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Abstract

Objectives: Opioid use disorder (OUD) impacts millions of people worldwide. The prevalence and

debilitating effects of OUD present a pressing need to understand its neural mechanisms to provide more

targeted interventions. Prior studies have linked altered functioning in large-scale brain networks with

clinical symptoms and outcomes in OUD. However, these investigations often do not consider how brain

responses change over time. Time-varying brain network engagement can convey clinically relevant

information not captured by static brain measures. Methods: We investigated brain dynamic alterations in

individuals with OUD by applying a new multivariate computational framework to movie-watching (i.e.,

naturalistic; N=76) and task-based (N=70) fMRI. We further probed the associations between cognitive

control and brain dynamics during a separate drug cue paradigm in individuals with OUD. Results:

Compared to healthy controls (N=97), individuals with OUD showed decreased variability in the

engagement of recurring brain states during movie-watching. We also found that worse cognitive control

was linked to decreased variability during the rest period when no opioid-related stimuli were present.

Conclusions: These findings suggest that individuals with OUD may experience greater difficulty in

effectively engaging brain networks in response to evolving internal or external demands. Such inflexibility

may contribute to aberrant response inhibition and biased attention toward opioid-related stimuli, two

hallmark characteristics of OUD. By incorporating temporal information, the current study introduces novel

information about how brain dynamics are altered in individuals with OUD and their behavioral

implications.
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Introduction

Opioid use disorder (OUD) is a chronic condition impacting millions of people globally (1).

Individuals with OUD face increased risks of injuries, incarceration, and premature mortality (2,3). Given

OUD’s profound burden on the individual and the community, there is an urgent need to elucidate its

etiology to develop more targeted preventions and interventions (4).

Recent work using functional magnetic resonance imaging (fMRI) has greatly expanded our

understanding of OUD (5–7). Task-based fMRI collected during drug cue and response inhibition

paradigms has been widely utilized to investigate OUD’s neural mechanisms. These studies implicated

the involvement of several canonical functional brain networks, including the default mode (DMN), reward,

and cognitive control networks (5,8–10). Specifically, individuals with OUD expressed hyperactivation in

the striatum, amygdala, and dorsolateral prefrontal cortex (PFC) in response to opioid-related stimuli

(7,11). Anterior cingulate and lateral and medial PFC hypoactivation were additionally observed in

individuals with OUD when the need to suppress automatic response arose (7,12,13).

However, extant fMRI studies adopt a static approach, where brain activity is averaged over a

minutes-long scan. Therefore, these methods are unable to track brain activation fluctuations across time.

How individuals dynamically engage brain networks contains crucial information about psychopathology.

Notably, dynamic brain markers reveal insights about clinical symptoms not captured by static brain

measures computed from the average activity patterns over a single scan (14,15). Thus, not considering

the dynamic changes in brain activity over time may contribute to an incomplete understanding of OUD.

To address this gap, we leveraged a new multivariate computational framework to investigate

brain dynamics in individuals with OUD stabilized on medication for OUD (MOUD). Our framework has

the advantage of simultaneously tracking multiple brain states (i.e., recurring brain activation patterns) at

the resolution of individual time points. As brain states can overlap temporally (16,17), examining multiple

brain states concurrently addresses the caveat of potentially neglecting less dominant brain states with

important behavioral relevance. A helpful analogy to consider here is color (Figure 1). If blue

(representing the most dominant brain state) contributes the most to purple (representing a time point of

interest) and only blue is examined, information on how other colors like red (representing the less
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dominant brain states) also contribute to forming purple is lost. This framework allows us to assess

variability in brain state engagement over time by extracting moment-to-moment engagement information

for multiple brain states simultaneously.

Using fMRI data collected during a movie-watching paradigm, we first compared brain state

engagement variability between individuals with OUD and healthy controls (HCs). Naturalistic stimuli

closely mimic the time-varying interactions in real life (18), potentially presenting a more ecologically valid

understanding of brain dynamics in OUD. Increased brain network recruitment variability supports greater

flexibility in addressing current demands (19,20). As decreased cognitive flexibility has been observed in

individuals with OUD (21,22), we hypothesized that they would show decreased state engagement

variability compared to HCs during movie-watching. Next, taking advantage of task-based fMRI’s

increased power in detecting brain-behavior associations (23), we correlated brain dynamics during a

drug cue paradigm with Stroop-assessed cognitive control. We hypothesized that lower variability in the

drug cue paradigm, particularly during rest block, would be associated with worse cognitive control.

Additionally, despite notable sex differences in the mortality rate and risk for OUD (24,25), an

understanding of sex differences in OUD at the neurobiological level is lacking (7). To address this gap,

we explored sex effects on brain dynamics and their associations with behaviors.
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Methods

Participants

Data from two datasets were analyzed. The Yale University Institutional Review Board and the

Yale MRRC Protocol Review committee approved both studies. Informed consent was obtained from all

participants. The OUD sample was recruited as a part of an NIH-funded study from Yale School of

Medicine and the APT foundation (Collaboration Linking Opioid Use Disorder and Sleep). It included

individuals who met DSM-5 criteria for OUD and who were stabilized on MOUD (<24 weeks), an

evidence-based treatment for OUD. Naturalistic and drug cue fMRI data were examined here. During the

6-minute naturalistic paradigm, participants watched three movie clips presented in the same order

without a break (Inside Out, The Princess Bride, and Up). In the drug cue paradigm, participants were

presented with either a rest (a white crosshair presented in the center of a black screen) or a cue block (a

picture showing opioid-related stimuli; e.g., a needle or a bottle of pills). There were nine alternating rest

and cue blocks, each lasting 16 seconds.

HCs from a separate transdiagnostic study were also studied. Participants were only included if

they had no neurological or mental health diagnoses based on the Mini-International Neuropsychiatric

Interview for DSM-5. Naturalistic fMRI data were collected using the same paradigm described above. No

drug cue data were collected from HCs.

FMRI data preprocessing

Detailed acquisition and preprocessing information can be found in Supplementary Materials. In

brief, a standard preprocessing pipeline described in previous studies was applied to the structural and

functional data. Statistical Parametric Mapping (SPM12) performed slice time and motion correction for

both datasets on the functional data. Additional data cleaning was carried out in BioImage Suite.

Covariates of no interest were regressed out, including linear and quadratic drift, white matter,

cerebrospinal fluid, gray matter, and a 24-parameter motion model. The functional data were temporally

smoothed (cutoff frequency around 0.12Hz). A combination of nonlinear and linear transformations

aligned the Shen-268 atlas to the functional data before timeseries data was parcellated.
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Additional quality control included removing participants with mean framewise displacement over

0.2mm, missing time points, or brain coverage (see Supplementary Materials for more details). After

these criteria, 97 HCs (Table 1) and 76 individuals with OUD (Table 1) were included in the naturalistic

fMRI analysis; 70 individuals with OUD with drug cue fMRI data (Table 1) were analyzed.

