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Abstract 

Background: Pneumonia is the leading cause of preventable mortality under five years 

of age. Appropriate case management is as essential as disease prevention interventions, 

especially in primary care settings. Computer science has been used accurately and widely for 

pneumonia diagnosis; however, prognosis studies are relatively low. Herein, we developed a 

machine learning-based clinical decision support system tool for childhood pneumonia to 

provide prognostic support for case management. 

Methods: We analyzed data from 437 children admitted to our clinic with a pneumonia 

diagnosis between 2014 and 2020. Pediatricians encoded the raw dataset according to 

candidate features. Before the experimental study of the machine learning algorithms of 

Pycaret, SMOTE-Tomek was utilized for managing imbalanced datasets. The feature selection 

was made by examining the SHAP values of the algorithm with the highest performance and 

re-modeled with the most important clinical features. We optimized hyperparameters and 

employed ensemble methods to develop a robust predictive model. 

Results: Optimized models predicted pneumonia prognosis with %77-88 accuracy. It 

was shown that severity could be determined over %84 by five clinical features: hypoxia, 

respiratory distress, age, Z score of weight for age, and antibiotic usage before admission. 

Conclusions: In this experimental study, we demonstrated that contemporary data 

science methods, such as oversampling, feature selection, and machine learning tools, are 

promising in predicting the critical care need of patients. Even in small-size samples like our 

study, ML methods can reach current wisdom. 

Keywords: childhood pneumonia, machine learning, clinical decision support system, case 

management. 
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Highlights 

● Pneumonia accounts for 14% of mortality in children under 5, with over 740,000 deaths 

in 2019 alone. 

● WHO and UNICEF's GAPPD aims to cut mortality rates by focusing on vaccinations, 

sanitation, breastfeeding, and addressing pediatric HIV. 

● Accurate diagnosis and timely treatment can reduce pneumonia mortality by up to 28%, 

yet diagnosing can be challenging. 

● Many in underdeveloped regions lack access to essential equipment and trained staff, 

exacerbating mortality rates. 

● Data science and machine learning offer promising solutions for pneumonia 

management, especially in LMICs, with a focus on prognostic support. 
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1. Background 

Pneumonia is responsible for 14% of all mortality under the age of 5 and is included in 

WHO reports as the cause of death in 740,180 children in 2019 alone [1]. Global Action Plan 

for the Prevention and Control of Pneumonia and Diarrhea (GAPPD), which was released by 

WHO and UNICEF, and have aimed to reduce the mortality rate from pneumonia and diarrhea 

under five years old [2], [3]. They have set targets as vaccination, water, and air sanitation, 

exclusively breastfeeding in the first six months, and eliminating pediatric HIV cases, along 

with appropriate pneumonia and diarrhea case management. 

It has been demonstrated that timely and accurate diagnosis of pneumonia and 

appropriately initiated treatment reduces mortality by up to 28% [4], [5]. Diagnosis can often 

be difficult, since the clinical presentation of pneumonia in children is variable [6]. For this 

reason, WHO has published the Integrated Management of Pediatrics (IMCI) guidelines, which 

guide physicians for diagnosis, treatment, danger signs of pneumonia [7]. Childhood 

pneumonia can easily be preventable and treatable with low-cost and low-tech medication at 

primary care [1]. However, this preventable health problem continues to be the most important 

cause of mortality, especially in underdeveloped countries and regions, due to the lack of 

equipment and trained human resources. In addition, it has been shown that the seeking for 

health services by families living in these regions causes delays in providing appropriate 

treatment and causes progression in disease severity [8]. This shows that case management 

should be improved as well as disease prevention interventions, especially in regions with 

limited resources. 

Data Science can provide actionable evidence for effective clinical intervention in 

pediatric diseases in the future [9] and can reduce inequality in healthcare [10]. Also, using big 

data and machine learning technologies is promising for childhood pneumonia case 

management, especially in low-income and middle-income countries (LMICs) [11]. Because of 
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their flexibility and high accuracy, machine-learning models are used in medicine in the fields 

of prediction (prognostics) and classification (diagnostics) [9]. It has been seen that the vast 

majority of data science studies on pneumonia aim to provide diagnostic support to the 

physician by processing radiologic images [12]. However, diagnostic equipment is mostly 

unavailable in LMICs and primary care units. Therefore, physicians need prognostic support 

algorithms that distinguish between serious and non-serious cases. 

