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ABSTRACT 24 

Primary sclerosing cholangitis (PSC), a progressive cholestatic hepatobiliary disease characterized 25 

by inflammation and fibrosis of the bile ducts, has a pathophysiology that is not understood. No 26 

effective therapies exist. The only treatment option for PSC is liver transplant. We undertook a 27 

pilot randomized trial of diet to investigate the pathophysiology of the disease, the role of diet and 28 

to advance potential therapy. We enrolled 20 patients with PSC and randomly assigned them to a 29 

Low Protein/low sulfur Diet (LPD, n=10) or the Specific Carbohydrate Diet (SCD, n=10) for 8 30 

weeks. Results showed that low protein intake benefits PSC patients, whereas higher protein levels 31 

exacerbate the condition. We further identified gut bacterial markers useful for distinguishing LPD 32 

responders (mostly PSC with concomitant ulcerative colitis) from non-responders. Additionally, 33 

by integrating multi-omics data, we propose that this diet modifies the intestinal sulfur cycle 34 

reducing hydrogen sulfide (H2S) production. Our findings provide an understanding of the 35 

beneficial effect of LPD as well as insights into a possible key driver of inflammation in PSC. 36 

 37 
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INTRODUCTION 42 

Primary sclerosing cholangitis (PSC), a chronic cholestatic liver disease characterized by 43 

inflammation and fibrosis of the biliary tree, can lead to debilitating consequences including end-44 

stage liver disease and malignancies. Currently, no therapy has been found to be effective for PSC, 45 

other than liver transplant, which remains the mainstay of therapy. However, the disease can recur 46 

after transplant. PSC is intimately associated with inflammatory bowel disease (IBD), particularly 47 

ulcerative colitis (UC). Approximately 70-80% of patients with PSC also have underlying IBD [1, 48 

2], but only around 3- 5% of UC patients will develop PSC [3]. Thus, the combination of the two 49 

creates a distinct disease phenotype, which is a prototypical disease of the gut-liver axis [1, 4].  50 

 51 

The pathophysiology of PSC remains poorly understood. The paradigm of IBD is relied on as a 52 

model to understand PSC, presuming an interaction between the environment, the microbiome and 53 

immune system with a genetic predisposition [5, 6]. Other hypotheses suggest a toxic bile acid or 54 

a cross reacting T cell response between the colonocytes and cholangiocytes [5, 7]. The immune 55 

modifying approaches that can be effective in IBD do not benefit PSC. A distinct dysbiotic fecal 56 

microbiome has been detailed in PSC, which overlaps with that of IBD [1, 4, 8]. While numerous 57 

studies have investigated changes in the gut microbiome in the context of IBD [9-12], fewer have 58 

focused on PSC [13-18]. 59 

 60 

Our approach to PSC in this study is based on the hypothesis that sulfur-containing amino acids 61 

such as methionine may be substrates for sulfate-reducing bacteria to generate hydrogen sulfide 62 

(H2S). H2S production is likely coupled with increased bacterial degradation of mucin, which is 63 

rich in cysteine and methionine [19, 20]. Further, H2S can also impair colonocyte uptake and beta-64 

oxidation of butyrate [21]. At higher levels, H2S can be toxic to mitochondria, generating radical 65 

oxygen species and activating the NLRP10 inflammasome, generating a broader inflammatory 66 

reaction [22]. In this way, reducing H2S by manipulating dietary sulfur content may limit cellular 67 

impairment and inflammation. Practically speaking, this would involve the reduction of sulfur-68 

containing amino acids, which are primarily derived from animal and plant-based proteins.  69 

 70 

In contrast, the comparator diet examined in this study, the Specific Carbohydrate Diet (SCD), is 71 

a popular diet among IBD patients that is grain-free and low in sugar and lactose, but does not 72 

limit protein content. This diet has been studied to a limited degree in IBD with variable 73 

effectiveness [23, 24]. The SCD excludes the intake of complex carbohydrates, disaccharide-74 

containing foods, grain, corn, potato, and dairy while permitting carbohydrates obtained from 75 

fruits, honey, some vegetables, and fermented yogurt. The SCD is based on the principle that 76 

specifically selected carbohydrates in SCD require minimal digestion, so they are subsequently 77 

well absorbed, avoiding further gut microbial metabolism.  78 
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Diet composition may influence gut microbial activity in PSC, both through supporting or 79 

enhancing the growth of particular bacterial communities and modifying metabolic profiles. These 80 

adaptations may consequently influence disease progression through the gut-liver axis [25-29]. Yet, 81 

the interplay between these parameters is complex and poorly understood [4] especially with 82 

regard to its effect on disease course [30, 31]. Despite the strong patient interest, clinical trials 83 

targeting dietary interventions specifically for PSC are notably lacking. To date, only one study 84 

has examined a gluten-free diet in individuals with PSC and associated colitis, and it failed to 85 

demonstrate clinical or biomedical improvement [32]. 86 

 87 

In this study, we conducted a pilot randomized controlled trial to assess the clinical efficacy of a 88 

low-protein diet (LPD) compared to the SCD in PSC (Fig. 1a & 1b), and leveraged high-89 

throughput technologies (shotgun metagenomic sequencing and global untargeted metabolomic 90 

profiling) and multi-omics data analyses to gain mechanistic insights into response to dietary 91 

intervention (Fig. 1c).  92 

 93 

RESULTS 94 

Patient characteristics 95 

We screened ~100 individuals with PSC, and 25 met eligibility criteria and 5 eligible individuals 96 

chose not to participate prior to randomization. Ten participants were randomly assigned to the 97 

LPD and ten to the SCD (Fig. 1a, Fig. 1b & Table 1). Participant characteristics were balanced 98 

between the groups. Two participants withdrew due to cholangitis, and their data until withdrawal 99 

were incorporated into the analysis. 100 

Participants in the LPD group demonstrated lower protein consumption in 3-day food recordings 101 

at all study time points during dietary intervention (week 2 to week 10) compared to SCD group 102 

participants (Wilcoxon rank-sum test, 4.57e-05 < p-value < 0.010), supporting the compliance with 103 

the dietary interventions (Fig. 2a).  104 

 105 

LPD benefits PSC patients, but SCD does not 106 

Comparing the ALP levels at W4 and W8 with those at W0, we found that LPD led to improvement 107 