Brain dynamic measures

We leveraged a new multivariate computational framework to assess brain dynamics at the

whole-brain level (26; Supplementary Materials; Figure 1). Briefly, four recurring brain states were

identified by applying nonlinear manifold learning to task-based fMRI data from the Human Connectome

Project (HCP) dataset (27). These brain states were later characterized as fixation, high-cognition,

low-cognition, and transition based on the task conditions and their associated cognitive load. For

instance, the time points in the high-cognition brain state are from complex cognitive paradigms requiring

higher cognitive load (e.g., working memory, gambling, and emotion). The transition brain state consists

of time points when individuals switched from one task condition to another. The fixation brain state

includes time points where individuals were presented with a crosshair while resting in the scanner

(Supplementary Table 1). The rich HCP dataset allowed us to identify brain states underlying a range of

cognitive processes while circumventing circular analysis. While HCP consists of healthy individuals,

previous work has indicated that similar brain states can be identified in individuals with psychopathology,

suggesting that the way brain states are recruited, instead of the brain states themselves, is more likely to

drive group differences (17,28,29).

Non-negative least squares regression next extended these four brain states to our two datasets,

evaluating each state’s engagement at each time point during both the naturalistic and drug cue

paradigms. Our approach permits temporal overlap in brain states and allows for the joint contributions of

all brain states to a given time point. This flexibility is crucial, as the activation pattern observed at a single

time point might not always match exactly onto a specific brain state. A summary measure was then

extracted for each individual and each brain state by computing the standard deviation of

moment-to-moment engagement across time (i.e., state engagement variability). Variability was

calculated across the entire run for the naturalistic paradigm. As prior work has revealed significant
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differences in variability during rest and task (26), we opted to compute variability within the rest and cue

condition separately for the drug cue paradigm. As a validation analysis, we compared state engagement

variability between conditions in the drug cue paradigm to test whether our brain dynamic measures were

sensitive to changes induced by task demands. The more constrained nature of the cue condition likely

reduces the likelihood of mind wandering. If our measures are sensitive to brain dynamic changes in

response to variations in demand, we may observe lower variability during cue in contrast to the rest

condition.
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Figure 1. Study pipeline. Four recurring brain states were identified using task-based fMRI from the

Human Connectome Project dataset. Based on the prominent task conditions associated with each brain

state, we characterized these four brain states as fixation, high-cognition, low-cognition, and transition

(Supplementary Materials). For example, the fixation brain state mainly includes time points from the

fixation condition across task paradigms. In contrast, the low-cognition brain state consists of time points

from the motor task, the 0-back working memory task condition, and the neutral emotion task condition

(Supplementary Table 1). Moment-to-moment state engagement was assessed in the naturalistic and

drug cue paradigms using non-negative least squares regression. For a given time point, the framework

can assess the engagement (indicated by the beta coefficients) of multiple brain states concurrently. A

demonstrates this process for one example time point of interest. After engagement values are extracted

from all time points, variability is computed as the standard deviation of moment-to-moment engagement

across time. As an example, B shows how variability is computed for the fixation state.

Stroop-assessed cognitive control

We extracted cognitive control measures from a Stroop task to evaluate the behavioral

implications of alterations in state engagement variability. Both accuracy (ACC; i.e., control trial ACC -

incongruent trial ACC) and response time (RT; i.e., incongruent trial RT - control trial RT) interference

scores were computed. Individuals with missing or outlier behavioral scores were excluded. We included
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62 and 61 participants with OUD in the final ACC and RT interference score analysis (see exclusion

criteria in Supplementary Materials), respectively.

Statistical Analysis

Multivariate group differences in state engagement variability during movie-watching were

examined with Hotelling's T-square test. Age and sex were included as covariates. Sex-by-group and

age-by-group interactions were explored. We additionally correlated Stroop interference scores with state

engagement variability during the drug cue paradigm using Spearman correlation. There may be lasting

effects of opioid-related stimuli in the rest block, thereby making this period more sensitive to flexibility in

the brain. To probe this possibility, the first rest block was excluded when computing variability for

consistency since no prior stimuli were presented. We also examined the association between cognitive

control and state engagement variability during the cue condition for completeness. Results for these

analyses were FDR corrected for multiple comparisons.
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Results

Demographic data

Demographic information for healthy controls and individuals with OUD is included in Table 1. All

individuals with OUD were stabilized on methadone and met DSM-5 criteria for either moderate or severe

OUD (see Supplementary Table 3 for additional clinical characteristics). Among individuals included in

the naturalistic paradigm analyses, HCs were significantly younger than individuals with OUD

(two-sample t-test; t(169.49)=-4.472; p<0.001). The two groups did not differ in sex (Chi-squared;

p=0.073).

Characteristic

Naturalistic
paradigm
(HC)

N 97

Self-reported sex
assigned at birth

Female 54

Male 43

Age (years) Mean 31.660

Standard deviation 12.178

Self-reported race Asian 16

Black 23

More than one race 5

Unknown 1

White 52

Naturalistic
paradigm
(OUD)

N 76

Self-reported sex
assigned at birth

Female 31

Male 45

Self-reported race Asian 0

Black 2

More than one race 6

Unknown 3
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White 65

OUD duration Mean 14.816

Standard deviation 9.927

OUD severity Moderate 4

Severe 72

Methadone dose at
baseline (milligram)

Mean 81.947

Standard deviation 22.644

Drug cue
paradigm

N 70

Self-reported sex
assigned at birth

Female 31

Male 39

Age (years) Mean 39.2

Standard deviation 10.691

Self-reported race Asian 0

Black 2

More than one race 6

Unknown 3

White 59

OUD duration
Mean 14.686

Standard deviation 9.909

OUD severity Moderate 3

Severe 67

Methadone dose at
baseline (milligram)

Mean 81.5

Standard deviation 22.847

Table 1. Demographic information for both datasets. OUD duration was computed as the difference

between their current and age at first use. OUD severity was measured using SCID-V based on DSM-5

(mild: 2-3 symptoms, moderate: 4-5 symptoms, severe: 6 or more symptoms). HC, healthy control. OUD,

individuals with opioid use disorder.
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Individuals with OUD demonstrated lower state engagement variability

We observed a significant group effect on state engagement variability during movie-watching

(F(4,164)=9.967; p<0.001; Figure 2) when including age and sex as covariates. There was no sex main

effect (F(4,164)=1.323; p=0.264) or sex-by-group interaction (F(4,164)=0.327, p=0.860). Consistent with

previous work (26), age showed a significant effect on variability (F(4,164)=6.329, p<0.001), but there

was no age-by-group interaction (F(4,164)=2.295, p=0.061).

Post-hoc ANOVAs were performed to explore group differences in each brain state separately

(Supplementary Table 4). Fixation (F(1,167)=12.343; p<0.001) and transition state engagement

variability (F(1,167)=6.667; p=0.011) were significantly lower in individuals with OUD compared to HCs

(fixation: HC: 1.085±0.159, OUD: 1.000±0.160; transition: HC: 0.698±0.103, OUD: 0.658±0.104).

