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Abstract.  

Background: Changes in body temperature anticipate labor onset in numerous mammals, yet 

this concept has not been explored in humans.  

Methods: We evaluated patterns in continuous skin temperature data in 91 pregnant women 

using a wearable smart ring. Additionally, we collected daily steroid hormone samples leading 

up to labor in a subset of 28 pregnancies and analyzed relationships among hormones and body 

temperature trajectory. Finally, we developed a novel autoencoder long-short-term-memory (AE-

LSTM) deep learning model to provide a daily estimation of days until labor onset.  

Results: Features of temperature change leading up to labor were associated with urinary 

hormones and labor type. Spontaneous labors exhibited greater estriol to α-pregnanediol ratio, as 

well as lower body temperature and more stable circadian rhythms compared to pregnancies that 

did not undergo spontaneous labor. Skin temperature data from 54 pregnancies that underwent 

spontaneous labor between 34 and 42 weeks of gestation were included in training the AE-

LSTM model, and an additional 40 pregnancies that underwent artificial induction of labor or 

Cesarean without labor were used for further testing. The model was trained only on aggregate 5-

minute skin temperature data starting at a gestational age of 240 until labor onset. During cross-

validation AE-LSTM average error (true – predicted) dropped below 2 days at 8 days before 

labor, independent of gestational age. Labor onset windows were calculated from the AE-LSTM 

output using a probabilistic distribution of model error. For these windows AE-LSTM correctly 

predicted labor start for 79% of the spontaneous labors within a 4.6-day window at 7 days before 

true labor, and 7.4-day window at 10 days before true labor.  

Conclusion: Continuous skin temperature reflects progression toward labor and hormonal status 

during pregnancy. Deep learning using continuous temperature may provide clinically valuable 

tools for pregnancy care. 
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Introduction. 

Body temperature reflects female mammalian reproductive status from adolescence1 through 

adult fertility2–4 and menopause.3,5 Body temperature monitoring is also of increasing interest in 

human pregnancy,6 as temperature change predicts parturition in a variety of species7–10 (Table 

1). Historically, temperature measurements were most frequently taken from the “core”, 

requiring probes inside the body. However, skin surface temperature has emerged as a practical 

metric for monitoring the female reproductive system via its influence on thermoregulation and 

autonomic tone.11–13 Human skin temperature has already been deemed useful in cases ranging 

from peri-ovulatory window prediction2,3,14 to conception15 and fever detection.16–20 

Both the central nervous system and peripheral vasculature contribute to the utility of 

temperature in reproductive monitoring. Briefly, estradiol promotes peripheral vasodilation, and 

the addition of progesterone leads to peripheral vasoconstriction.11 Estradiol therefore allows 

body heat to escape, lowering both core and skin temperature in females21–23 and progesterone, 

with or without the presence of estradiol, traps heat and increases metabolic rate, raising core and 

skin temperature.3,4,14,24,25 In addition, it was recently hypothesized that mechanisms linking 

thermoregulation and reproduction may originate centrally in the hypothalamus and ventral 

tegmental area.12,22,23 This phenomenon informs the basis for self-monitoring of the ovulatory 

cycle, with temperature tracing the trajectory of estrogen and progesterone production. 

Importantly, changes not only in temperature level but also in the cyclicity of temperature over 

hours and days (i.e., biological rhythms) indicate the peri-ovulatory period and pregnancy 

onset.3,26–29 Further, observed changes in temperature cyclicity mirror those in the levels and 

patterns of underlying reproductive hormones.30  

While hormone patterns and sources (e.g., the placenta) differ in the third trimester of pregnancy 

from non-pregnant female neuroendocrine states, we hypothesize that the same principles apply 

to the role of steroid hormones on thermoregulation occurring prior to labor. Briefly, the 

influence of progesterone retreats in preparation for labor with rises in the ratio of estriol to 

progesterone,31 prolactin, corticotropin releasing hormone, and pro-inflammatory prostaglandins/ 

cytokines.32–34 Given the complexity of this hormonal state we might propose that changes in the 

ratio of progesterone and estriol would prompt decreasing temperatures, however, changes in the 

latter three factors might also suggest rising temperatures. Despite this lack of clarity as to what 

patterning pre-parturition hormones would produce, coarse decreases in body temperature have 

been noted with surprising consistency prior to labor in a wide range of mammalian species 

(Table 1).  
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Table 1:  Reported changes in body temperature (skin or core) among various 

mammalian species during pregnancy that have been observed prior to the onset of 

parturition 

Species Observed Change (T) Time Window Measurement and Frequency 

lion35 -1.3 C “late gestation” intraperitoneal, ~ continuous 

squirrel21 -1.2 C -20 days intraperitoneal, 1/min 

orca whale36 -0.3 C, -0.8 C  -5 days, -24 hours rectal, 1/day 

wolverine37 -0.8 C - 24 hours intraperitoneal, 1 & 15 min 

rabbit38 -0.7 C < - 24 hours intraperitoneal, 1 & 6 min 

rat39,40 ~-0.5 C -5 to -1 days intraperitoneal 

horse41 -0.5 c (-0.1) (-24) -15 to -3 hours rectal, 2/day 

sheep42 -0.5 c  -24 hours neck and vulvar, 1 & 10 min 

cow8,9,43 -0.3- -0.2 C -2.5 to 0 days intravaginal; or ruminal  

dog44 ≤ -0.3 C -24 hours intravaginal, daily means. 

Moose45 ≤ -0.2 C -3 to 0 days ingested logger, 1 & 5 min 

mouse46 <0.5 C -72 h to -24 h intraperitoneal, 1/min 

goat10 not reported n/a vulva, 1/day 

macaque47 not reported -1 to -1.5 hours subscapular, 1/min 

Despite the reliability of these observations across phases of reproductive life and across species, 

the use of body temperature for predicting human labor onset has not been robustly studied. 

Presently, human parturition is estimated to occur within a range of weeks around a population 

mean of 40.0 weeks from the last menstrual period (an estimated 38 weeks post-conception), or 

via ultrasound performed in the first trimester which provides the gestational age of the 

embryo.48 However, present methods are associated with multiple weeks of average error49 based 

on natural variation in gestation length, reporting error, and variability in the timing of both 

ovulation and conception relative to the last menstrual period.50 Moreover, an individual’s length 

of gestation has not been predictable, despite attempts using AI/ML trained mostly on clinical 

features and ultrasound measures of cervical changes.51–54 It may be that a more appropriate 

method is the construction of a model that can detect subtle patterning in an output known to 

change before mammalian parturition: body temperature. 