(i.e., decrease in ALP) in eight of the ten individuals (80%), with six of them (75%) returning to 108 

their baseline ALP level when dietary interventions were removed at W10 (Fig. 2b). In contrast, 109 

only two of the ten participants (20%) in the SCD group responded to SCD (i.e., with lower ALP 110 

levels than their baseline levels). Moreover, for most of the participants in the SCD group, their 111 

ALP values did not appear to be affected after discontinuing the dietary intervention, suggesting 112 

that SCD may not be a potentially effective treatment for PSC. For those eight participants who 113 
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responded to LPD, hereafter referred to as LPD-responders, their ALP values were reduced by 114 

18.5% ± 10.4% at W4 (i.e., after two weeks of treatment), and by 22.6% ± 15.6% at W8 (i.e., after 115 

another four weeks of treatment).  116 

When accounting for an ALP decrease of at least 10%, LPD showed efficacy in 60% of patients, 117 

compared to a 20% efficacy rate in SCD. With a reduction of at least 20%, LPD demonstrated 118 

efficacy in 30% of patients, while SCD showed a 10% rate. Considering a decrease of at least 30%, 119 

LPD maintained its efficacy in 30% of patients, with no cases of efficacy in SCD. Finally, with an 120 

ALP decrease of at least 50%, LPD is effective in 10% of patients, with SCD also showing no 121 

cases of effectiveness. Changes of other parameters, including Aspartate Aminotransferase (AST) 122 

and Alanine Aminotransferase (ALT) values, during the intervention were shown in Fig. S1. 123 

Direct evidence obtained from Lasso Regression analysis revealed a significant positive 124 

correlation between the dietary methionine levels and the ALP levels (Fig. 2c). This finding 125 

indicates that lower methionine intake is associated with lower ALP levels compared to baseline 126 

values. However, it is crucial to note that this relationship is correlative rather than causative.  127 

In addition to methionine, levels of magnesium, total sugar, iron, total folate, other amino acids, 128 

vitamin K and vitamin D were also positively associated with the ALP levels (Fig. 2c). By contrast, 129 

the levels of histidine, calcium, tryptophan, soluble dietary fiber, beta-carotene, starch, and vitamin 130 

B-12 were negatively associated with the ALP levels. At the same time, we observed that 131 

carbohydrate consumptions (nutrient density) exhibited significant differences between LPD and 132 

SCD, with LPD being higher than SCD at all time points during dietary intervention (week 2 to 133 

week 10) compared to baseline (Wilcoxon rank-sum test, 0.0014 < p-value < 2.17e-05) (Fig. S2).  134 

 135 

Three disease categories respond differently to dietary intervention 136 

We performed a stratified analysis to determine if comorbid IBD influences ALP response to 137 

dietary interventions. Though the numbers of individuals in each subgroup were small, marked 138 

differences were evident for certain disease categories. For instance, for PSC-UC patients (n= 10 139 

in total), LPD (n=6) was significantly more effective in lowering ALP than SCD (n=4), (Wilcoxon 140 

rank-sum test, p-value = 0.038). Moreover, all the PSC-UC patients in the LPD arm responded to 141 

LPD assessed by decreasing ALP levels, see Fig. 2d. For PSC-CD patients (n= 3 in total), there 142 

was only one patient in the LPD arm (n=1), and this patient responded to LPD. Interestingly, for 143 

PSC patients without IBD (PSC-alone) (n=7 in total), one patient in the LPD arm (n=3) responded, 144 

while no response in SCD (n=4). Moreover, the two interventions didn’t demonstrate any 145 

significant difference in reducing ALP levels (Fig. 2f).  146 

 147 

 148 

 149 
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Gut microbial features distinguish LPD responders from non-responders  150 

Given the efficacy of LPD, we aimed to determine distinguishing microbial biomarkers between 151 

LPD responders and non-responders using shotgun metagenomic sequencing data. We found that 152 

the alpha diversity (measured by the Shannon index) of stool samples in the PSC-UC group was 153 

significantly lower than that in the PSC-CD and PSC-alone groups (Fig. S3a & Fig. S3b, 154 

Wilcoxon rank-sum test, p-value = 0.016 and p-value = 0.00062, respectively). Samples in each 155 

category were clustered together and distinct from the other two groups (PERMANOVA p-156 

value=0.001, F=3.53) (Fig. S2c). When individuals were simply classified into responders 157 

(individuals showing reduced ALP) and non-responders (individuals showing reduced ALP), 158 

variations in alpha diversities and differences in beta diversity can be found in Fig 3a, Fig. S4 & 159 

Fig. S5. The clusters of LPD were separated from LPD non-responders in the PCoA plot based on 160 

the Bray-Curtis dissimilarity, suggesting that gut microbiota is key in differentiating response 161 

outcomes (Fig. 3a). Similar results were revealed by UMAP clustering (Fig. S4b). 162 

To account for three disease categories as covariates and to eliminate random effects of inter-163 

individual variation due to temporal changes, we employed MaAsLin2 to perform a multivariate 164 

linear regression analysis on the taxonomic profiles of the stool samples (see Methods, Formula 165 

1). We aimed to find microbial features that significantly differentiate LPD responders from LPD 166 

non-responders (with cutoff p-value < 0.05 and q-value < 0.2). We identified 21 (or 15) microbial 167 

species as significantly positively (or negatively) associated with responders, respectively (Fig. 168 

3b). Among these, Ruminococcus gnavus, Blautia caecimuris, Blautia producta, Enterocloster 169 

bolteae, and Flavonifractor plautii, were more abundant in responders across samples of all three 170 

disease categories. Conversely, Clostridium bacteria, Roseburia bacteria, Senegalimassilia 171 

anaerobia, and others were found in much lower abundance in responders. 172 

In the heatmap of microbial profiles, samples are clustered based on the similarity of their bacterial 173 

structures (Fig. 3b). Interestingly, we found that the selected bacterial markers not only 174 

differentiate responders from non-responders but also distinguish between disease categories. For 175 

instance, PSC-UC samples are clustered together, as are PSC-CD samples, while non-responders, 176 

who were all PSC-alone, also form a distinct group. Samples from the same individuals are 177 

clustered together on both the heatmap (Fig. 3b) and the PCoA plot (Fig. 3a), indicating a 178 

personalized gut microbiome, i.e., intra-individual differences are smaller than inter-individual 179 

ones. Therefore, disease categories can also be considered as a general predictor of LPD response. 180 