High-cognition (F(1,167)=2.455; p=0.119) and low-cognition state engagement variability

(F(1,167)=1.270; p=0.261) did not differ significantly between groups.

Figure 2. Group differences in state engagement variability. During naturalistic fMRI, individuals with

OUD (N=76) showed lower state engagement variability than HCs (N=97). This was prominent in the

fixation and transition brain states. OUD, opioid use disorder; HC, healthy control. Scatter plots created

using the ggstatsplot R package (30).

Lower state engagement variability during rest condition was associated with worse cognitive control

As expected, our validation analysis revealed that state engagement variability decreased during

cue compared to rest across all four states (fixation: t(69)=2.014, p=0.048; high-cognition: t(69)=2.104,
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p=0.039; low-cognition: t(69)=4.623, p<0.001; transition: t(69)=2.136, p=0.036). These patterns remained

consistent even when we introduced lags to task time indices (Supplementary Table 5), indicating that

our measures are sensitive to brain dynamic changes following demand changes in the environment.

Notably, while state engagement variability during the cue condition was not linked to cognitive

control (i.e., ACC or RT interference scores; Table 2), cognitive control was significantly correlated with

variability assessed during the rest condition. Specifically, decreased transition and low-cognition state

engagement variability was linked to worse ACC (𝛒(60)=-0.405; p=0.001; q=0.016) and RT interference

(𝛒(59)=-0.383; p=0.002; q=0.016), respectively (Figure 3; Table 3). These associations remained largely

consistent when lags were added to task time indices (Supplementary Tables 6 & 7).

Exploratory analysis was conducted to investigate whether these significant associations varied

by sex. Interestingly, ACC interference was only significantly correlated with transition state engagement

variability in male (𝛒(30)=-0.516; p=0.003) but not female participants (𝛒(28)=-0.228; p=0.226). In

contrast, RT interference was significantly linked to low-cognition state engagement variability in female

(𝛒(29)=-0.580; p<0.001) but not male participants (𝛒(28)=-0.174; p=0.357). Group comparison of these

correlations were not significant (two-tailed; ACC: z=1.22, p=0.223; RT: z=-1.74, p=0.082).
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ACC Interference RT Interference

𝛒 p q 𝛒 p q

Fixation 0.022 0.868 0.888 -0.100 0.443 0.885

High-cognition 0.023 0.858 0.888 -0.032 0.808 0.888

Low-cognition 0.030 0.820 0.888 -0.018 0.888 0.888

Transition 0.020 0.876 0.888 0.020 0.880 0.888

Table 2. State engagement variability during cue and cognitive control

ACC Interference RT Interference

𝛒 p q 𝛒 p q

Fixation -0.302 0.017 0.091 -0.290 0.024 0.096

High-cognition -0.247 0.053 0.170 0.182 0.160 0.366

Low-cognition -0.088 0.498 0.885 -0.383 0.002 0.016

Transition -0.405 0.001 0.016 -0.225 0.081 0.216

Table 3. State engagement variability during rest and cognitive control
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Figure 3. State engagement variability and cognitive control. ACC and RT interference score

distributions were shown in A. B During the rest condition of the drug cue paradigm, decreased transition

state engagement variability and low-cognition state engagement variability were associated with worse

cognitive control performance (i.e., higher ACC and RT interference scores), respectively.

Control analyses

Our framework assessed variability in the moment-to-moment engagement of recurring

whole-brain brain states. As a control analysis, we extracted variability in brain node activation to

investigate whether similar results can be obtained (31; Supplementary Materials). Briefly, node

activation variability is computed as the average of variability in activation timeseries across all brain

nodes. Node activation variability did not differ significantly between groups (ANOVA; F(1,180)=1.602,

p=0.207) or correlate with ACC interference scores (rest node activation variability: 𝛒=-0.084, p=0.517;
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cue node activation variability: 𝛒=0.044, p=0.735). RT interference scores correlated significantly with

node activation variability during rest (𝛒=-0.349, p=0.006) and cue (𝛒=-0.279, p=0.030). These preliminary

results indicate that compared to variability in node activation across time, our state engagement

variability measures may be more sensitive to detecting group differences in brain dynamics. While

significant associations between variability and RT interference aligned with previous literature (32,33),

the effect sizes found here were smaller than those observed with our brain dynamic measures.

We additionally explored whether brain responses during the drug cue paradigm were related to

cognitive control. A general linear model analysis was performed (Supplementary Materials;

Supplementary Figure 1). Beta coefficients were extracted from each brain node and correlated with

ACC and RT interference scores. After correction for multiple comparisons, none of the brain nodes

demonstrated responses significantly correlated with cognitive control (Supplementary Table 8).
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Discussion

We leveraged a new multivariate computational framework to investigate alterations in brain

dynamics in individuals receiving MOUD for OUD. During movie-watching, individuals with OUD

demonstrated reduced state engagement variability compared to HCs. Decreased variability during the

rest condition of a drug cue paradigm was further associated with worse cognitive control in individuals

with OUD. The novelty of the current study is twofold. First, it served as an initial investigation of brain

dynamic alterations in OUD. By employing naturalistic fMRI in our exploration, we built a more

ecologically valid understanding of brain dynamics and contributed new insights about OUD. Second,

lower variability in brain state engagement was linked to worse cognitive control. By analyzing brain

activity across time, we found that a task classically used to study one hallmark characteristic of OUD

(i.e., aberrant response to opioid-related stimuli) could provide information on another symptom (i.e.,

impaired cognitive control). Notably, a traditional brain activation analysis did not reveal an association

between cognitive control and brain responses during the drug cue paradigm.

Broadly, state engagement variability is a form of neural variability. Once considered noise, neural

variability is now recognized to support behavioral flexibility. Increased variability allows the brain to

flexibly recruit various brain networks to call on different processes in response to current needs

(19,20,34). Thus, decreased state engagement variability may reflect an impairment in effectively

engaging different brain states to address evolving demands. By incorporating time information, our

approach provides information about how network recruitment over time may be different in OUD.

The interpretation that altered variability reflects disrupted brain network communications in OUD

aligns with the reduced structural and functional brain network connections found in mice and humans

dependent on opioids (35,36). We observed significantly reduced variability in the fixation and transition

brain states in individuals with OUD. The fixation brain state predominantly recruits the DMN

(Supplementary Table 2), which is relevant for relapse risk and withdrawal symptoms in individuals using

heroin (37,38). The transition brain state captures activation patterns that often appear when individuals

respond to a change in task demand (Supplementary Table 1). Taken together, the inability to effectively

recruit these two brain states may lead to greater difficulty switching away from self-relevant thoughts
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supported by the DMN. This possibility can have important clinical implications if these self-related

thoughts revolve around the urge or motivation for opioid use (e.g., the physical or mental pain one is

experiencing). These perseverative thoughts may further contribute to craving or substance-seeking

behaviors.