We previously demonstrated that multi-modal, daily markers can differentiate pregnancies 

destined to pass the clinical estimated ‘due date’ (EDD) from those laboring earlier.55 Our study, 

Biological rhythms Before and After Your Birth (BioBAYB); gathered daily temperature, 

activity, heart, and sleep data from wearable devices worn by participants in the third trimester 

prior to the EDD. A boosted random forest machine learning model was able to differentiate 

between pregnancies that would eventually pass the EDD versus those that would spontaneously 

deliver prior to the EDD. Although these single daily time points were not able to generate a 

precise due date estimate, we noted that trends in a sleeping average body temperature ranked 

consistently near the top of the features in the random forest across validation runs. The accuracy 

of this model was determined via the area under the receiver operating curve at 0.71, which 

denotes moderate ability to predict the outcome of longer versus shorter gestation. As the sample 

was comprised of mostly healthy and low-risk participants’ data, we were limited to term 
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pregnancy predictions. Together, despite sampling limitations, the study indicated that a derived 

metric of temperature change was relevant to generating predictions when compared to heart 

rate, heart rate variability, sleep, and activity. This finding agreed with previous work11,14,15,55 

suggesting that temperature is uniquely valuable in paralleling female reproductive status (e.g., 

Figure 1), and that temperature metrics tuned specifically for the application of labor prediction 

may be more valuable still. 

Figure 1. Normalized daily finger temperature sample from preconception to delivery

Figure 1. Normalized daily finger temperature sample from a representative spontaneously 

laboring mother. Black lines and dots indicate labor onset. Gray lines and dots indicate 

progression from 3 ovulatory cycles’ luteal phase temperature peaks, to reported conception, to 

eventual delivery. Gray bars on x-axis delineate trimesters, and the final black horizontal bar 

indicates the time period of data ultimately utilized in this dataset to build the labor-onset 

prediction model. A rise in skin temperature is observed beginning approximately 2-3 weeks 

prior to labor onset, with a reversal to a smaller drop in temperature within a week prior to labor 

onset. Reproduced with permission.56 

In the present study, we examine the feasibility of using continuous body temperature for 

predicting human labor onset. We approach the problem both by relating hypothesis-driven 

changes in temperature to labor type and hormone levels, and by employing machine learning 

methods designed for rich time series. These data improve upon extant work by employing 

artificial intelligence methods specifically designed for time series, and in comparing observed 

features of temperature change preceding labor to change in hormonal trajectory using urinary 

hormone metabolites. 

We hypothesize that labor onset predictions based on continuous skin temperature using 

advanced deep learning will yield greater accuracy than the current clinical EDD. We estimate 

that, comparable to other species, temperature will decrease as labor approaches. We also 

anticipate that the utility of temperature features will be reduced for participants with an 

induction or cesarean date (or an exogenous influence rather than physiological end to 

pregnancy). Finally, we hypothesize that features of body temperature’s change over time will be 

associated with changes in estrogen and progesterone urinary metabolites. 
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Methods 

Experimental Design  

Ethical Approval. The protocol for the original study was approved by an Institutional Review 

Board at Oregon Health & Science University and further via a Data Use Agreement with the 

University of Arizona for analyses of the de-identified dataset previously collected. 

Sampling Method and Enrollment. Participants were recruited from maternity clinics as well as 

national social media advertising and enrolled following written informed consent. Inclusion was 

limited to adults who could provide written consent in English who were having a generally 

healthy pregnancy (no current hypertension or gestational diabetes and pre-pregnancy body mass 

index of less than 40 kg/m2) and anticipating a vaginal birth. Those already planning to undergo 

labor induction at less than 41 weeks, who had ovulatory dysfunction, uncontrolled thyroid 

disorder, or who used in-vitro fertilization, as well as those working night or rotating shifts were 

excluded. A second cohort of participants was recruited with same criteria as above though also 

had risk factors for preterm birth (e.g., multiple gestation, history of spontaneous preterm birth). 

Study Procedures. Participants were fitted to their ring size using a ring-fitting kit provided by 

the ring manufacturer (Ouraring Inc.) and were instructed to wear the ring as continuously as 

possible throughout the remainder of the pregnancy, on whichever finger achieved the best fit on 

the non-dominant hand. REDCap surveys were used to gather self-reported pregnancy 

symptoms, clinical assessment data, labor and birth events, and psychometric tools as previously 

reported.55 

Temperature Data Collection. The Ouraring is a commercial health tracking device worn on the 

finger. The Gen2 Ouraring is equipped with temperature (negative temperature coefficient 

(NTC) derived from 3 thermistors), 3-D accelerometer, and infrared photoplethysmography 

(PPG) sensors and measures physiological signals, such as heart rate (HR), heart rate variability 

(HRV), per minute finger temperature, respiration, and movement. The sensors are housed in the 

inner part of the ring on the palm side of the finger. Data is transmitted from the ring to the 

user’s phone via Bluetooth, and from the phone it is uploaded to the cloud. Continuous data 

collection enabled the establishment of personalized biometric baselines for each user. 

Continuous finger temperature data, collected over a branch of the brachial artery, is the 

exclusive subject of the present study. Results based on other outputs collected by the device 

have been previously reported.55 

Data Acquisition Pipeline. Following the report of the participant’s delivery, data was 

downloaded from the cloud into secure cloud storage through the research institution. 

Supplemental Figure 1 outlines our data ingestion and storage architecture. Data was made 

available through SQL queries and was accessed through the SensorFabric Python library 

(created by University of Arizona Sensor Analysis Core57).  
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Raw temperature and hormone analyses 

Participant Self-Collection of Urine Samples. A subset of 30 participants self-collected a first 

morning urine sample in a plastic basin at home each morning beginning at 38 weeks of 

gestation. Dried Urine Test for Comprehensive Hormones® (DUTCH) (Precision Analytical 

Inc., McMinnville, OR) test strips (2x3 in sized Whatman body fluid collection paper) were 

dipped into the urine and allowed to dry completely for 24 hours before storage in a collection 

bag in a home freezer. Participants aimed to sample every day from 38 weeks until onset of 

labor. We analyzed the up to 10 samples (as available) prior to labor onset per participant. Each 

specimen was assayed for the following: Estrone (E1), Estradiol (E2), Estriol (E3), α- and β- 

pregnanediol (αPg and βPg; the main progesterone metabolites found in urine), cortisol, and 

melatonin. 