 181 

Gut metabolome is affected by multiple variables  182 

To better understand metabolomic parameters of LPD response, we conducted the global 183 

untargeted metabolomic analysis of all stool samples using the ultra-performance liquid 184 

chromatography-tandem mass spectrometry (UPLC-MS) (see Methods). A total of 1,428 185 

metabolites were quantified from at least one sample in this study, and a subset of 1,057 186 
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metabolites with known chemical names and corresponding identities in at least one of the 187 

following three databases: the Human Metabolome Database (HMDB) [33], the Kyoto 188 

Encyclopedia of Genes and Genomes (KEGG) database [34], and the PubChem database [35]. 189 

Metabolite compositions exhibited greater temporal variations within individuals than microbial 190 

profiles, as indicated by ordination analysis (Fig. 3a versus Fig. 3c, Fig. S4a versus Fig. S4c), 191 

revealing that after dietary interventions, samples from the same individuals at different time points 192 

were interspersed with samples from others, leading to a mixed clustering pattern. Using the 193 

previously described multivariate linear regression model, we identified 29 metabolomic markers 194 

associated with clinical outcomes (p-value < 0.05 and q-value < 0.2) (see Methods, Formula 1). 195 

Of these, 27 metabolites were positively associated with LPD responders, while 2 metabolites were 196 

negatively associated (Fig. 3d). The intensity of metabolite markers in LPD responders versus 197 

LPD non-responders was less distinctive than that observed with microbial markers (Fig. 3d). 198 

Additionally, in contrast to microbial markers, clustering based on metabolite markers composition 199 

did not show a clear correlation with disease category (Fig. S6). Moreover, the observable intra-200 

individual variation in these markers after dietary intervention indicates baseline metabolic profile 201 

cannot serve as a reliable predictor of response outcome to diet intervention, unlike microbial 202 

markers. 203 

 204 

Sulfur-related metabolites predict the LPD-induced changes  205 

Diet-induced temporal changes in metabolite profiles were further analyzed to determine the 206 

primary mechanism underlying the effect of LPD. We employed multivariate linear regression 207 

models, which are different from those described earlier, to distinguish metabolite markers under 208 

LPD intervention (W4 and W8) from baseline (W0), incorporating the individual as a random 209 

effect and disease category, age, gender, and BMI as fixed effects (see Methods, Formula 2). We 210 

identified 39 metabolite markers that significantly changed throughout LPD compared to baseline 211 

(p-value < 0.05 and q-value < 0.25), 21 of which have known chemical annotations. Of these, 6 212 

(or 15) metabolites’ abundances increased (or decreased) with LPD. Notably, the majority of 213 

depleted metabolites (8/15) were either amino acids or fatty acids. Among the 6 enriched 214 

metabolites, four were classified as carbohydrates (n=1), medium-chain hydroxy acids (n=1), 215 

tricarboxylic acids (n=1), or quinoline carboxylic acids (n=1) (Fig. 4a). 216 

To identify metabolic pathways that are significantly altered, we performed metabolite set 217 

enrichment analysis (MSEA) [36, 37] using all the 21 metabolite features that significantly 218 

changed throughout treatment and with known chemical names. We found significant changes in 219 

purine metabolism (MetaboAnalyst v5.0, p-value = 0.0083), sulfur metabolism (p-value = 0.0083), 220 

and biotin metabolism (p-value = 0.021) with LPD. Notably, sulfur metabolism had the highest 221 

enrichment ratio (enrich = 6.26), suggesting it may be a primary mechanism behind the effect of 222 

LPD (Fig. 4b). 223 
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To extract metabolites potentially converted from or to sulfur-containing chemicals, out of the 224 

1,043 detected metabolites, we identified 40 sulfur-related metabolites referenced in the SMILES 225 

database [38]. Four key metabolites were found to have significantly changed (Fig. 4c-f & Fig. 226 

4k). Methionine (Wilcoxon signed-rank test, p-value=0.039 at W4) and its oxide methionine 227 

sulfone (Wilcoxon signed-rank test, p-value=0.015 at W8) were significantly depleted compared 228 

to baseline. This suggests that reduced protein intake led to a continual decrease in methionine and 229 

methionine sulfone in the gut. Taurine significantly enriched by W8 (Wilcoxon signed-rank test, 230 

p-value=0.047) compared to baseline. Cysteine level varied over time, increasing at W4 but 231 

decreasing at W8. Notably, cysteine intensity changes showed a significant negative association 232 

with ALP changes, indicating that cysteine accumulation correlates with lower ALP values 233 

(Spearman correlation: R = -0.42, p-value= 0.0172) (Fig. 4j). Furthermore, in association with 234 

taurine accumulation, significant changes in luminal bile acids were observed. Notably, we found 235 

the levels of cholic acid was significantly elevated with LPD, while taurocholic acid were 236 

significantly decreased with LPD (Fig. 4k & Fig. S7, pathways referred to KEGG database [45]) 237 

A complete list of significantly changed sulfur-containing metabolites (n=45) and bile acids (n=19) 238 

is in Table S1. 239 

 240 

Changes in functional metagenomic features associated with LPD intervention 241 

To explain the microbial contributions to the metabolite variations and to understand the temporal 242 

changes of functional consequences of the microbial community leading to response, we profiled 243 

gene families in all stool samples. Based on the shotgun metagenomic sequencing data, we 244 

analyzed the functional gene profiles using HUMAnN3.6 and identified 2,427 enzymes (KOs) 245 

from different bacterial species. Although the functional pathways were relatively stable across 246 

individuals and across times (Fig. S8), due to microbial functional redundancy, we then selected 247 

genes that significantly changed throughout dietary intervention in LPD responders by fitting a 248 

multivariate linear model to each enzyme, adjusting for the random effect of each individual and 249 

other covariates (see Methods, Formula 2). In total, 99 (or 11)genes significantly increased (or 250 

decreased) at W4 and W8 compared to baseline (W0) (target p-value < 0.05). 251 

We focused on genes involved with sulfur metabolism to decipher the relationship between sulfur-252 

related metabolite changes and microbial functional changes. We referred to a comprehensive list 253 

of 74 genes involved in microbial sulfur metabolism in humans [39, 40]. Of these, 27 were detected 254 

in at least one sample in this study, with 6 (or 5) of these genes significantly decreasing (or 255 

increasing) during intervention in LPD responders (Wilcoxon rank-sum test, p-value < 0.05), and 256 