We aimed to develop machine learning-based clinical decision support system tool for 

childhood pneumonia that can be used by physicians, particularly working in LMICs in order 

to ensure the effective case management of pneumonia, which is one of the 2025 goals of 

WHO [2]. 

2. Material and Methods 

2.1 Case definition and patient selection 

Our study includes pediatric patients who received inpatient treatment at our clinic 

between January 2014 and April 2020, with the diagnosis of community acquired pneumonia 

(CAP) according to IMCI guidelines and its latest revision [7], [13]. Patients who were 

neonatal age, older than 18, and hospitalized within the last 14 days were excluded. This study 

design and procedures were approved by Hacettepe University Clinical Research Ethics 

Committee with protocol number GO-20/1182. 

The medical records of 437 patients were retrospectively examined by the pediatricians, 

and they were asked to code according to the candidate features (Table 1). These variables 

were chosen based on their clinical value in clinical decision-making and their availability in 

primary care. 
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Table 1.  

Candidate Features 

Clinical Variables Laboratory Variables 

1. Age 

2. Weight 

3. Z score 

4. Gender 

5. Complaint period 

6. Comorbidity 

7. Recent Antibiotics usage  

8. Fever 

9. Cough 

10. Loss of apetit 

11. Respiratory distress 

12. Abnormal lung sounds 

13. Hypoxia 

1. Hemoglobine 

2. Leucocytes 

3. Lymphocytes 

4. Neutrophiles 

5. Platelets 

6. C-reactive Protein 

7. Albumine 

8. Sodium 

9. Aspartate aminotransferase(AST) 

10. Alanin aminotransferase(ALT) 
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The primary outcome was CAP prognosis which is scaled into two-level severe or non-

severe. This categorization was made by physician-encoders according to whether the patient 

required tertiary care referral or not. Children with poor prognoses included those admitted to 

the pediatric intensive care unit (PICU) and/or required any oxygenation and ventilation 

support. 

2.2  Data preprocessing 

Data preprocessing, analysis, visualization, and experimental setup of models were 

developed by using Python 3.9 programming language. We used Python's libraries Pandas, 

NumPy, Matplotlib, Seaborn, and Plotly for exploratory data analysis. We employed the 

PyCaret library for model development. The library is equipped with various preprocessing 

modules that enable the iterative handling of missing data using the LightGBM algorithm. 

Furthermore, we identified anomalous data points through the implementation of PyCaret's 

unsupervised anomaly detection module. We made use of Pycaret's classifier module to 

perform data preprocessing, where we normalized the numerical data using the Min-Max scaler 

method and applied the one hot encoder function to handle categorical data. 

2.3  Handling with the imbalanced dataset 

When measured balance with the Shannon entropy of the dataset, it resulted in 0.7, this 

result can be accepted as the imbalanced dataset. We handled the imbalanced dataset with 

SMOTE-Tomek, a variant of the noteworthy oversampling method named Synthetic Minority 

Oversampling Technique (SMOTE). This method oversamples the minority class, and Tomek 

Links removes samples from the majority class with overlapping values. So, the ratio of 

samples becomes 1:1. We used the Imblearn library for implementing data oversampling. 

We split our datasets into two sets using the “train_test_split” method of the SciKit-

Learn library. In the beginning, we divided 5% of the general dataset as test data in order to 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 23, 2024. ; https://doi.org/10.1101/2024.02.22.24303209doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.22.24303209
http://creativecommons.org/licenses/by-nc-nd/4.0/


prevent data leakage. The other part of the data (85%) was used for training and validation, 

85% and 15%, respectively. 

2.4  Algorithms 

Pycaret provides efficient implementations of state-of-the-art algorithms and is reusable 

among scientific disciplines. We used the Pycaret Classifier module for classification, which 

includes the following models: Ridge Classifier (Ridge), Linear Discriminant Analysis (LDA), 

Naïve Bayes (NB), Extra Tree Classifier (ET), Extreme Gradient Boosting (XGBoost), 

Random Forest (RF), Gradient Boosting Classifier (GBC), Light Gradient Boosting Machine 

(LightGBM), CatBoost Classifier (CatBoost), Logistic Regression (LR), K Neighbours 

Classifier (KNN), Decision Tree (DT), Ada Boost Classifier (AdaBoost), Quadratic 

Discriminant Analysis (QDA), Support Vector Machine Linear Kernel Classifier (SVM), and 

Dummy Classifier (Dummy). 