Hormone Assay. As previously reported,3,58 estrogens, αPg and βPg, cortisol and melatonin were 

analyzed using DUTCH  test’s proprietary in-house assays on the Agilent 7890/7000B gas 

chromatography-mass spectrometry (GC–MS/MS) (Agilent Technologies, Santa Clara, CA, 

USA). The equivalent of approximately 600 μl of urine was extracted from the filter paper using 

acetate buffer and hydrolyzed to free forms with a reported >90% recovery. Creatinine was 

measured in duplicate using a conventional colorimetric (Jaffe) assay. Conjugated hormones 

were extracted (C18 solid phase extraction), hydrolyzed by Helix pomatia and derivatized prior 

to injection (GC–MS/MS) and analysis. The mean inter-assay coefficients of variation were 

7.4% for E2, 14.9% for αPg, and 13.6% for βPg. The mean intra-assay coefficients of variation 

were 7% for E2, 12% for αPg and 12% for βPg. Sensitivities of the assays used were as follows: 

E2 and αPg, 0.2 ng/mL; βPg, 10 ng/ mL. Samples were examined with respect to a standard 

curve for expected range of concentrations and controls, and results were further normalized to 

creatinine in the samples.  

Biological Rhythm Analysis. Potential changes to circadian power of skin temperature (mean 

power per minute within the 23–25 h band) were assessed. Wavelet Transform code was 

modified from the MATLAB Jlab toolbox and from Dr. Tanya Leise59 in MATLAB 2022b. In 

contrast to Fourier transforms that transform a signal into frequency space without temporal 

position (i.e., using sine wave components with infinite length), wavelets are constructed with 

amplitude diminishing to 0 in both directions from center. This property permits frequency 

strength calculation at a given position. Wavelets can assume many functions (e.g., Mexican hat, 

square wave, Morse); the present analyses use a Morse wavelet with a low number of oscillations 

(defined by β and γ), as in previous studies.59,60 Morse Wavelet parameters of β = 5 and γ = 3 

describe the frequencies of the two waves superimposed to create the wavelet, as in previous 

studies.25,61 This low number of oscillations enhances detection of contrast and transitions.  

Hormone Data Analysis and Temperature Comparisons. Hormone data was analyzed over the 

last 10 days leading up to labor. Datasets with only one data point were removed (n=2). Data 

were linearly interpolated, and normalized using the MATLAB function “normalize”, which 

ignored NAN values. Hormonal data were then compared to temperature metrics by individual 

and in aggregate. For the purposes of gross temperature and hormone data comparison, 
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participants were labeled as trending up or trending down. Trending up was defined as someone 

whose 72-hour smoothed temperature time series sloped up over the last 10 days of pregnancy. 

Trending down indicates that smoothed temperature sloped down over the last 10 days of 

pregnancy. Temperature time series from participants who did urine sampling and experienced 

spontaneous labor (n=18) were divided into increasers and decreasers, and hormone time series 

were plotted between the two. 

Standard Statistical Methods Comparing between Spontaneous and Induced/Pr-elabor 

Cesarean. Sample demographic and clinical characteristics were compared between the group 

experiencing a spontaneous labor to those undergoing labor induction or a prelabor Cesarean 

birth. We used bivariate parametric and non-parametric tests as indicated. For hormone and 

temperature time series features, values are reported as mean ± 95% confidence interval (C.I.). 

For statistical comparisons of temperature features, Friedman’s tests (non-parametric repeated 

measures ANOVAs) were used to assess differences between time series of spontaneous and 

induced labors. Kruskal Wallis (KW, nonparametric ANOVA) tests were used for comparisons 

of individual means by group, as indicated. Trends over time were assessed using Mann-Kendall 

tests. For Friedman’s and KW tests, χ2 and p values are listed in the text. Figures were formatted 

in Microsoft PowerPoint 2023 (Microsoft Inc., Redmond, WA) and Adobe Photoshop CS8 

(Adobe Inc, San Jose, CA). 

Labor Prediction Methods  

Participant inclusion criteria. Figure 2 details an overview of participant breakdown for model 

development. Of the total 127 participants enrolled 7 were lost to follow-up. Of the remaining 

120 participants, 71 gave birth spontaneously, 45 had to be induced and 4 underwent Cesarean 

without labor onset. The model was trained on the spontaneous (including spontaneous labor 

with augmentation) group for which we knew the actual date and time of labor onset, unlike the 

non-spontaneous group. From the spontaneous group 17 participants were dropped for one of the 

following reasons (a) less than 21 days of contiguous skin temperature data prior to labor, (b) 

less than 75% data density, which is defined as a ratio that indicates the total missing skin 

temperature data in days due to non-wear and dead battery. Following the same criteria for non-

spontaneous (except replacing labor day with induction or Cesarean day), 12 participants were 

eliminated from that group, including 1 Cesarean.  
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Figure 2. Diagram of Biological Rhythms Before and After Your Birth (BioBAYB) study 

participants through data cleaning stages and final analytic groups for training and cross-

validation of the Auto Encoder Long-Short Term Memory model. 

Data Preparation for Deep Learning. For all the participants, per-minute temperature data were 

averaged over a 5-minute window and segmented into 24-hour periods starting at 10 am each 

day, (Supplemental Figure 1). Next, sections of temperature data associated with non-wear, i.e. 

data collected when the user removed the ring were isolated and removed using the labelled 5-

minute activity data obtained from the ring. Next, we used linear interpolation method to account 

for the missing and non-wear temperature data segments. Linear interpolation performed better 

than other interpolation methods such as – polynomial, cubic-spline, and inverse distance 

weighting in accounting for missing data.   

AI Model Problem Definition. Our model was formalized as a non-linear approximator  𝐹: 𝑌𝑘 =
𝐹(𝑇𝑘, θ)  +  δ . Given the input sequence of daily temperatures, 𝑇𝑘 = {𝑇𝑘−1, 𝑇𝑘−2, 𝑇𝑘−3 … 𝑇1} 

starting from the 𝑘𝑡ℎ day of gestation where 𝑇𝑘 is a sequence of aggregate 5-minute 

temperatures for that day, our model is represented by a set of trainable parameters θ, and 

predicts a value 𝑌𝑘 that indicates number of days until labor relative to current gestational age 𝑘. 
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δ represents the parameters of regularization employed to avoid model over-fitting. We train the 

model using an autoregressive approach, commonly used in time-series forecasting problems, 

where we predict days until labor (at 𝑘𝑡ℎ day of gestation) using only skin temperature data from 

the past. We find model 𝐹 over the space of all non-linear models that minimizes the Mean 

Absolute Error (MAE) objective function ∑|𝑦𝑘 − 𝑦k̂|/𝑁 for all training subjects 𝑁, where 𝑦k̂ is 

the predicted days until labor and 𝑦𝑘 is true days until labor at a gestational age of 𝑘. As deep 

neural networks (DNN’s) are highly effective universal non-linear approximators, we chose to 

use a combination of convolutional autoencoders (AE) coupled with a long short-term memory 

(LSTM) network to train model parameters θ and δ. 