4 genes increasing with marginal significance (0.05 < p-value < 0.06) (Fig. 4k & Table S2). 257 

Interestingly, LPD led to a reduced amount of cysJ, a critical enzyme for producing hydrogen 258 

sulfide (H2S) from sulfite, and a reduced amount of dycD, key for H2S production from cysteine 259 

(Fig. 4k) [39, 40]. Conversely, the cysK gene, involved in metabolizing H2S in the biosynthesis of 260 

cysteine, increased throughout LPD (Fig. 4k) [39, 40]. Similarly, there was an increase in the bsh 261 
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gene that metabolizes taurine and aids in the deconjugation of tauro-conjugated bile acids excreted 262 

to the gut from the biliary tree (Fig. 4k) [41]. These findings highlight the relationship between 263 

microbial functional profile with metabolite changes, supporting the potential mechanistic role of 264 

altered sulfur metabolism in attenuating luminal inflammation and enhancing ALP reduction in 265 

PSC. 266 

 267 

Bacterial species associations with functional genes 268 

Given the significant changes in microbial functional profiles, we explored the bacterial species 269 

connected to these enzymes. We constructed a large-scale association network among functional 270 

genes, metabolites, and bacterial species. To identify covariations strictly linked to diet change, we 271 

first residualized each feature in either measurement type using the same multivariate model 272 

employed to determine differential changes in responders during LPD intervention (see Methods, 273 

Formula 2). This residualization process, using longitudinal measurements, minimizes inter-274 

individual variation and highlights within-person associations over time, considering diagnostic 275 

categories as covariates. The resulting network contained 74 edges linking genes and metabolites, 276 

906 edges between genes and species, and 57 edges linking gene pairs, where at least one 277 

connected gene was sulfur-related and the paired correlation was significant (Spearman correlation 278 

FDR < 0.05) (Fig. 5a & Table S3). The network encompassed 331 nodes spanning features from 279 

three measurement types. tauD, a gene converting taurine to sulfite (further convertible to H2S) 280 

(Fig. 4k), was central in the network with the most connections (n = 174) to different bacterial 281 

species. However, for most of these species (90.2%), the abundance change of a single species was 282 

not significant (multivariate model p-value < 0.05). Eggerthella lenta, significantly positively 283 

associated with tauD (Spearman correlation FDR < 0.05) (Table S3), showed a marked decrease 284 

in abundance during LPD intervention (Wilcoxon rank-sum test p-value = 8.7e-3; multivariate 285 

model: p-value = 0.016) (Fig. 5d, Fig. S9 & Table S4). This species is critical in diet-induced 286 

changes, because it is also linked to dmsC (K00185), involved in the conversion from methionine 287 

to sulfite (Fig. 4k), estimating via the taxonomic stratified functional profile by HUMAnNv3.6, 288 

and carries 10 other genes associated with sulfur metabolism, including iscS, and ahcY, which are 289 

genes significantly reduced with LPD (Wilcoxon rank-sum test, p-value < 0.05) as well (Table 290 

S2). Genes cysJ and dcyD carried the second and fourth most connections, contributed by 92 and 291 

74 different species, respectively (Fig. 5a & Table S3). These two genes were significantly 292 

interrelated (Spearman correlation coefficient = 0.95, R = 5.06e-11) and associated with other 293 

reduced genes including tauD, dmsC, aspC, and iscC. However, these genes were contributed by 294 

more than a single bacterium because no significant changes were found in any single species in 295 

cysJ or dcyD based on stratified abundance. bsh, a gene that metabolizes taurine and aids in the 296 

deconjugation of tauro-conjugated bile acids, did not exhibit positive correlations in any species 297 

in the complex association network. However, the taxonomic stratified analysis showed a 298 

significant increase in the abundance of bsh in Roseburia intestinalis in LPD responders (Wilcoxon 299 

rank-sum test, p-value = 1.7e-3), a decrease in the SCD group and no change in LPD non-300 
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responders (Fig. 5b & Table S5). Notably, Roseburia intestinalis is a key bacterium in sulfur 301 

metabolism, containing 10 relevant genes that significantly changed, including cysK, metK, dcm, 302 

metB, metY, luxS, and others (Fig. 5c & Table S5). Not only gene abundances, the bacterial 303 

abundance of Roseburia intestinalis showed a marked increase in LPD responders (Wilcoxon rank-304 

sum test: p-value = 3.8e-3; multivariate model: p-value = 4.4e-4) (Fig. 5d, Fig. S8 & Table S4).  305 

 306 

DISCUSSION 307 

The relationship between diet-microbiome-host interactions and their influence on the course of 308 

PSC is complex and poorly understood. To our knowledge, this is the first randomized controlled 309 

trial comparing the effects of two diets to assess a biochemical improvement in PSC through their 310 

modulatory effects on the gut microbiome. We observed that protein restriction was associated 311 

with improvement in ALP, while a diet limited in carbohydrates but not protein yielded no such 312 

benefit.  313 

Moreover, the integration of multi-omics measurements, including state-of-the-art whole 314 

metagenomic sequencing and untargeted metabolite measurements, enabled us to reveal 315 

significant diet-induced changes in sulfur metabolism, purine metabolism, and biotin metabolism. 316 