Our findings in the naturalistic paradigm indicated that lower state engagement variability might

be a characteristic of OUD. Further investigations with variability in a drug cue paradigm demonstrated

that this decreased variability could have important behavioral relevance. Consistent with prior literature

suggesting that neural variability supports behavioral performance (32,33,39), we found that decreased

state engagement variability was associated with worse cognitive control in individuals with OUD. An

elevated ACC interference score was linked to lower transition engagement variability, suggesting that the

flexible recruitment of a brain state relevant to task demand change supports cognitive control. Further, a

higher RT interference score was linked to decreased low-cognition state engagement variability. The

low-cognition brain state recruits the motor and medial frontal networks (Supplementary Table 2).

Notably, the activity of these two networks during a Stroop task predicts opioid abstinence (6). These

findings indicate that more effective engagement of these brain networks may contribute to better

cognitive control over the automatic or habitual motor-based responses associated with

substance-seeking behaviors (40,41). Future research can probe whether the flexible engagement of the

low-cognition brain state relates to abstinence and whether individual variations in cognitive control may

mediate this relationship.

Interestingly, significant associations between cognitive control and state engagement variability

were found in the rest but not cue condition. This finding dovetails with previous work suggesting that—in

addition to the initial response to salient stimuli (such as opioid-related images)—the lingering or recovery

from such stimuli also conveys important information (42–44). Drug cue paradigms are a popular

approach to investigate the neural mechanisms underpinning OUD. While brain responses to

opioid-related stimuli relate to treatment adherence and withdrawal symptoms (45,46), less work has

focused on the rest period with no cue presentation. Our results indicate that this period may serve as a

novel window into studying stickiness (i.e., residual engagement or decreased flexibility) in the brain. The

lower variability observed during naturalistic stimuli in individuals with OUD might reflect more restricted
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brain network recruitment (19) and a general tendency to linger in a particular thought pattern. This

characteristic may become even more prominent in the rest period after opioid-related stimuli are

presented. Interestingly, variability during the rest period before presentation of opioid-related stimuli was

not related to cognitive control (Supplementary Table 9). Altogether, these results suggest that following

exposure to opioid-related stimuli, brain responses to these stimuli may linger due to decreased

variability, potentially contributing to perseverative thoughts about opioids and inducing stronger cravings.

However, lingering opioid-related processing is only one of many interpretations of what lower

variability during rest reflects. Rest also appears before a cue block. Instead of altered inhibition leading

to more persistent processing, biased attention towards opioid-related stimuli may also constrain thoughts

and reduce variability during rest. Both response inhibition and biased attention for substance-related

stimuli are hallmark characteristics of OUD (7,8,10,47,48) and substance use disorders (49,50). Since we

did not instruct participants to disengage from the opioid-related pictures they saw, it is unclear whether

there was an actual attempt to inhibit such thoughts during rest. We additionally did not assess how much

perseveration participants experienced. Thus, understanding what contributes to lower variability during

rest and whether it is linked to more intense craving or drive for substance-seeking behaviors remains a

future research direction.

Sex is an important factor in OUD. We did not find significant sex-by-group interaction on state

engagement variability during movie watching. However, the strength of the associations between

cognitive control and variability varied by sex. While our sample size allows us to study sex differences,

power was likely low. Further work on sex differences in brain dynamics in OUD is urgently needed.

Opioid use and overdose deaths increase at a more rapid rate in women than men (25). A faster

progression to substance misuse has also been consistently observed in women (51). The possibility that

similar brain dynamic alterations may contribute to varying behavioral profiles in different groups is critical

to consider. Future studies investigating this topic can contribute to more targeted interventions.

The current study also has several limitations. Individuals with OUD present a heterogeneous

sample, with remarkable interindividual variations in risk, susceptibility, disorder profile, and progression.

More understanding of how comorbidities or polysubstance use may interact with opioid use to influence

brain dynamics is needed. Additionally, all participants analyzed in this study were on methadone
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treatment. As there are multiple treatment options available for OUD (52), future investigations should

explore whether brain dynamics may be altered in similar ways across individuals with OUD on different

medications (e.g., buprenorphine, extended-release naltrexone) or at different stages of intervention.

Abstinence time, treatment time, and time since last dose have all been shown to affect brain responses

to cues and cognitive control performance in individuals with OUD (46,53,54). Future work should

examine whether different time scales interact with each other. For instance, would individuals abstinent

for longer (i.e., relatively longer time scale) show different brain dynamics alterations (i.e., relatively

shorter time scale)? Future studies can additionally select naturalistic stimuli specific to substance-use

(e.g., scenes of opioid use) to probe brain dynamic alterations more precisely in OUD. Furthermore, as

the OUD sample in this study consists predominantly of white individuals, additional research in a more

diverse sample is needed to replicate the findings here.

In summary, applying a multivariate framework to naturalistic and task-based fMRI data unveiled

significant alterations in brain dynamics in individuals with OUD compared to HCs. This aberrant ability to

engage brain networks flexibly and effectively over time can have implications for cognitive control, which

may be particularly important to consider during exposure to opioid-related stimuli. The current study

presented a novel understanding of altered brain dynamics in OUD and their behavioral consequences.
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Supplementary Materials

Functional magnetic resonance imaging (fMRI) acquisition and preprocessing

FMRI acquisition parameters were the same in both datasets and have been detailed in previous

work (1). FMRI data were collected with harmonized Siemens 3T scanners using a 64-channel head coil

at Yale’s Magnetic Resonance Research Center. An anatomical scan was collected using a

magnetization-prepared rapid gradient echo sequence (repetition time=2400ms, echo time=1.22ms, voxel

size=1x1x1mm). FMRI was acquired using a multiband gradient echo-planar imaging sequence

(repetition time=1000ms, echo time=30ms, voxel size=2x2x2mm, multiband factor=5). Participants

watched three movie clips for the naturalistic paradigm without a break (Inside Out, The Princess Bride,

and Up). In the drug cue paradigm, participants were presented with alternating rest and cue blocks. Each

condition had 9 blocks, each lasting 16 seconds. Participants were shown either a fixation crosshair (rest

condition) or a picture depicting opioid-related stimuli (cue condition).

Neuroimaging data were collected from 103 participants with OUD. For the naturalistic paradigm,

we first excluded participants who did not complete the task or had mean framewise displacement (MFD)

over 0.2mm (N=24). One participant was excluded due to having epilepsy. After removing two additional

participants with missing brain coverage, a final sample of 76 individuals with OUD was analyzed for

group comparison. For the drug cue task, we removed 29 participants who did not complete the drug cue

task or showed excessive motion (i.e., MFD > 0.2mm). Two participants were excluded due to missing

time points in their scan. Two participants were removed due to missing brain coverage. After these

exclusion criteria, we extracted brain dynamic measures from 70 participants with OUD.