Auto Encoder Architecture. Autoencoders are excellent at converting input data from the feature 

space to latent space,62 reducing data dimensionality and in the process automatically reducing 

noise63 in the data. For our analysis, we developed a convolutional AE which uses convolutional 

layers as the basic building blocks. The AE is a special type of DNN which is trained to 

reconstruct its input data from a compressed latent representation. For example, in our case it 

first encodes the daily skin temperature data to an encoded latent representation, then decodes 

the latent representation back to daily skin temperature data while minimizing the reconstruction 

error. The encoder part of the AE generated a 64-dimensional latent space representation of the 

daily temperature data which was then used as the input for the LSTM. The daily temperature 

data from the same participant were treated as independent data points and the AE was trained on 

a total of 3000 daily temperature data points. The detailed architecture of the convolutional AE is 

summarized in Supplemental Figure 2. The AE was able to reconstruct the daily temperature 

data from the encoded representation with a mean error of 1.48℃. 

Figure 3. AE-LSTM Model Architecture Extracts Temperature Features Relevant to Labor. 

 

Figure 3. Contiguous daily skin temperature data is fed into a convolutional autoencoder, which 

outputs an encoded representation of length 64 for each day. Heatmaps depict the actual encoded 

representation of sample days of data. These are then fed into an LSTM (Long-Short Term 

Memory) in an autoregressive fashion to obtain a "days until labor onset" values relative to the 

current gestational age. 

Model Cross-validation and Evaluation. We used a subject-oriented approach to evaluate our 

model, where a participant’s data is wholly used either for training or testing. To evaluate the 
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performance of all our models and methods, we employ a k-fold cross validation method, where 

we split the participants into k folds. We train the model using k-1 folds of data and test the 

model performance on the held-out kth fold. We used k=9 which gave us 6 participants per fold. 

This process is repeated k times until each fold has served as the test dataset at least once. 

Subject-wise cross validation is a more effective way of evaluating model performance as it 

ensures that the model does not see any part of the test participants’ physiological data during 

training, and it also improves generalization to new participants’ data. As we are dealing with 

time series data, the performance metrics are evaluated as a function of time. We compute the 

mean difference and absolute mean difference of model prediction to the ground truth at a 

specific point in time and report the errors across time. We assess the AE-LSTM model 

performance by evaluating the mean absolute error in predicting labor onset relative to current 

gestational age with the true labor onset. We established valid prediction baselines based on the 

current standard using EDD and compared the AE-LSTM performance to the baseline models. 

To better interpret the model’s performance clinically, we considered all model predictions that 

go past the actual date of labor as negative (i.e., false-negative; the mother delivered earlier than 

predicted), and all predictions that were earlier than the date of labor as positive (i.e., false-

positive; the mother delivered later than predicted) (See Figure 6, Table 3). 

Converting prediction out from AE-LSTM to labor window. To improve clinical interpretation, 

we converted the predicted value returned by AE-LSTM (�̂�𝑇) at time 𝑇 (days until labor) into 

window [𝑊1, 𝑊2], such that model prediction falls within it (𝑊1 ≤ 𝑌�̂� ≤ 𝑊2) with a given 

probability 𝑃. This was achieved by converting the discrete prediction errors (MAE) for all 

participants during cross-validation across all folds at each time point 𝑇 into a distribution 𝐸(𝑇) 

by calculating a Kernel Density Estimate. We tested 𝐸(𝑇) for normality using the Shapiro-Wilk 

test. With 𝐸(𝑇) modeling a normal distribution with mean �̂�𝑇, the area under the KDE curve 

between bounds (ϵ1, ϵ2) then gave us the probability 𝑃 of model error lying between them. We 

calculated the window bounds as 𝑊1 = �̂�𝑇 − ϵ1, 𝑊2 = �̂�𝑇 + ϵ2 for a given probability 𝑃 ∈
{0.7, 0.8, 0.9, 0.95} and reported the window size |𝑊| = |𝑊1| + |𝑊2| across �̂�𝑇 within which the 

prediction was likely to fall. We define this window as W(P)T. 

Prediction of future labor onset for participants with induced labors or pre-labor Cesarean 

birth. Labor induction may occur for many reasons and involves use of medications or 

mechanical devices to stimulate uterine contractions and cervical dilation. We chose to evaluate 

this non-spontaneous (exogenous) form of labor onset (or lack of labor for cases of pre-labor 

Cesarean) with the hypothesis that accuracy of predictions would be lower in this cohort. A 

model that performed with equal accuracy in pregnancies that entered labor naturally, compared 

to those that had an induction or Cesarean, would not likely be identifying features relevant for 

the physiological onset of labor. Separately, in this framework, induced pregnancies were 

interpreted as, “less ready for labor,” even at a late gestational age in comparison to individuals 

undergoing spontaneous labor. Therefore, we evaluated whether or not our predictions tended to 

fall later than actual induction within the induced cohort. Second, we evaluated whether induced 

labors’ prediction errors exhibited higher variability, as on average the physiological trajectory 

of the induced or complicated pregnancy should be different than the spontaneously laboring, 

healthy pregnancy. 
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Results 

Sample Description. A total of 91 individuals were included. Spontaneous onset of labor 

occurred for 54 (59.3%) participants at a mean (standard deviation) gestational age of 39.9 (1.1) 

weeks and a range of 37.4 – 41.9 weeks, compared to mean of 39.5 (1.2) and a range of 36.1- 

41.2 among non-spontaneous labors/births. Mean gestational age did not differ between groups, 

nor did maternal age, EDD assignment method (ultrasound versus last menstrual period date), 

educational level, self-reported race or ethnicity, or sex of the infant. Seven participants (7.7%) 

reported developing gestational hypertension after enrolling in the study. Only one preterm birth 

was reported among labor induction group for an obstetric complication. Seven labor inductions 

were performed for pre-labor spontaneous rupture of membranes without a clear indication of 

labor starting at the time of induction, thus these individuals were categorized as labor induction 

and data was not used for training the model. For the other 33 labor inductions, 7 (21.2%) were 

attributed a post-dates pregnancy (i.e., passing the due date), 5 (15.2%) due to a medical 

complication, 10 (30.3%) indicated there was a fetal health indication and 4 (12.1%) chose a 

labor induction for convenience or other non-medical reason. (Table 2). 

Table 2. Demographic and clinical features of BioBAYB participants by onset of labor 

(N=91). 