Previous studies have suggested that H2S can be generated from multiple sulfur-containing amino 317 

acids, or from sulfate-reducing bacteria [19, 42]. In turn, H2S overproduction inhibits the 318 

cytochrome c oxidase activity in the human mitochondrial respiratory chain, thus disrupting the 319 

mitochondrial energy metabolism and promoting mucosal inflammation [43]. Although a 320 

potentially detrimental role of H2S has been linked to intestinal dysbiosis, much less is known 321 

about its relationship to liver disease progression. Our study provides evidence of significant diet-322 

induced changes in sulfur-containing metabolites and related enzymes. Notably, decreased protein 323 

intake led to reduced levels of methionine and its oxide, associated with lower microbial enzymatic 324 

activity, particularly in enzymes involved in H2S production. We also observed a decrease in H2S-325 

producing bacteria, including Eggerthella lenta, significantly associated with enzymes like tauD, 326 

dmsC, iscS, and ahcY. Thus, our data confirm, from various perspectives, that a low-protein diet 327 

regulates H2S production by correcting the imbalance in sulfur metabolism. 328 

Alterations in sulfur metabolism as the primary mechanism for the beneficial effects of low protein 329 

are also reflected in the accumulation of taurine and cysteine. This accumulation results from 330 

increased activity of the bsh gene, associated with taurine accumulation, and the malY and metB 331 

genes, linked to cysteine production, when the conversion of taurine and cysteine to H2S was 332 

significantly reduced, as discussed previously. An unhealthy gut microbiome that lacks the 333 

required deconjugation of host primary bile acids into secondary bile acids, impairs liver and gut 334 

function, in addition to overall health [44, 45]. Importantly, our data showed that taurine 335 

accumulation and cholate increase correspond with the increase of deconjugation genes, such as 336 

bsh, in response to taurocholate—a taurine-conjugated bile acid, indicating amelioration of the 337 

imbalanced gut microbiome in PSC patients with restricted protein intake. Intriguingly, the 338 
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bacteria found to increase after LPD, primarily carriers of bsh, cysK, malY, and metB genes, include 339 

Roseburia intestinalis. The increase in Roseburia intestinalis, known for its beneficial role in 340 

producing beneficial short-chain fatty acids which possess anti-inflammatory properties [46, 47], 341 

suggests a rebalancing of the bacterial structure in PSC patients, where deconjugation is otherwise 342 

lacking compared with healthy individuals. Therefore, our data suggest that LPD might enhance 343 

the gut’s deconjugation of primary bile acids, offering potential protective mechanisms against 344 

inflammation and helping to restore a healthier microbial balance/composition. 345 

While the role of H2S has not been previously investigated in PSC, more has been done to 346 

investigate its role in UC with a small but largely supportive literature [48, 49]. An increase in 347 

sulfate-reducing bacteria has been associated with UC and flares in particular [50, 51]. With regard 348 

to diet, flares have been found to be associated with a higher protein diet [52]. Higher protein diets 349 

have been demonstrated to increase H2S production by intestinal bacteria increasing sulfate-350 

reducing bacteria [53]. Several interventional studies of a low sulfur diet have shown to be of 351 

benefit in UC though more detailed investigations into the metagenomic and metabolomic 352 

elements and pathologic pathways have not been part of those studies [54]. Still, the intimate 353 

connection between UC and PSC would suggest these studies might be relevant and H2S may offer 354 

a potential physiologic link between these diseases. 355 

In addition to our findings regarding sulfur metabolism, we were able to identify microbial 356 

signatures that can be used to predict response to LPD. Besides, we observed that the majority of 357 

responders had concomitant UC, and that the predictive microbial signatures were enriched in all 358 

baseline samples of PSC-UC participants. Collectively, these findings serve to enhance patient 359 

selection for this intervention and warrant further exploration in larger cohorts. 360 

Although this study provides significant insights into better understanding PSC pathophysiology, 361 

there are several limitations, including a small cohort size and lack of a traditional control arm. 362 

Future inclusion of healthy controls or IBD-only controls could offer a more comprehensive 363 

understanding of mechanisms involved in disease progression. Additionally, while the 8-week-364 

long intervention and 4-week self-guided follow-up provided interesting findings, exploring the 365 

longer-term effects and potential changes after prolonged intervention remains a key area for future 366 

research.  367 

Overall, the well-documented dietary adherence and records of different subgroups of individuals 368 

with PSC, in combination with high-throughput technologies and the multi-omics approach, 369 

enabled us to determine the clinical, microbial and metabolic signatures associated with 370 

responsiveness to dietary interventions. This study enhanced our understanding of PSC 371 

pathogenesis and paved the way for large-scale dietary intervention studies in PSC. 372 

 373 

 374 

 375 
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METHODS 376 

Study setting and design. This was a decentralized randomized controlled trial across the United 377 

States. Participant enrollment occurred between August 28, 2020 and June 9, 2021. Recruitment 378 

occurred in-person and by video remotely, and participants were able to conduct the study remotely. 379 

Recruitment was facilitated via physician referral, patient advocacy organizations (PSC Partners 380 

Seeking a Cure and Consortium for Autoimmune Liver Disease), and self-referral.  381 

Eligible participants were randomized in 1:1 fashion to the LPD and SCD at a screening visit (week 382 

0, W0, referred to as “baseline”) during which medical records were reviewed, eligibility was 383 

assessed and bloodwork, stool, baseline Food Frequency Questionnaire (FFQ) and Patient-384 

reported Outcome Measures (PROMs) were collected. Thereafter, participants were given two 385 

weeks for education on appropriate guidelines for the assigned dietary intervention as well as 386 

procurement of food. The dietary intervention began at week 2 (W2) and lasted for 8 consecutive 387 

weeks until week 10 (W10) under dietitian supervision, with an option to continue self-directed 388 

for an additional 4 weeks (W14). There was a total of 7 video visits with a research dietitian. 389 

Additional dietary counselling was also offered between screening and baseline visits to provide 390 

further instruction and support. Three-day food diaries, bloodwork, stool samples and PROMs 391 

were collected at 7 points throughout the study (Fig. 1a).  392 

Eligibility criteria. Adults between 18 and 70 years of age with large-duct PSC diagnosed by 393 

typical cholangiogram findings with no evidence of a secondary cause of sclerosing cholangitis 394 

and with serum ALP >1.5 times the upper limit of normal (ULN) were potentially eligible for 395 

enrollment. Participants with concomitant UC or CD were eligible if the Simple Clinical Colitis 396 