The transdiagnostic study collected neuroimaging data from 307 participants. Out of these

individuals, 294 adult participants completed the naturalistic paradigm. We excluded one participant with

missing brain coverage. Three participants were further excluded due to having a wrong number of

volumes. Of the 290 participants, 114 were considered healthy control (HC) based on our criteria (see

Methods). We additionally removed five participants with MFD over 0.2mm. Nine repeated scans were

excluded. Three more participants were removed due to issues with scanning sequences. A final sample

of 97 HCs were included in our group comparison analysis.
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Stroop-assessed cognitive control

As described above, fMRI data from 70 participants with OUD passed quality control. Three of

these individuals did not have Stroop data and were excluded from further analysis related to cognitive

control. To compute the accuracy interference scores, the portion of trials where participants responded

correctly was computed for both the incongruent and control conditions. Next, we subtracted the accurate

portion from the incongruent and control conditions. Five participants were excluded due to having outlier

performance scores (determined using MATLAB; > 3 median absolute deviations from the median). To

compute the response time interference scores, we subtracted the average response time from all

accurate trials in the congruent trial from the average response time from all accurate trials in the control

condition. Two participants were removed since response time information during the incongruent

condition was unavailable. We additionally excluded four participants with outlier response time

interference scores. Accuracy and response time interference scores did not differ significantly by sex

(accuracy: t(59)=0.984, p=0.329; t(59)=-0.452, p=0.653).

Brain states identification

We replicated our prior work to identify recurring brain states. Nonlinear manifold learning and

2-step Diffusion Mapping projected task-based fMRI data from the Human Connectome Project S500

release into a low-dimensional space (2,3). We used minimally preprocessed HCP data from six different

tasks (motor, working memory, social, emotional, relational, and gambling) from 390 participants (see 3

for information on quality control and exclusion criteria).

After task data were projected to the low-dimensional space, time points showing similar activity

patterns were located closer together. K-means clustering then identified four recurring brain states with

distinct activation patterns. The number of brain states was determined using the Calinski-Harabasz

criterion (4). We characterized these brain states as fixation, high-cognition, low-cognition, and transition

based on the prominent task conditions associated with these brain states (Supplementary Table 1). For

instance, the fixation state mainly included time points from the fixation condition. The high-cognition state

included time points from complex cognitive paradigms such as working memory, emotion, relational,
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gambling, and social. The low-cognition state involved time points from the motor task, the 0-back

working memory condition, and the neutral emotion condition. Lastly, the transition state consisted of time

points from the cue condition across various task paradigms. The centroid of each state cluster was

extracted to serve as a representative time point in later analyses.

In our prior work (5), we investigated how canonical brain networks contributed to each of these

brain states. To this end, we identified the activated and deactivated brain regions (i.e., activation above

or below 0, respectively; arbitrary unit) for each representative time point in a set of canonical brain

networks. The activation or deactivation percentage was next computed by dividing the number of

activated or deactivated brain regions by the total number of brain regions in a network.

Different canonical networks were activated to varying extent in each brain state (Supplementary

Table 2). However, brain network activation patterns largely followed what cognitive processes each brain

state supported. For instance, the entire motor network was activated during low-cognition state whereas

the high-cognition state was linked to frontoparietal network activation and default mode network

deactivation.

General linear modeling (GLM)

As an exploratory analysis, we also examined whether brain responses during the cue paradigm

demonstrated an association with cognitive control. For each participant, a GLM was used to model brain

activity. The design matrix included the cue regressor, mean, linear, quadratic, and cubic trend terms, and

a 24-parameter motion model. The cue regressor was convolved with a standard hemodynamic response

function. Resultant beta maps were spatially smoothed with a 6-mm Gaussian kernel and warped into

common space. Beta coefficients were extracted from each node of the Shen-268 atlas and correlated

with ACC and RT interference scores.
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Supplementary Figure 1. Activations during the drug cue task.
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Supplementary Table 1. Number of volumes associated with each task condition for the four recurring
brain states

Fixation High-cognition Low-cognition Transition

Fixation 635 0 20 65

Cue 41 3 6 158

Working memory (0 back) 10 56 99 123

Working memory (2 back) 1 201 10 76

Emotion (Fear) 10 42 0 48

Emotion (Neutral) 23 12 99 16

Gambling (Win) 0 100 25 35

Gambling (Loss) 0 101 10 49

Motor (Tongue) 0 1 52 12

Motor (Left foot) 8 5 41 13

Motor (Left hand) 7 0 45 15

Motor (Right foot) 0 0 55 12

Motor (Right hand) 0 1 50 15

Social (Mental) 0 113 0 47

Social (Random) 0 111 0 109

Relational (Match) 3 9 17 40

Relational (Relation) 3 90 5 9
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Supplementary Table 2. Networks showing the highest activation and deactivation percentages for each
state

Fixation High-cognition Low-cognition Cue/transition

Activation
percentages

DMN
(88.89%)

VAs
(100%)

Motor network
(100%)

Visual I (100%)

Motor network
(85.71%)

Visual II
(88.87%)

MF
(86.21%)

VAs (72.22%)

MF
(82.76%)

FP
(82.35%)

Cerebellum
(84%)

Visual II (66.67%)

Deactivation

percentages

VAs
(94.44%)

Motor network
(87.76%)

Visual I
(100%)

MF (89.66%)

Visual I
(66.67%)

DMN
(83.33%)

Visual II, VAs, and
DMN
(66.67%)

DMN (88.87%)

Visual II
(66.67%)

Subcortical
(79.31%)

Motor (83.67%)

This table shows the canonical functional networks with the three highest activation and deactivation
percentages for each brain state. The actual activation and deactivation percentage values were included
in parentheses. DMN, default mode network; MF, medial frontal network; VAs, visual association network;
FP, frontoparietal network.
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Supplementary Table 3. Individuals with opioid use disorder who reported polysubstance use

Naturalistic dataset (N=76) Drug cue dataset (N=70)

Alcohol 59 57

Amphetamines 13 14

Barbiturates 5 4

Cannabis 69 61

Cocaine 67 63

Hallucinogens 31 29

Inhalants 6 6

Other sedatives/hypnotics/tranquilizers 20 21

Supplementary Table 4. State engagement variability during naturalistic stimuli ANOVA covariates

Sex Age Sex-by-group
interaction

Age-by-group
interaction

Fixation F(1,167)=0.065;
p=0.799

F(1,167)=4.202;
p=0.042

F(1,167)=0.001;
p=0.974

F(1,167)=5.326;
p=0.022

High-cognition F(1,167)=0.566;
p=0.453

F(1,167)=7.173;
p=0.008

F(1,167)=0.003;
p=0.959

F(1,167)=4.193;
p=0.042

Low-cognition F(1,167)=1.070;
p=0.303

F(1,167)=6.609;
p=0.011

F(1,167)=0.365;
p=0.546

F(1,167)=7.094;
p=0.008

Transition F(1,167)=0.083;
p=0.774

F(1,167)=9.937;
p=0.002

F(1,167)=0.234;
p=0.629

F(1,167)=3.817;
p=0.052
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Supplementary Table 5. State engagement variability between rest and cue conditions