  Labor Group 

 Total Planned Cesarean or 

Induced Labor 

Spontaneous 

Labor 

N 91 (100.0%) 37 (40.7%) 54 (59.3%) 

Maternal age, mean (SD) years 32.3 (3.5) 32.2 (3.3) 32.4 (3.6) 

Gestation at enrollment, mean (SD) weeks 30.2 (2.8) 29.9 (3.0) 30.4 (2.7) 

Gestation at birth, mean (SD) weeks 39.7 (1.1) 39.5 (1.2) 39.9 (1.1) 

Weight of newborn, mean (SD) lbs 7.7 (1.0) 7.4 (1.0) 7.9 (1.0)* 

Pre-pregnancy BMI, mean (SD) kg/m2 23.8 (4.0) 24.7 (4.6) 23.1 (3.4) 

Method for determining EDD  

Last menstrual period 

Ultrasound before 12 weeks 

Ultrasound after 12 weeks 

Conception date 

 

69 (76.7) 

16 (17.8) 

4 (4.4) 

1 (1.1) 

 

27 (75.0) 

8 (22.2) 

1 (2.8) 

 

42 (77.8) 

8 (14.8) 

3 (5.6) 

1 (1.9) 

Parity    

Nulliparous 48 (52.7%) 25 (67.6%) 23 (42.6%)* 

Multiparous 43 (47.3%) 12 (32.4%) 31 (57.4%) 

Educational Level    

High school graduate 2 (2.2%) 0 (0.0%) 2 (3.7%) 

Some college 3 (3.3%) 3 (8.1%) 0 (0.0%) 

College graduate 43 (47.3%) 15 (40.5%) 28 (51.9%) 

Graduate/Masters 32 (35.2%) 15 (40.5%) 17 (31.5%) 

Doctorate/professional degree 11 (12.1%) 4 (10.8%) 7 (13.0%) 

Self-reported race/ethnicity    

White/European, non-Hispanic 77 (85.6%) 31 (86.1%) 46 (85.2%) 

Black / African, non-Hispanic 1 (1.1%) 0 (0.0%) 1 (1.9%) 

Hispanic 5 (5.6%) 2 (5.6%) 3 (5.6%) 

Asian 7 (7.8%) 3 (8.3%) 4 (7.4%) 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 27, 2024. ; https://doi.org/10.1101/2024.02.25.24303344doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.25.24303344
http://creativecommons.org/licenses/by-nc-nd/4.0/


Sex of infant (at enrollment)    

Male 37 (40.7%) 19 (51.4%) 18 (33.3%) 

Female 36 (39.6%) 14 (37.8%) 22 (40.7%) 

Unknown 18 (19.8%) 4 (10.8%) 14 (25.9%) 

Location of birth    

Hospital 79 (86.8%) 37 (100.0%) 42 (77.8%)** 

Home 7 (7.7%) 0 (0.0%) 7 (13.0%) 

Birth center, non-hospital 5 (5.5%) 0 (0.0%) 5 (9.3%) 

Labor Progress    

Spontaneous onset and progress 34 (37.4%) 0 (0.0%) 34 (63.0%)*** 

Spontaneous onset/ augmented  20 (22.0%) 0 (0.0%) 20 (37.0%) 

Labor induction 34 (37.4%) 34 (91.9%) 0 (0.0%) 

Cesarean birth pre-labor 3 (3.3%) 3 (8.1%) 0 (0.0%) 

Mode of birth    

Vaginally 72 (79.1%) 27 (73.0%) 45 (83.3%)* 

Vaginally with vacuum or forceps 4 (4.4%) 0 (0.0%) 4 (7.4%) 

Cesarean 15 (16.5%) 10 (27.0%) 5 (9.3%) 

Postpartum hemorrhage 7 (7.7%) 3 (8.1%) 4 (7.4%) 

Hypertension during pregnancy 7 (7.7%) 4 (10.8%) 3 (5.6%) 

*= p <0.05, ** p<0.01, ***p< 0.001, BMI, Body Mass Index; EDD, Estimated Date of Delivery.  

Hormone metabolites link the mechanisms of labor onset to skin temperature. Spontaneous 

labors exhibited decreasing temperature (Figure 4A), circadian power (Figure 4B), and 

normalized α-Pregnanediol (Figure 4C) in the week prior to labor onset (median Mann-Kendall 

p=7.41*10-8, p=5.57*10-9, p=0.028; respectively). Although the typical spontaneous trend was 

decreasing temperature prior to labor, not every individual exhibited this trend (data not shown). 

α-Pregnanediol concentration in the week prior to labor onset differed by whether or not 

individuals exhibited downward sloping (grey, n=10) or showed no trend/upward sloping (black, 

n=8) temperature across that window, with those with in the falling temperature group trending 

toward lower median α-Pregnanediol (Figure 4D) (p=0.045). Temperature levels and hormone 

concentrations revealed additional differences between spontaneous and induced labors. 

Spontaneous labors exhibited colder temperatures by an average of 0.4 ºC (Figure 5A) and 

greater circadian power (Figure 5B) (Friedman’s χ2=346, 240; p=1.7*10-59, 4.12*10-38, 

respectively). Finally, spontaneous labors exhibited a greater mean ratio of estriol to α-

Pregnanediol across this window (a previously hypothesized marker of successful labor64) (KW 

χ2=14.3, p=2*10-4) (Figure 5C). Taken together with the downward trend of temperature and 

pregnanediol in anticipation of labor, these data support that spontaneous labors studied here 

may be in a later “physiological” stage of pregnancy and that this state is observable via body 

temperature. Together, thermoregulation and hormonal state appear to undergo related changes 

in preparation for labor. 
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Figure 4. Temperature, Temperature Circadian Power, and αPregnanediol Exhibit Parallel 

Decreases Approaching Labor. 

Figure 4.  Temperature level (A) 

and circadian power (C) parallel 

pattern of α-Pregnanediol (B) in the 

10 days prior to labor onset. (D) α-

Pregnanediol is reduced in 

individuals that exhibit falling 

temperatures in the 10 days prior to 

labor onset (D, gray line), as 

opposed to those who exhibit rising 

temperatures across that window 

(D, black line). Symbols: # 

indicates statistical Mann-Kendall 

trend over time in the week prior to 

labor; * indicates statistical 

difference between α-Pregnanediol 

in pregnancies with and without 

decreasing temperature in the week 

prior to labor. All solid lines are means and all error bars represent ± 95% C.I. 

Figure 5. Spontaneous Labors Exhibit Lower Temperatures, More Stable Circadian 

Rhythms, and Greater E3:αPregnanediol Ratio.  

 

Figure 5. A). Body temperature in spontaneous (blue) and induced (red) labors. B). Wavelet 

circadian power is greater in spontaneous (blue) pregnancies. D) Spontaneous labors exhibit a 

greater ratio of E3: α-Pregnanediol. All solid lines are means and all error bars represent ± 95% 

C.I. 