Activity Index or Harvey-Bradshaw Index, respectively, were <5. Additional inclusion criteria 397 

included platelet count > 150,000/mm3, serum albumin > 3.3 g/dL, serum creatinine < ULN, and 398 

stable dose or no use of ursodeoxycholic acid (UDCA) for at least 3 months prior to enrollment 399 

for those taking and not taking UDCA respectively. Proficiency in English and ability to complete 400 

PROMs independently was also a requirement. Exclusion criteria included pregnancy or lactation, 401 

ALT above 10 times the ULN, total bilirubin at least twice the ULN, INR >1.2, decompensated 402 

cirrhosis, small duct PSC, other etiologies of liver disease, positive AMA, history of liver 403 

transplantation, history of hepatocellular carcinoma or cholangiocarcinoma, ascending cholangitis 404 

within 90 days of enrollment, antibiotic use within 6 weeks prior to enrollment or planned during 405 

the study period, current vegetarian or adherence to the SCD, nut allergy given that nut flour is a 406 

dietary staple of many SCD recipes and nut allergy could compromise diet adherence, celiac 407 

disease, history of malignancy within 5 years with the exception of adequately treated cervical 408 

carcinoma in situ and basal or squamous cell carcinoma, inability to complete a dietary log, or 409 

concurrent participation in another therapeutic clinical trial. Medical records of all individuals 410 

were reviewed at the screening visit to determine eligibility. 411 

 412 

Dietary interventions. The LPD was developed according to 2015-2020 USDA Dietary 413 

Guidelines of a vegan diet which state the diet should be rich in grains, legumes, nuts and other 414 
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plant-based proteins, with a focus on increased consumption of fruits, vegetables and healthy fats 415 

[55]. In addition to these guidelines, the diet restricted high-sulfate items, defined as 416 

containing >100mg sulfur per 100g of food item. A typical vegan diet contains approximately 417 

2.3g/day of sulfur-containing amino acids, falling within the estimated range of appropriate sulfur 418 

content of 2.1-3.0 g/day [56]. The SCD followed the dietary guidelines detailed in the book 419 

Breaking the Vicious Cycle by Elaine Gottschall [57]. The detailed LPD and SCD dietary guidance 420 

is provided in Table S6. Participants were provided with education materials, recipes and a food 421 

procurement stipend for their assigned diet at the screening visit. Total daily energy intake was 422 

calculated by the Mifflin St. Jeor equation using an activity factor of 1.3 reflecting light activity 423 

and exercise level.  424 

Assessment of diet composition and adherence. Habitual diet was recorded using a validated 425 

FFQ at the screening visit (week 0) that queried dietary habits over the preceding year. During the 426 

intervention phase, 3-day food diaries were recorded at five time points (weeks 2, 4, 6, 8, 10) (Fig. 427 

1a). One of these days included a weekend. Participants recorded diet in real-time via 428 

photodocumentation of each meal, snack and beverage using a smartphone application that was 429 

customized for this study. The application transmitted time-stamped photographs taken during the 430 

recording period, along with a reference-sized study ruler to assess relative sizes of food items. 431 

Caloric intake and micronutrient composition of each meal was calculated and analyzed using 432 

Food Processor, a program with the ability to quantify protein intake, as well as cysteine, 433 

methionine and taurine content as a proxy for sulfur. 434 

In order to optimize compliance, the research team reviewed dietary records in real-time and 435 

discussed barriers to compliance with participants when appropriate. Dietary analysis was also 436 

performed at the conclusion of each diet recording period to further assess compliance. Feedback 437 

was provided to participants via the application if there were fewer than 2 entries per day or if a 438 

24-hour period elapsed without any recording. The study coordinator followed up by email and/or 439 

telephone if no confirmation was received from the participant within 24 hours of the 440 

communication.  441 

Outcome measures. The outcome measures were response in alkaline phosphatase (ALP), 442 

Alanine Aminotransferase (ALT) and Aspartate Aminotransferase (AST).  443 

Whole Metagenomic Sequencing. Stool samples were collected at home frozen within 15 444 

minutes of collection and maintained at -80 ℃ before sending to Diversigen for DNA extraction, 445 

whole-genome shotgun library preparation, and Illumina sequencing. The metagenomics 446 

sequencing targeted approximately 5 Gb of sequences per sample, utilizing 151 base pair paired-447 

end reads. 448 

Read-level quality control and metagenomic profiling. Raw sequencing reads underwent 449 

quality control (QC) using KneadData version 0.12.0 450 

(https://huttenhower.sph.harvard.edu/kneaddata/). Briefly, the first step of this process utilizes 451 

Trimmomatic version 0.39 for forward/reverse adapter removal, low-quality reads trimming and 452 

https://huttenhower.sph.harvard.edu/kneaddata/
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tandem repeats removal using the default parameters. Contaminants from the host (human) 453 

genomes were subsequently identified and removed by mapping against the reference database 454 

(hg37_and_human_contamination) using Bowtie2 version 2.5.1. 455 

After QC, each dataset contained over 2.8 Gb of clean, paired-end reads. Clean reads were then 456 

taxonomically profiled using MetaPhlAn4 version 4.0.6 [58], which includes an updated database 457 

significantly larger than the previous version 3.1. Species-level relative abundances were 458 

considered all this study. Species that failed to exceed 0.1% average relative abundance or were 459 

detected in less than 4 samples were excluded. Functional profiling was performed using 460 