Add 1 lag to time indices Add 2 lags to time indices

Fixation t(69)=2.591; p=0.012 t(69)=3.178; p=0.002

High-cognition t(69)=2.702; p=0.009 t(69)=3.223; p=0.002

Low-cognition t(69)=5.526; p<0.001 t(69)=6.482; p<0.001

Transition t(69)=2.724; p=0.008 t(69)=3.423; p=0.001

Supplementary Table 6. State engagement variability during rest condition and cognitive control

Add 1 lag to time indices Add 2 lags to time indices

ACC Interference RT Interference ACC Interference RT Interference

Fixation rho=-0.302;
p=0.017

rho=-0.272;
p=0.034

rho=-0.281;
p=0.027

rho=-0.233;
p=0.071

High-cognition rho=-0.244;
p=0.057

rho=-0.177;
p=0.173

rho=-0.248;
p=0.052

rho=-0.157;
p=0.227

Low-cognition rho=-0.089;
p=0.490

rho=-0.362;
p=0.004

rho=-0.068;
p=0.599

rho=-0.334;
p=0.009

Transition rho=-0.394;
p=0.002

rho=-0.235;
p=0.069

rho=-0.383;
p=0.002

rho=-0.228;
p=0.077

Supplementary Table 7. State engagement variability during cue condition and cognitive control

Add 1 lag to time indices Add 2 lags to time indices

ACC Interference RT Interference ACC Interference RT Interference

Fixation rho=0.031;
p=0.811

rho=-0.068;
p=0.601

rho=-0.013;
p=0.921

rho=-0.034;
p=0.797

High-cognition rho=-6.654e-04;
p=0.996

rho=-0.007;
p=0.959

rho=-0.013;
p=0.923

rho=0.015;
p=0.907

Low-cognition rho=-0.004;
p=0.974

rho=-0.006;
p=0.962

rho=-0.021;
p=0.872

rho=0.025;
p=0.847

Transition rho=-0.011;
p=0.931

rho=0.045;
p=0.732

rho=-0.045;
p=0.727

rho=0.039;
p=0.763
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Supplementary Table 8. Task activation during the cue paradigm and cognitive control

Node number

ACC Interference RT Interference

r p q r p q

1 0.13 0.33 0.89 0.19 0.14 0.99

2 0.05 0.70 0.89 0.18 0.16 0.99

3 0.04 0.75 0.89 0.13 0.34 0.99

4 -0.07 0.60 0.89 0.13 0.33 0.99

5 -0.09 0.49 0.89 0.05 0.73 0.99

6 -0.08 0.55 0.89 0.05 0.67 0.99

7 0.00 0.97 0.91 0.13 0.31 0.99

8 0.05 0.70 0.89 0.04 0.73 0.99

9 -0.15 0.23 0.89 -0.02 0.85 0.99

10 -0.09 0.47 0.89 -0.04 0.76 0.99

11 -0.20 0.11 0.89 0.10 0.46 0.99

12 -0.05 0.71 0.89 0.02 0.86 0.99

13 -0.21 0.10 0.89 -0.09 0.50 0.99

14 0.02 0.87 0.90 0.08 0.53 0.99

15 -0.18 0.16 0.89 0.00 0.98 1.00

16 0.05 0.69 0.89 -0.17 0.20 0.99

17 0.06 0.62 0.89 0.22 0.09 0.99

18 -0.01 0.91 0.90 0.11 0.38 0.99

19 0.04 0.74 0.89 0.06 0.67 0.99

20 -0.09 0.50 0.89 -0.05 0.70 0.99

21 0.05 0.72 0.89 -0.02 0.85 0.99

22 0.21 0.10 0.89 0.01 0.95 1.00

23 0.04 0.75 0.89 -0.07 0.59 0.99

24 0.09 0.50 0.89 0.04 0.75 0.99

25 -0.01 0.93 0.90 -0.06 0.66 0.99

26 -0.05 0.70 0.89 0.17 0.18 0.99

27 0.09 0.48 0.89 -0.01 0.96 1.00
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28 -0.15 0.25 0.89 0.08 0.55 0.99

29 0.00 0.99 0.91 0.22 0.10 0.99

30 -0.14 0.28 0.89 0.14 0.30 0.99

31 0.17 0.18 0.89 -0.04 0.74 0.99

32 -0.11 0.40 0.89 0.04 0.76 0.99

33 0.04 0.73 0.89 -0.06 0.64 0.99

34 -0.07 0.58 0.89 0.14 0.29 0.99

35 -0.14 0.27 0.89 0.06 0.66 0.99

36 -0.13 0.33 0.89 -0.04 0.76 0.99

37 0.00 0.98 0.91 -0.05 0.71 0.99

38 -0.19 0.13 0.89 0.03 0.81 0.99

39 0.04 0.78 0.89 -0.07 0.59 0.99

40 -0.05 0.72 0.89 -0.11 0.41 0.99

41 -0.06 0.63 0.89 0.09 0.48 0.99

42 -0.19 0.13 0.89 0.04 0.77 0.99

43 -0.05 0.73 0.89 0.12 0.34 0.99

44 -0.05 0.69 0.89 0.18 0.16 0.99

45 -0.17 0.18 0.89 0.00 0.98 1.00

46 -0.13 0.32 0.89 -0.05 0.72 0.99

47 -0.16 0.21 0.89 0.20 0.12 0.99

48 0.09 0.51 0.89 0.07 0.58 0.99

49 0.04 0.79 0.89 0.13 0.30 0.99

50 -0.02 0.90 0.90 -0.06 0.62 0.99

51 0.02 0.88 0.90 0.00 0.99 1.00

52 0.00 0.97 0.91 0.06 0.63 0.99

53 0.03 0.82 0.89 -0.06 0.67 0.99

54 0.00 0.99 0.91 -0.21 0.11 0.99

55 0.09 0.48 0.89 0.12 0.36 0.99

56 -0.05 0.72 0.89 0.10 0.44 0.99
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57 -0.08 0.51 0.89 0.04 0.74 0.99