AE-LSTM Model Accurately Anticipates Spontaneous Labor Onset. Model signed mean error 

decreased in participants who went on to spontaneously start labor from 40 to 25 days to labor 

onset after which it varied between 0 to 2 days (Figure 6A, blue). This error rate was not 
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dependent on gestational age in spontaneous labors (n.s. Mann Kendall) (Figure 6B, blue and 

was lower than the clinical due date error of 12 days for the population at all time points. 

Average signed error rate was greater in pregnancies with induced labors (Figure 6A and B, 

red), and trended downward with advancing days toward induction as well as with advancing 

gestational age (Mann Kendall p<0.001). Average signed error reached its minimum value and 

minimum variability for spontaneous labors at 1 week prior to labor onset with a mean (SD) of -

0.3 (2.1), as compared to -2.8 (6.7) days for inductions. Error skewed 2 days late in spontaneous 

labors, on average, versus 10 days late for labor inductions across the entire prediction window. 

Mean signed prediction error by individual ranged widely between the groups, with induced 

labor ranging over 25 days of error and spontaneous labor ranging over 10 days. 

Scatters of actual gestational age at delivery versus predicted gestational age at delivery at 1 

week prior to labor onset for all participants illustrate increased prediction accuracy in 

individuals who had spontaneous labor (linear model fit R2=0.93, AIC = -134) (6C, light blue 

dots). By contrast, scatter of actual gestational age at induction relative to predictions made 1 

week prior to induction reveal reduced accuracy (R2=0.68, AIC=-8.81) (6D, bright red dots). 

Moreover, data illustrate lower individual SD of prediction accuracy over the last month of 

pregnancy (6C, dark blue shaded region diameter), as compared to the larger SD of induced 

predictions (6D, dark red shaded region diameter). Data for the 3 planned Cesarean births are 

visualized (6D, orange dots), with error and error variability comparable to inductions (error at 1 

week prior to labor of -7.3, 4.9, and 2.3 days, respectively; SD= 6.5 days, error range = 36 days 

over month prior to delivery). Together, these findings support that induced labors may be less 

physiologically ready for labor, that it is more difficult to generate consistent predictions about 

their pregnancy progression, and that in the absence of labor readiness, advancing gestational age 

(as measured via advancement across the temperature time series) may be a salient predictor of 

approximately when labor should occur. 
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Figure 6. AE-LSTM Predicts Spontaneous Labor Onset With < 2 Days of Error in the Last 

8 Days of Pregnancy. 

 

Figure 6. AE-LSTM Predicts Spontaneous Labor Onset With < 2 Days of Error in the Last 

8 Days of Pregnancy, Independent of Gestational Age. (A). Spontaneous model error in days, 

± 95% C.I. for the population for predictions generated each day. # Indicates statistical Mann-

Kendall trend over time. Error decreases statistically across the window from labor -40 days to 

the day before labor onset. Gray dashed line indicates population mean error in days for the 

traditional due date based on last menstrual period. Gray solid line marks 0 days error. (B). 

Spontaneous model signed error in days. ± 95% C.I. for predictions generated at each gestational 

age indicates that spontaneous model performance (blue) does not vary statistically by 

gestational age at prediction. (C). Spontaneous labor error is lower and less variable than induced 

error across gestational ages, compared to Induced error (D). Spontaneous data are plotted in 

blue; induced data are plotted in red. Three available Cesarean births are shown in orange. 

Transparent circle diameter is proportional to that individual’s signed model error across the 

month prior to labor onset, whereas the solid center circle represents the minimum model error 

for that individual.  
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Distribution of Error Across Cross-Validation Folds at 7 Days. We choose 7 days before as a 

representative cross-section to showcase model error across various folds during cross-

validation. Table 3 shows an overview distribution of model error across all folds for 7-day 

cross-section, with each fold containing 6 participants that underwent spontaneous labor. The 

overall error across all folds at 7 days was μ=-0.08, α=1.63 days. We observed an overall closely 

clustered error distribution across all folds. Folds 1 showed the largest mean error of -1.93 days 

followed by fold 2. While fold 5 showed the smallest mean error of -0.17, it also showed a wider 

spread of error distribution α=2 days greater than any other fold.  

Table 3 - Distribution of error for each fold at 7 days prior to true labor during model 

cross-validation. 

Folds 1 2 3 4 5 6 7 8 9 

Errors 

(days) 

-1.93 

±1.8 

-1.27 

±1.1 

-0.92 

±1.14 

-0.73 

±0.7 

-0.17 

±2 

0.3 

±1.6 

-0.34 

±1.25 

0.86 

±1.22 

0.65 

±1.32 

Clinical Interpretation, Positive and Negative Predictive Measures. While the DNN model has 

been formulated to output a single “days until labor” value, the MAE (difference between true 

and predicted) error used to measure model accuracy cannot be easily converted into clinically-

meaningful measures for model positive and negative predictability. To aid clinical interpretation 

we introduced the concept of a prediction window 𝑊(𝑃)𝑇 derived from the error distribution of 

the model at time 𝑇 with a given probability 𝑃. Table 3 gives an overview of model validation 

using a predictive labor window 𝑊(𝑃)𝑇 with 𝑃 ∈ {0.7, 0.8, 0.9, 0.95}  and 𝑇 ∈ {7, 10}. The 

corresponding window sizes |𝑊| for 𝑇 = 7 where {3.7, 4.6, 6.0, 7.1}; at 𝑇 = 10 where 

{6.2,7.4,9.2,10.4} days respective for each value in 𝑃. Given the limited sample size of our 

cohort we used all participants with a spontaneous birth for this analysis (N=54). We define true 

positive (TP) as the number of participants (N) whose labor correctly started within the window 

predicted by the model. False Positives (FP) are defined as those participants whose labor 

occurred after the model prediction window. For these individuals the model falsely predicts 

their labor to start in an earlier window as compared to true labor. We argue that this has a lesser 

impact on patient risk (they prepare earlier for labor to start if following model prediction 

window) when compared to False Negatives (FN). We defined false negatives as those 

participants who go into labor before the predicted labor window by the AE-LSTM models. 

These participants would potentially be unprepared for labor if following model predictions. For 

both FP and FN we also report by how much time (days) the model prediction missed the true 

labor. This is calculated as the difference between true labor and edge of the prediction window 

(right edge for FP, left edge for TP). This is indicated by “False Positive Window Days” and 

“False Negative Window Days” respectively in Table 3. We observe that our model can predict 

with a 79% TP, 18.8% FP and a small 1.8% FN rate 10 days prior to actual labor when given a 

window size of 7.4 days. Naturally increasing the window size, also increases our TP, and 

reduces both FP and FN, however a larger window size (ex: |W|=9.2, TP=96%) may not give 

pregnant mothers enough specificity to plan for labor. Similarly, we see a TP=79%, FP=15%, 

FN=5.6% when using a 4.6-day predictive window, 7 days prior to true labor.  
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Table 4. Model Prediction Accuracy Windows in Spontaneous Labor 

Prediction made 

True Positive 

Labor occurred within the 

window.  