HUMAnN3 version 3.6 under default parameters according to the UniRef90 definition to get the 461 

relative abundance of gene families in the unit of reads per kilobase (RPK) [59]. And MetaCyc 462 

provides pathway definitions to group gene families to get pathway abundance and coverage. The 463 

abundances of gene families were further transformed into the unit of copies per million (CPM), 464 

and we regrouped the gene families to KEGG Orthogroups (KOs), to filter out 74 gene families 465 

that were involved in the microbial sulfur transformation. 466 

Global untargeted metabolomics. Stool samples were sent to Metabolon for global untargeted 467 

metabolomics following the standard procedure. Briefly, samples were pretreated to remove 468 

proteins and recover chemically diverse metabolites. The resulting extract was divided into five 469 

fractions: two for analysis by two separate reverse phases (RP)/UPLC-MS/MS methods with 470 

positive ion mode electrospray ionization (ESI), one for analysis by RP/UPLC-MS/MS with 471 

negative ion mode ESI, one for analysis by HILIC/UPLC-MS/MS with negative ion mode ESI, 472 

and one sample was reserved for backup.  All methods utilized a Waters ACQUITY ultra-473 

performance liquid chromatography (UPLC) and a Thermo Scientific Q-Exactive high 474 

resolution/accurate mass spectrometer interfaced with a heated electrospray ionization (HESI-II) 475 

source and Orbitrap mass analyzer operated at 35,000 mass resolution. Raw data were extracted, 476 

peak-identified and QC processed using the contractor’s hardware and software. Compounds were 477 

identified by comparison to library entries of purified standards or recurrent unknown entities. The 478 

intensity of each compound was quantified using area-under-the-curve.  479 

Metabolite-level quality control and pretreatment. Metabolite intensities were normalized as z-480 

scores: 
𝑥𝑖−𝜇

𝜎
 , where,𝑥𝑖  represents the original metabolite intensity, 𝜇  is the mean value of that 481 

metabolite intensity across all samples, and 𝜎 is the standard deviation of that metabolite intensity 482 

across all samples. Subsequently, missing values were imputed using the minimum normalized 483 

value for each compound. The normalized and imputed values were used in the association and 484 

multivariate linear regression analyses throughout the context. With the exception of the estimation 485 

of temporal changes of metabolite intensity in each individual, the original intensities of specified 486 

metabolites in W0 were subtracted from their original intensity in W4 (or W8, W14). 487 

Statistical analyses. Prior to downstream analysis, metagenomic and metabolomic were combined. 488 

Samples with complete profiles of both types were used in the downstream analysis, totalling 64 489 

samples. Three samples with only metabolomics datasets were excluded. From a total of 108 490 
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nutrients, 59 nutrient features were selected based on domain knowledge. These features, measured 491 

in various units, were log-transformed before we adjusted them for total energy intake to get the 492 

nutrient densities. This was followed by Lasso regression utilizing the `glmnet` library in RStudio 493 

to select significant dietary features (predictors) that are non-zero [60]. The response variable was 494 

the corresponding ALP value. Subsequently, we incorporated the selected features and included 495 

patient ages as an additional variable to construct a linear model. The coefficients and p-values 496 

were extracted for statistical significance. For each patient, the Change of ALP value is estimated 497 

by subtracting the baseline ALP (W0) from the ALP at W4 (or W8, W14), then dividing by the 498 

baseline ALP (W0). Then for each disease category (PSC-UC/PSC-CD/PSC-alone), the Potential 499 

to Response was further calculated as the number of samples with reduced ALP value divided by 500 

the total number of samples. Alpha diversity of gut microbiota was estimated using the Shannon 501 

index and microbial richness (detected species counts). Principal coordinates analysis was 502 

performed using the bray-curtis distance of the relative abundance of species in all samples. 503 

Metabolite set enrichment analysis (MSEA) was conducted quantitatively through the online 504 

platform of MetaboAnalyst 5.0 [36].  505 

Linear regression models. We used multivariate linear regression models to identify potential 506 

microbial markers distinguishing responders from non-responders after LPD. Abundances were 507 

fitted with the following species-specific linear mixed-effects model, 508 

    feature ~ response outcomes + diagnostic categories + gender + age +BMI + (1 | individual) + ε  509 

(Formula 1) 510 

In each species-specific multivariate model, the abundance of each species was modeled as the 511 

function of the binary response outcomes (responders/non-responders, with non-responder as 512 

reference) within each individual (as random effect), while adjusting for diagnostic categories 513 

(PSC-UC/PSC-CD/PSC-alone, with PSC-alone as reference), genders (male/female, with male as 514 

reference), age (continuous variable) and BMI (continuous variable). MaAsLin2 [61] in RStudio 515 

was the package used to fit the model, with p-values adjusted for multiple hypothesis testing and 516 

a target FDR of 0.2. 517 

Separately, another series of multivariate linear regression models were fitted to find a differential 518 

abundance of features after LPD versus baseline using microbial profile, metabolic profile, and 519 

microbial functional profile, respectively. The model is as below, 520 

       feature ~ treatment stages + diagnostic categories + gender + age +BMI + (1 | individual) + ε  521 

(Formula 2) 522 

The difference between this model and the previous one is that the abundance of each feature is 523 

modeled as the function of the treatment stage (baseline/after LPD, with baseline as reference) 524 

instead of response results, while the rest fixed effect and random effect are not changed. The 525 

baseline corresponds to samples in W0, while after LPD corresponds to samples in W4 and W8. 526 
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Only those with a response of ALP were considered to fit these models to explain the dietary effects 527 

of the LPD. 528 

Clinicaltrials.gov ID: NCT04678219 529 
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Table 1 Patients’ characteristics at inclusion. 

 LPD (n=10) SCD (n=10) 

Age at inclusion (years) a 43.79 ± 10.05 43.95 ± 8.99 

Gender (male/female) 10 (7/3) 10 (4/6) 

Diagnosis b   

  PSC-UC 6 (60%) 4 (40%) 

  PSC-CD 1 (10%) 2 (20%) 

  PSC-alone 3 (30%) 4 (40%) 

BMI a 26.89 ± 6.69 23.53 ± 3.77 

Smoker=yes b 3 (30%) 2 (20%) 
a Mean ± SD 685 
b n (%) 686 

UC, ulcerative colitis; CD, Crohn’s disease; IBD, inflammatory bowel disease; PSC, primary 687 

sclerosing cholangitis; BMI, Boby mass index. 688 

  689 
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Figure 1. Overview of the study design. Two dietary interventions: Low protein/low sulfur diet 692 

(LPD) and Specific carbohydrate diet (SCD) were compared. We profiled fecal metagenomic and 693 

metabolomic data at four time points. 3-day dietary records, co-diagnosis of IBD (UC, CD, or non-694 