58 -0.12 0.35 0.89 -0.02 0.85 0.99

59 -0.05 0.70 0.89 -0.03 0.84 0.99

60 -0.12 0.35 0.89 -0.04 0.76 0.99

61 0.03 0.80 0.89 -0.04 0.78 0.99

62 -0.05 0.68 0.89 -0.15 0.24 0.99

63 -0.04 0.76 0.89 -0.10 0.46 0.99

64 -0.09 0.51 0.89 -0.10 0.45 0.99

65 0.05 0.71 0.89 -0.14 0.30 0.99

66 0.03 0.79 0.89 -0.02 0.86 0.99

67 0.22 0.09 0.89 -0.04 0.75 0.99

68 -0.16 0.20 0.89 -0.13 0.32 0.99

69 0.15 0.24 0.89 0.00 0.99 1.00

70 0.06 0.62 0.89 0.03 0.82 0.99

71 0.02 0.90 0.90 -0.03 0.84 0.99

72 0.05 0.70 0.89 0.02 0.86 0.99

73 0.06 0.63 0.89 -0.01 0.92 1.00

74 -0.01 0.92 0.90 -0.12 0.35 0.99

75 0.00 0.99 0.91 0.12 0.37 0.99

76 0.13 0.32 0.89 -0.08 0.55 0.99

77 -0.12 0.34 0.89 -0.04 0.77 0.99

78 0.28 0.03 0.89 0.03 0.83 0.99

79 0.14 0.27 0.89 0.02 0.85 0.99

80 0.02 0.86 0.90 0.14 0.29 0.99

81 0.18 0.17 0.89 0.12 0.37 0.99

82 0.05 0.68 0.89 0.00 0.99 1.00

83 -0.17 0.19 0.89 -0.01 0.93 1.00

84 -0.14 0.27 0.89 0.00 0.99 1.00

85 -0.04 0.79 0.89 0.06 0.65 0.99
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86 -0.13 0.30 0.89 -0.08 0.55 0.99

87 -0.05 0.71 0.89 -0.08 0.54 0.99

88 -0.13 0.30 0.89 0.07 0.58 0.99

89 -0.12 0.34 0.89 -0.12 0.36 0.99

90 -0.15 0.24 0.89 0.06 0.67 0.99

91 -0.15 0.25 0.89 0.14 0.28 0.99

92 -0.06 0.67 0.89 0.18 0.16 0.99

93 -0.30 0.02 0.89 0.00 1.00 1.00

94 0.03 0.81 0.89 0.17 0.19 0.99

95 -0.24 0.06 0.89 -0.01 0.95 1.00

96 -0.12 0.34 0.89 -0.10 0.43 0.99

97 -0.04 0.78 0.89 0.14 0.27 0.99

98 -0.08 0.56 0.89 0.00 0.98 1.00

99 -0.01 0.96 0.91 0.14 0.28 0.99

100 0.07 0.61 0.89 0.03 0.83 0.99

101 -0.26 0.04 0.89 0.09 0.51 0.99

102 0.05 0.72 0.89 -0.03 0.85 0.99

103 -0.19 0.15 0.89 0.02 0.91 1.00

104 -0.03 0.79 0.89 0.07 0.60 0.99

105 -0.12 0.37 0.89 0.10 0.46 0.99

106 -0.08 0.54 0.89 0.08 0.52 0.99

107 -0.04 0.76 0.89 0.31 0.02 0.99

108 -0.10 0.44 0.89 0.10 0.46 0.99

109 -0.11 0.37 0.89 0.02 0.91 1.00

110 -0.17 0.19 0.89 0.02 0.90 1.00

111 0.05 0.69 0.89 0.09 0.50 0.99

112 -0.03 0.82 0.89 0.09 0.51 0.99

113 -0.13 0.31 0.89 0.01 0.92 1.00

114 0.05 0.70 0.89 0.11 0.41 0.99
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115 -0.11 0.40 0.89 0.10 0.46 0.99

116 -0.12 0.34 0.89 0.06 0.63 0.99

117 -0.20 0.13 0.89 -0.01 0.93 1.00

118 -0.10 0.43 0.89 0.21 0.11 0.99

119 -0.08 0.52 0.89 0.07 0.61 0.99

120 -0.01 0.95 0.91 0.03 0.83 0.99

121 -0.04 0.73 0.89 0.00 0.98 1.00

122 -0.11 0.41 0.89 0.00 1.00 1.00

123 0.04 0.77 0.89 0.16 0.22 0.99

124 -0.05 0.71 0.89 -0.14 0.27 0.99

125 -0.04 0.76 0.89 0.08 0.55 0.99

126 -0.13 0.30 0.89 0.13 0.32 0.99

127 -0.04 0.77 0.89 0.14 0.27 0.99

128 -0.06 0.63 0.89 0.07 0.57 0.99

129 0.10 0.44 0.89 0.19 0.15 0.99

130 0.08 0.53 0.89 0.08 0.56 0.99

131 -0.12 0.34 0.89 -0.08 0.53 0.99

132 -0.24 0.06 0.89 0.02 0.88 1.00

133 -0.17 0.19 0.89 -0.05 0.69 0.99

134 -0.01 0.91 0.90 0.14 0.29 0.99

135 -0.03 0.83 0.90 0.04 0.77 0.99

136 0.23 0.07 0.89 -0.07 0.59 0.99

137 0.05 0.69 0.89 -0.08 0.56 0.99

138 -0.05 0.68 0.89 0.02 0.88 0.99

139 0.05 0.69 0.89 -0.04 0.77 0.99

140 -0.07 0.57 0.89 -0.01 0.92 1.00

141 -0.12 0.34 0.89 -0.03 0.83 0.99

142 -0.09 0.49 0.89 0.01 0.94 1.00

143 0.06 0.62 0.89 -0.04 0.76 0.99

144 -0.13 0.33 0.89 0.06 0.63 0.99

145 -0.18 0.16 0.89 -0.10 0.43 0.99
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146 -0.02 0.89 0.90 -0.05 0.70 0.99

147 0.11 0.38 0.89 -0.09 0.50 0.99

148 -0.10 0.46 0.89 -0.19 0.15 0.99

149 -0.06 0.62 0.89 -0.11 0.41 0.99

150 -0.11 0.38 0.89 0.04 0.78 0.99

151 0.14 0.27 0.89 -0.08 0.54 0.99

152 0.04 0.77 0.89 0.11 0.41 0.99

153 -0.04 0.76 0.89 0.06 0.62 0.99

154 0.14 0.27 0.89 0.15 0.23 0.99

155 -0.09 0.48 0.89 -0.01 0.94 1.00

156 0.03 0.84 0.90 -0.01 0.96 1.00

157 0.14 0.29 0.89 -0.04 0.78 0.99

158 0.10 0.45 0.89 -0.05 0.68 0.99

159 0.07 0.61 0.89 -0.04 0.79 0.99

160 -0.08 0.54 0.89 0.09 0.51 0.99

161 -0.17 0.18 0.89 -0.05 0.68 0.99

162 -0.11 0.38 0.89 0.05 0.71 0.99

163 0.03 0.82 0.89 0.08 0.54 0.99

164 -0.13 0.30 0.89 0.11 0.39 0.99

165 0.06 0.67 0.89 -0.02 0.86 0.99

166 -0.05 0.67 0.89 -0.04 0.74 0.99

167 -0.02 0.88 0.90 0.00 1.00 1.00

168 -0.03 0.80 0.89 0.13 0.34 0.99

169 -0.01 0.92 0.90 0.07 0.57 0.99

170 -0.05 0.71 0.89 -0.21 0.10 0.99

171 0.02 0.87 0.90 -0.04 0.78 0.99

172 -0.06 0.62 0.89 -0.04 0.77 0.99

173 -0.05 0.72 0.89 -0.20 0.13 0.99

174 0.00 1.00 0.91 0.05 0.70 0.99
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175 -0.01 0.93 0.90 0.07 0.61 0.99