False Positive Window 

Labor occurred after the 

prediction window 

False Negative Window 

Labor occurred before 

the prediction window 

Days to 

Labor 

Onset 

Prediction 

Window |W| 

(days) 

n (%) n (%) 

False Positive 

Window 

Days mean 

±SD 

n (%) 

False Negative 

Window Days 

mean ±SD 

-10 days 

6.2 36 (67) 13 (24.5) 1.0 ±0.6 4 (7.5) 0.6 ± 0.5 

7.4 42 (79) 10 (18.8) 0.6 ±0.5 1 (1.8) 0.9 ± 0.0 

9.2 51 (96) 2 (3.7) 0.5 ±0.4 0 (0) NA 

10.4 52 (98) 1 (1.8) 0.3 ±0.0 0 (0) NA 

-7 days 

3.7 40 (75) 9 (16.9) 0.9 ±0.6 4 (7.5) 0.8 ± 0.6 

4.6 42 (79) 8 (15.0) 0.5 ±0.5 3 (5.6) 0.7 ± 0.5 

6.0 49 (92) 3 (5.6) 0.5 ±0.4 1 (1.8) 0.5 ± 0.0 

7.1 51 (96) 2 (3.7) 0.2 ±0.1 0 (0) NA 

 

Figure 7. Graphical Summary of AE-LSTM model with labor predictions in a future window of 

time relative to true labor onset. A) at 10 days prior to labor onset, the model predicts a window 
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of 7.6 days that accurately included true labor date in 79% of the sample. The window was 

before true labor 18.8% of the time with a mean (SD) of 0.6 (0.5) days away from labor onset. 

Conversely the predictions resulted in a false negative in 1.8% of cases (n=1) in that labor 

occurred prior to the predicted window to occur 0.9 days after labor actually started. B) 

Illustrates that at 7 days prior to labor, the window shrinks to a smaller range of days with similar 

rates of accurate prediction.  

Discussion 

The purpose of this study was to examine the feasibility of using continuously measured skin 

temperature to predict the onset of human parturition. We observed a common reduction in 

finger temperature of ~ 0.5° C in the week prior to labor onset comparable to those occurring in 

other species (Table 1).  In addition, we observed a reduction in the amplitude and stability of 

daily temperature rhythms, which appears to also occur in rodents39 and cows.8 We further 

related changes in the patterning of continuous body temperature to known hormonal changes 

preceding labor, suggesting that changes in thermoregulation reflect changes in hormonal state, 

as in other phases of female reproductive life.11,12  

Notably, the present study demonstrates that applying deep learning techniques to continuous 

body temperature data enables accurate prediction of the day of labor onset. Our final model 

predicted labor onset 1 week prior to labor with an average signed error of <1 day, and a 79% 

certainty window of 4.6 days. As expected, we found that model error was greater in induced 

labors/planned Cesarean births, for which date of labor onset was not as related to the 

individual’s physiology but instead a product of complications, late gestational age, or a 

scheduled convenience. Indeed, it is likely that many induced labors would have begun naturally 

days after the induction was scheduled. In agreement with this, we observed that one prominent 

feature of approaching labor, lower body temperature, was not as low in induced labors, 

suggesting that induced pregnancies may be at a physiologically earlier state of development on 

average. We also observed that our predictions in induced labors tended to be late: induction 

occurred prior to when the model expected the mother to labor physiologically. However, the 

need for induction of labor in many cases indicates that pregnancy was not progressing along a 

healthy trajectory. In line with this, we also observed both more error variability, and reduced 

circadian power, which is typically associated with worse health across a variety of measures.65–

67  Finally, we observed that model error tracked with gestational age in induced labors, as 

opposed to error remaining consistent across gestation prior to spontaneous labors. It is possible 

this indicates that, in absence of normally progressing changes in temperature, gestational age is 

the next most salient “feature” to attend to. Together, we propose that the combination of the 

dense physiological time series with the novel modelling approach enabled the application of an 

animal husbandry technique to the complex world of human pregnancy.  

We recently demonstrated that daily metrics of average autonomic activity, physical activity, and 

sleep (including a single derived metric of body temperature) are useful in anticipating if labor 

onset will occur prior to or following a traditionally derived due date.55 Among these outputs, 

temperature provided the greatest contribution to the model. Although we were not able to find 

recent other recent studies of human temperature in labor prediction,52 a research group 

recently68 demonstrated decreases in physical activity with advancing gestational age, and an 18-
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participant cohort study demonstrated decreases in HR and increases in HRV in the third 

trimester.69 Although more human studies are needed, these results build on a wealth of animal 

literature demonstrating unique decreases in temperature prior to parturition, and numerous 

efforts to identify features indicative of imminent labor, ranging from simple thresholds43 to 

machine learning approaches similar to the present study.70 These low error rates, if confirmed in 

a larger clinical trial, would constitute a substantial improvement in pregnancy monitoring, and 

greatly improve families’ and clinicians’ ability to plan for the impending birth. To our 

knowledge, this is the first attempt to utilize continuous temperature alongside clinical and 

hormonal data for the purposes of anticipating labor onset in human pregnancy. 

Variability in Gestational Length. Interestingly, as gestation length varies fairly widely in 

humans, it is also unknown how far in advance the maternal and fetal bodies program labor and, 

accordingly, how far in advance it is possible to anticipate labor using any physiological signal. 

Some non-modifiable factors impacting gestational length include the shorter gestation of female 

fetuses71 and longer pregnancy in older or nulliparous women.50 There is also evidence that 

individuals who tend to have postdate, or preterm pregnancies will have a recurrence in 

subsequent pregnancies — suggesting a genetic effect on length of gestation.71 Indeed, each 

individual pregnancy is also an adaptive process. Labor onset timing may be influenced by local 

factors including infection exposure,72 stress,73 activity,74 maternal characteristics (body 

habitus75–77 or auto-immune diseases78) and timing of light exposure.79 The fetal CNS and 

adrenal maturation likely play a significant role, and are influenced in-part through placental 

hormonal production (CRH, estriol, progesterone), sterile inflammation,80,81 pro-inflammatory 

cytokines and prostaglandins (reviewed in32,82). Each of these changes may affect maternal 

physiological adaptation and time series. Complexity in the portrait of human labor physiology is 

likely due to overlapping mechanisms that may manifest different patterns person-to-person. As 

a result, any single feature of body temperature (or other vital sign) is likely insufficient for 

predicting human birth. Regarding temperature time series, which attributes of signal change are 

relevant to impending labor, and which are random in a population is something deep learning 

models are designed to determine. 