IBD), and clinical parameters were collected. After dietary interventions, the response outcomes 695 

and temporal trajectory were analyzed and interpreted through multiple perspectives. 696 

697 
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 698 

Figure 2. LPD dietary intervention benefits patients with PSC, whereas SCD exacerbates the 699 

condition. a) Protein intake in LPD and SCD. Each line represents an individual. Protein intake 700 

amount was adjusted by the total energy intake to estimate the nutrient density. b) Percent change 701 

in alkaline phosphatase (ALP) from baseline before, during and after dietary intervention. Each 702 

line represents an individual. c) Coefficients of selected nutrient features after Lasso regression, 703 

indicating that reduced methionine intake significantly lowers ALP values. Nutrients with 704 

significance in the regression model were plotted, with *** denoting strong significance (p-value 705 

< 0.001), ** very significant (0.001< p-value < 0.01), * significant (0.01< p-value < 0.05). d-f) 706 

Variations in ALP values and the potential rates to respond indicated differing responses among 707 

three disease categories, d) PSC-UC, e) PSC-CD, and f) PSC-alone. The Wilcoxon rank-sum test 708 

was employed to assess significance between LPD and SCD, with *** denoting strong significance 709 

(p-value < 0.001), and ‘ns’ indicating no significant difference (p-value > 0.05).  710 
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 711 

Figure 3. Fecal metagenomics predicts response outcomes. a) PCoA plot of the gut microbial 712 

compositions of LPD samples, differentiated by response outcomes (blue for responders: 713 

individuals showing decreased ALP, and pink for non-responders: individuals showing increased 714 

ALP, shows that LPD responders have distinct microbial structure from LPD non-responders. 715 

Arrows were drawn to connect samples from the same individuals in chronological order. b) 716 

Heatmap of bacterial species markers that can distinguish LPD responders from non-responders 717 

and the abundance distribution of these markers correlate with disease categories, as determined 718 
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by multivariate linear regression models (target p-value < 0.05 and FDR < 0.2). Each column in 719 

the heatmap is a sample, and all the samples including both LPD responders and LPD non-720 

responders are clustered based on the similarity of the bacterial composition. Each row is a species, 721 

and species are clustered based on the similarity of the distribution pattern across samples of the 722 

specified species. c) PCA plot of the gut metabolite compositions of LPD samples, differentiated 723 

by response outcomes (blue and pink), with arrows to connect samples from the same individuals 724 

in chronological order. d) Heatmap of metabolite markers that can distinguish LPD responders 725 

from non-responders. The columns in this heatmap are arranged to correspond directly with the 726 

order of the columns in the microbial profile heatmap in Fig. 3b.  727 
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Figure 4. The fecal metabolomics predicts the disease improvement trajectory under LPD in 729 

those LPD responders. a) Volcano plot derived from multivariate linear regression models, using 730 

time series metabolite intensity profiles from W0, W4, and W8 and adjusting for covariates 731 

including disease categories. The metabolites were colored according to the class subclasses. b) 732 

Metabolite set enrichment analysis (MSEA) of selected metabolites with significant diet-induced 733 

changes after the regression model in Fig.3a (MetaboAnalyst v5.0, p-value < 0.05). c-f) Temporal 734 

changes in four key sulfur metabolism metabolites, including methionine, methionine sulfone, 735 

taurine, and cysteine. Bars are colored blue to represent metabolites that decreased after LPD, and 736 

orange for those that increased. The Wilcoxon signed-rank test was employed to assess 737 

significance between sampling time points, with * denoting significance (0.01< p-value < 0.05), 738 

and ‘ns’ indicating no significant difference (p-value > 0.05). g-j) The relationship between each 739 

of the four metabolites and ALP values tested using Spearman correlation. Cysteine shows a 740 

negative association with ALP values, whereas the other three metabolites have no significant 741 

association (p-value < 0.05). k) Characterized and proposed sulfur-related metabolic pathways in 742 

response to LPD intervention benefiting patients with PSC. Metabolites and genes that increased 743 

are colored red, those that decreased are blue, while those without significant changes are gray 744 

(Wilcoxon signed-rank test, p-value < 0.05). Abbreviations used are as follows: MSF: methionine-745 

sulfone; Hyc: homocysteine; Ctt: cystathionine; LA: L-alanine; 3-MP: 3-Mercaptopyruvate; 746 

Tauro-CA: taurocholic acid; CA: cholic acid.  747 

  748 
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Figure 5. Microbial sulfur metabolism and associated bacterial species. a) Interactions among 750 

microbial sulfur metabolism genes, related metabolites, and relevant microbial species. Nodes 751 

were colored blue to represent features that decreased after LPD and red for those features that 752 

increased. Edge gradients represent the coefficients of Spearman correlation between the 753 

abundance (or intensity) of nodes. Only associations deemed significant, with FDR < 0.05, are 754 

shown here. b-c) Shifts in the stratified abundance of bacterial species for two represent genes (bsh 755 

and cysK) after dietary treatments. Each column is a sample, with the left panel on a purple 756 

background representing LPD responders under intervention, and the right panel on a pink 757 

background corresponding to samples from the SCD treatments. We subtracted the stratified 758 

abundance in each sample from its corresponding baseline to calculate the gene’s change amount. 759 

Each column contains stacked bars, with each bar representing the change in stratified abundance 760 

of a specific bacterial species identified as hosts of the specified genes. Values below the y=0 line 761 

indicate a decrease, while those above indicate an increase. Species are colored only if their 762 

stratified abundances showed significant changes (either increases or decreases) at W4 (or W8) 763 

compared to the baseline in LPD responders. The unit ‘cpm’ represents counts per million. d-e) 764 

Temporal changes of two key bacteria involved in sulfur metabolism: d) Eggerthella lenta and e) 765 

Roseburia intestinalis. Bars are colored blue to represent metabolites that decreased after LPD, 766 

and orange for those that increased. The Wilcoxon rank-sum test was employed to assess 767 

significance between sampling time points, with ** denoting very significant changes (0.001< p-768 

value < 0.01), * significant (0.01< p-value < 0.05), and ‘ns’ indicating no significant difference (p-769 

value > 0.05).  770 

 771 


