysis of MTAG. A. Prediction of pathway activation (blue bars) and 
inhibition (orange bars) represented by z scores. Orange line represents threshold for – log (p-value). B. 
Percent of genes upregulated (red) and downregulated (green) in the enriched canonical pathways 
shown as percentage.

B
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Figure 8. Comparison analysis of lead genetic loci in MTAG with differential gene expression from bulk RNA-seq data 
of left ventricle of patients with advanced CKD vs controls A. Canonical pathways  and B. Causal networks common 
and distinct in each dataset. Activation z scores represented as orange boxes for predicted activation and blue boxes 
for inhibition. C. Genes upregulated (orange) and downregulated (blue) or no change (grey) in pathway for cardiac 
hypertrophy. 
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Figure 9. Comparison analysis of lead genetic loci in MTAG with differential gene expression from bulk RNA-seq data 
of left ventricle of patients with advanced CKD vs controls. Pathway for Organismal death identified in both datasets 
represented in schematic diagram. Genetic loci are represented in red/pink and in green when associated with 
higher, or lower, circulating FGF23, respectively in MTAG.
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Figure 10. Comparison analysis of lead genetic loci in MTAG with differential gene expression from bulk RNA-seq data 
of left ventricle of patients with advanced CKD vs controls. Causal network analysis revealed HRG-HMGB1 as a master 
regulator for downstream canonical pathways in A. and C. MTAG FGF23 dataset, and B. CKD Left ventricle dataset.  
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