176 -0.20 0.12 0.89 -0.03 0.83 0.99

177 0.11 0.39 0.89 -0.07 0.60 0.99

178 0.00 1.00 0.91 0.20 0.12 0.99

179 -0.03 0.85 0.90 0.02 0.87 0.99

180 -0.11 0.40 0.89 -0.09 0.49 0.99

181 -0.21 0.10 0.89 -0.04 0.77 0.99

182 -0.06 0.66 0.89 -0.03 0.82 0.99

183 -0.02 0.91 0.90 -0.16 0.22 0.99

184 -0.08 0.55 0.89 0.17 0.20 0.99

185 -0.02 0.90 0.90 -0.18 0.16 0.99

186 -0.04 0.74 0.89 -0.04 0.76 0.99

187 -0.07 0.59 0.89 0.02 0.85 0.99

188 0.00 0.99 0.91 0.01 0.96 1.00

189 0.08 0.56 0.89 0.11 0.38 0.99

190 -0.02 0.90 0.90 -0.05 0.69 0.99

191 0.00 0.99 0.91 -0.08 0.52 0.99

192 0.04 0.73 0.89 -0.17 0.19 0.99

193 0.02 0.87 0.90 0.03 0.83 0.99

194 -0.17 0.18 0.89 -0.01 0.91 1.00

195 -0.15 0.26 0.89 0.03 0.79 0.99

196 -0.20 0.11 0.89 0.06 0.62 0.99

197 -0.08 0.53 0.89 -0.04 0.75 0.99

198 0.09 0.48 0.89 -0.04 0.74 0.99

199 0.04 0.75 0.89 0.07 0.61 0.99

200 0.09 0.49 0.89 -0.04 0.73 0.99

201 -0.03 0.80 0.89 0.01 0.95 1.00

202 0.01 0.92 0.90 -0.06 0.63 0.99

203 0.03 0.80 0.89 -0.15 0.25 0.99

40



204 0.03 0.81 0.89 -0.05 0.72 0.99

205 -0.09 0.49 0.89 -0.09 0.49 0.99

206 0.14 0.28 0.89 -0.02 0.89 1.00

207 0.09 0.46 0.89 0.03 0.85 0.99

208 0.02 0.90 0.90 0.11 0.38 0.99

209 0.04 0.75 0.89 -0.16 0.21 0.99

210 0.10 0.45 0.89 -0.15 0.24 0.99

211 0.13 0.33 0.89 -0.02 0.85 0.99

212 0.27 0.03 0.89 0.09 0.48 0.99

213 0.02 0.89 0.90 0.03 0.80 0.99

214 0.11 0.42 0.89 0.05 0.68 0.99

215 0.07 0.57 0.89 -0.05 0.72 0.99

216 -0.07 0.60 0.89 -0.04 0.79 0.99

217 -0.21 0.10 0.89 0.08 0.53 0.99

218 -0.18 0.15 0.89 -0.10 0.43 0.99

219 -0.19 0.14 0.89 -0.04 0.76 0.99

220 -0.15 0.24 0.89 -0.11 0.38 0.99

221 -0.17 0.19 0.89 0.04 0.78 0.99

222 -0.07 0.61 0.89 -0.22 0.09 0.99

223 -0.07 0.58 0.89 0.03 0.82 0.99

224 -0.21 0.09 0.89 -0.04 0.77 0.99

225 -0.13 0.31 0.89 0.03 0.82 0.99

226 -0.19 0.15 0.89 0.12 0.36 0.99

227 -0.09 0.48 0.89 -0.05 0.72 0.99

228 0.00 0.98 0.91 0.17 0.20 0.99

229 0.07 0.62 0.89 0.03 0.80 0.99

230 -0.01 0.91 0.90 0.08 0.55 0.99

231 -0.04 0.77 0.89 0.21 0.10 0.99

232 0.22 0.09 0.89 0.04 0.75 0.99
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233 0.07 0.58 0.89 0.09 0.52 0.99

234 -0.02 0.89 0.90 -0.16 0.23 0.99

235 -0.10 0.46 0.89 0.10 0.46 0.99

236 -0.07 0.58 0.89 0.13 0.32 0.99

237 -0.15 0.23 0.89 0.03 0.80 0.99

238 -0.06 0.66 0.89 0.10 0.45 0.99

239 -0.22 0.09 0.89 0.17 0.20 0.99

240 -0.07 0.56 0.89 0.10 0.43 0.99

241 0.08 0.56 0.89 0.24 0.07 0.99

242 -0.01 0.94 0.91 0.09 0.47 0.99

243 -0.01 0.95 0.91 0.05 0.70 0.99

244 -0.16 0.22 0.89 0.16 0.22 0.99

245 -0.18 0.16 0.89 0.02 0.86 0.99

246 0.01 0.92 0.90 0.15 0.24 0.99

247 -0.07 0.59 0.89 0.08 0.53 0.99

248 -0.04 0.76 0.89 0.09 0.51 0.99

249 -0.03 0.82 0.89 0.15 0.26 0.99

250 -0.17 0.18 0.89 -0.02 0.85 0.99

251 -0.06 0.67 0.89 0.18 0.16 0.99

252 0.05 0.70 0.89 0.28 0.03 0.99

253 0.04 0.75 0.89 0.09 0.47 0.99

254 -0.09 0.47 0.89 0.08 0.56 0.99

255 -0.25 0.05 0.89 0.00 0.99 1.00

256 0.04 0.77 0.89 0.07 0.57 0.99

257 -0.03 0.81 0.89 0.24 0.06 0.99

258 0.10 0.42 0.89 0.24 0.06 0.99

259 -0.08 0.53 0.89 0.11 0.38 0.99

260 -0.03 0.84 0.90 0.04 0.79 0.99

261 0.03 0.79 0.89 -0.12 0.34 0.99
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262 0.11 0.39 0.89 0.05 0.68 0.99

263 -0.11 0.41 0.89 0.05 0.69 0.99

264 -0.05 0.72 0.89 0.12 0.37 0.99

265 -0.29 0.02 0.89 0.01 0.92 1.00

266 0.04 0.75 0.89 0.13 0.34 0.99

267 -0.18 0.16 0.89 -0.07 0.60 0.99

268 0.08 0.54 0.89 0.09 0.51 0.99

​​
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Supplementary Table 9. Associations between cognitive control and state engagement variability during
the first fixation block (i.e., before opioid-related stimulus presentations)

Accuracy Interference Response Time Interference

Fixation rho=-0.024; p=0.852 rho=-0.206; p=0.112

High-cognition rho=-0.026; p=0.841 rho=-0.094; p=0.470

Low-cognition rho=-0.068; p=0.601 rho=-0.099; p=0.446

Transition rho=-0.042; p=0.749 rho=0.221; p=0.087
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