There are currently no reliable methods for clinical prediction of human labor. The current 

clinical estimate of delivery, the EDD, has an average error rate measured in weeks rather than 

days.50 The duration of ‘term’ pregnancy spans 5 weeks - from 37 to 42 weeks. There are no 

tools to help guide clinicians or pregnant individuals to predict if a pregnancy is likely to begin 

on the earlier or later side of this range. Preterm birth prediction remains elusive as well, though 

new tools are emerging using ML driven methods multi-omic data.83,84 A biomarker currently in 

use is the measurement of fetal fibronectin85 from a swab of the posterior fornix with a speculum 

examination. This is sometimes used in conjunction with ultrasound examination of cervical 

length.86 However, fetal fibronectin has a poor positive predictive value, and is only indicated in 

the presence of symptoms or risk factors—in addition to requiring a clinical encounter and 

discomfort with an internal examination which may be a barrier to timely assessment.  

Presently, individuals are told to report symptoms of labor itself, which requires distinguishing 

vague symptoms of discomfort from true labor and yields high false-positive responses.87,88 

Unfortunately, overt advanced symptoms of labor can occur without warning. This does not 

afford adequate time to intervene in the setting of preterm labor, may lead to unplanned home 
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birth, or prompt recommendations for earlier labor induction when the uncertainty of waiting for 

labor is too high (e.g., living far from a hospital, if other obstetric complications are emerging). 

An accurate predictor a week or more in advance would allow clinicians and mothers to make 

care plans for the safest possible birth outcomes before labor starts. 

Considerations for future model development. The analyses presented here are a first attempt to 

combine machine learning and continuous skin temperature to anticipate labor in humans, 

alongside hormonal time series to validate the physiological basis of our findings. However, 

many challenges remain before such a model would be performant in a different, real-world 

cohort including pregnancies with more co-morbidities (e.g., gestational diabetes), those at risk 

for preterm birth, and a wider sociodemographic sample. Further validation will be necessary to 

determine how hormonal and temperature patterns differ depending on health risk-factors, and 

separate models may be needed to accurately make predictions in these mothers. Continuous 

data-based approaches are also hindered by the requirement to wear a device, such as a ring or 

bracelet, continuously. Large gaps in data will impact accuracy, and therefore limit the approach 

to those individuals willing and able to obtain, charge, and consistently wear a smart device. 

Future research is needed to determine the tolerance of this modeling approach to data gaps or 

data interpolation of more than a few hours. 

Conclusions 

Continuous body temperature can be applied to anticipate labor onset with greater accuracy than 

the clinical standard. An AE-LSTM approach can extract relevant features of body temperature 

for accurate labor onset prediction from data across the third trimester. Features of temperature 

patterning, including temperature level and biological rhythms are correlated with changes in sex 

steroids over the final week of gestation. Future study of a larger population, including in high-

risk pregnancies, will determine the broad clinical applicability of this approach. 
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Supplemental Figures  

Supplemental Figure 1. Data Preprocessing and Cleaning 

 

Supplemental Figure 1. Pre-Processing and Cleaning: data ingestion (A) and pre-processing 

pipelines (B). A): De-identified biomarker data from Ouraring, including high fidelity 

temperature and IBI are ingested into a campus secure Amazon Web Services (AWS) S3 bucket 

indicated by (1). Data is then parsed to generate structured schema, table meta-data in AWS glue, 

and participant partitions (to accelerate querying of per minute temperature data). These are then 

fed into a serverless querying solution provided by AWS Athena as shown by (2). B) We pass 

the raw minute temperatures from the device through pre-processing steps. First, we average the 

raw values over a 5-minute window, segment it into 24-hour periods starting at 10am each day, 

which allows the neural network model to learn from daily patterns (both day and night 

variation). Next, we remove data collected by the ring during non-wear time by using the 5 min 

activity labels provided by the ring, indicating wear/non-wear. Finally, we employed linear 

interpolation to account for missing and non-wear daily data. The final output is fed to a DNN 

model.  
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Supplemental Figure 2. Autoencoder Structure 

Supplemental Figure 2. Auto encoders are divided into 2 parts – encoder and decoder. The 

encoder is responsible for converting values from feature space to latent space, while the decoder 

is responsible for converting them back to the feature space. AE train in an unsupervised setting 

where the object loss function MAE, measures the loss of reconstructing the original signal from 

the latent representation. In the encoder part of the AE, Input data 𝑻𝒌 of size 288 is fed into a 

series of three convolutional blocks. Each convolutional block comprises of a 1-D convolutional 

layer coupled with a max-pooling layer that enables reduction in data dimensionality. Output 

from the final convolutional layer is flattened and fed into a dense fully connected layer to 

produce the encoded representation. The decoder is a mirror image of the encoder. In the case of 

the decoder, the max-pooling layer is replaced by an up-sampling layer that gradually increases 

the dimensionality back to the original feature space. 
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Supplemental Figure 3. Long Short-Term Memory Model Structure 

 

Supplemental Figure 3. LSTM Stage (establishing the sequential relation): The LSTM model 

takes a sequence of 64-dimensional encoded vectors that represent daily skin temperature as 

input, and outputs days till labor relative to the current gestational age. We use zero-padding to 

conform the input sequences to a uniform length and the masking layer excludes zero values 

during analysis. The output of the masking layer is fed into an LSTM layer that is recurrent in 

nature. The LSTM layer has 128 units, and we use tanh as the activation function. We use layer 

normalization102 to normalize each output of the LSTM layer. Layer normalization reduces the 

dependency on batches, improves model performance, and is best suited for sequence-to-

sequence models. Finally, the layer normalized output of the LSTM layer is fed into a dense 

layer with 128 units and linear activation function to output the days remaining to labor relative 

to current gestational age. 
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Supplemental Figure 4. Spontaneous Labors Progesterone and Estrogen Metabolites 

Decrease in the 10 Days Prior to Labor Onset 

 

Supplemental Figure. Group means ± SEM of normalized hormone concentrations in the 10 

days leading up to spontaneous labor onset (n=18). Estrogens, as well as α- and β-pregnanediol 

decreased across the 10 days prior to labor onset (# = p<0.05 in Mann-Kendall trend over time), 

a trend which disappeared or even reversed in the 2 days prior to labor onset (n.s.). 
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