In our work, we considered 10-fold cross-validation. While developing our model with 

Pycaret tools, we implemented the tuning function using the Tune-Sklearn library and the 

'hyper-band' optimization algorithm to obtain a set of best-performing parameters. For 

ensembling, we also used Pycaret classifier ensemble, stack, and blender methods. Ensembling 

methods have strong evidence that they can significantly enhance the accuracy of 

classifications. After the optimization of parameters, in the last phase, we utilized the most 

common ensemble methods provided by the Pycaret library to further improve our model's 

performance (Figure-1). 
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Figure 1 

 

Figure-1: The Experimental Setup :In this figure, we illustrate the experimental process of our models. Initially, 

we cleaned the data by identifying 5% of cases as abnormal data using unsupervised learning. We then split the 

data into a Train set (85%) and a Validation set (15%) using the Pycaret classifier model. The base model with the 

highest ROC-AUC value was the RandomForest algorithm. Subsequently, we determined the optimal number of 

features as 18 using RFECV and selected the top 18 features based on Shapley values. We then balanced the 

dataset using the SMOTE-Tomek method and developed high-performing models. After optimizing the 

hyperparameters, we selected the best-performing model and created new models by using ensemble methods. In 

parallel, we developed a new model using only clinical findings for clinical prediction. For abbreviations,  Ridge 

Classifier (Ridge), Linear Discriminant Analysis (LDA), Naïve Bayes (NB), Extra Tree Classifier (ET), Extreme 

Gradient Boosting (XGBoost), Random Forest (RF), Gradient Boosting Classifier (GBC), Light Gradient 

Boosting Machine (LightGBM), CatBoost Classifier (CatBoost), Logistic Regression (LR), K Neighbours 

Classifier (KNN), Decision Tree (DT), Ada Boost Classifier (AdaBoost), Quadratic Discriminant Analysis 

(QDA), Support Vector Machine Linear Kernel Classifier (SVM), Dummy Classifier (Dummy). 
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2.5  Feature Selection and data-reducing methods 

Feature selection is a process of one-by-one evaluation to determine which features are 

effective on the result within the dataset. Irrelevant or partially relevant features can negatively 

impact ML model performance and make the ML model learn based on irrelevant features. 

These methods are aimed at eliminating irrelevant features and keeping the strong features to 

reduce the dimension of the dataset. Recursive feature elimination (RFE) is a feature selection 

method that fits a model and removes the irrelevant features until the specified number of 

features is reached. Recursive feature elimination with cross-validation (RFECV) aims to select 

the optimal number of features with permutation importance and recursive feature elimination. 

In this study, we used the RFECV module from “yellowbrick” library for selecting the 

optimum feature number. SHAP (SHapley Additive exPlanations) methodology is an 

innovative tool for explaining machine learning decision-making processes for datasets. The 

goal of the SHAP method is to present and explain the prediction with respect to the 

contribution of each feature to the predicted value. In RFECV, the features are ranked by a 

permutation importance measure. The SHAP algorithm's importance value is able to enforce 

consistency and accuracy more than the permutation approach, so we have used SHAP library 

algorithms for feature selection (Figure 2). Ultimately, RFECV algorithms showed us 18 

parameters are sufficient to explain nearly 90% of variances. A total number of 13 clinical and 

5 laboratory variables were selected according to their SHAP values (Figure 2). 
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Figure-2 

 

Feature selection Algorithms: In Figure 2, we present the results of SHAP values  which is for the 

RandomForest Classifier model with the highest ROC-AUC score in the dataset before feature selection, using the 

SHAP library's plot_summary module. The y-axis shows the importance of each feature, with the most important 

feature at the top and the least important at the bottom. The colors may represent the contribution of each feature 

to the model's prediction. For example, features that have a large positive contribution to the prediction may be 

shown in a warm color (e.g. red), while features that have a large negative contribution may be shown in a cool 

color (e.g. blue). In this example, hypoxia is the most important attribute in the plot. The presence of hypoxia 

(hypoxia = 1) causes the model to move closer to the target class, while its absence causes the model to move 

away from the target class. This predicts that hypoxia is an aggravating factor. On the other hand, evaluating the 

albumin attribute shows that high levels of albumin are protective for the target class. In summary, hypoxia is an 

adverse factor, and high albumin levels are protective. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 23, 2024. ; https://doi.org/10.1101/2024.02.22.24303209doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.22.24303209
http://creativecommons.org/licenses/by-nc-nd/4.0/


3. Results 

In this section, we present a comparison of the performance of 16 different algorithms 

for raw and pre-processed datasets. We used various evaluation metrics such as accuracy, area 

under the receiver operator characteristic curve (AUC), recall, precision, F1 score, Cohen's 

kappa (Kappa), and MCC (Matthews correlation coefficient) to assess model performance. To 

analyze model performance, all prediction experiments were conducted using ten-fold cross-

validation. Subsequently, the models were optimized, and their performances were evaluated 

on a balanced dataset using SMOTE-Tomek and feature selection. The performances of the 

three models with the highest performance (CatBoost, XGBoost, and LightGBM) were 

evaluated by applying hyperparameter optimization and ensemble methods. Table-2 compares 

the results obtained with CatBoost, XGBoost, and LightGBM among the optimized and non-

optimized results and the results of the combinations with the highest performance from the 

basic ensembling methods (ensembling, blending, and stacking methods). The highest AUC 

value was achieved by using Optimized LightGBM as the meta-model in the Stacking method.  

The optimized LightGBM in the model, developed with balanced and feature-selected 

data, was responsible for the attainment of the highest performance. Upon evaluation of clinical 

features according to SHAP values, a ranking was established based on their feature 

importance scores, with the highest score being garnered by the top five clinical features 

(hypoxia, respiratory distress, age, Z score of weight for age, and antibiotic usage before 

admission) (Supplementary - 1). The application of a workflow employing these five features, 

as done previously, resulted in the highest performance (84%), which was achieved through the 

utilization of the ensemble method, incorporating the blending method of the optimized 

CatBoost, LightGBM, and XGBoost models. 
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Table-2 : Model Performance Results 

Model Accuracy ROC-AUC Recall Prec. F1 Kappa MCC 

CatBoosta 0.77 0.85 0.75 0.91 0.82 0.52 0.54 

LightGBMb 
0.80 0.87 0.79 0.92 0.85 0.58 0.59 

XGBoostb 0.77 0.83 0.72 0.94* 0.82 0.54 0.57 

Ensemblingc 0.77 0.86 0.72 0.94* 0.82 0.54 0.57 

Blendingd 0.77 0.86 0.75 0.91 0.82 0.52 0.57 

Stackinge 0.80 0.88* 0.79 0.92 0.85 0.58 0.59 

Blendingf 0.85* 0.84 0.95* 0.85 0.90* 0.63* 0.64* 

 

* -  shows the highest score in the columns. a - The performance of unoptimized CatBoost. b - The performance values 

obtained after optimization of XGBoost and LightGBM. c - The performance of the optimized LightGBM ensembling method, 

which achieved the highest result among CatBoost, XGBoost, and LightGBM algorithms. d - The combination of optimized 

LightGBM and XGBoost with higher performance in the blending method. e - The performance of the model with optimized 

LightGBM as a meta-model in the stacking method, as it showed the highest performance. f - Employing the top five highest-

ranked clinical features, the peak performance was realized by utilizing a method that incorporated the optimized CatBoost, 

LightGBM, and XGBoost models. 

ROC-AUC : The Receiver Operating Characteristic curve and the Area Under the Curve, MCC : Matthews Correlation 

Coefficient, Prec. : Precision 
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4. Discussion 

Pneumonia, the leading cause of childhood mortality, is also one of the most common 

causes of hospitalization [3], [14]. Herein we present a contemporary approach to building an 

ML-based case management support tool that assists primary care physicians in determining 

where the case should be managed with an accuracy of more than 80%. 

The leading causes of this disease are still viral infections and co-infections in both 

children/adults and high/low-income countries [15]. In most cases, transmission occurs through 

close contact and inhalation of infected droplets [1]. Since March 2020, COVID-19 outbreak 

measures have indirectly decreased the incidence of non-COVID pneumonia and other 

respiratory-borne diseases by preventing transmission [16], [17].  

Today, there is a wide knowledge of the prevention, diagnosis, treatment, and 

management of complications in childhood pneumonia, but due to resource limitations, it is not 

possible for all physicians and patients to benefit from this. During the worldwide pandemic, 

data-driven solutions to global concerns were implemented [18]. This provides us with a 

different viewpoint on non-covid pneumonia case management. 

Since March 2020, the declaration of a global pandemic by the World Health 

Organization, a substantial amount of data about COVID-19 has been published [19]. There 

have been numerous COVID-related AI studies focused on pneumonia diagnosis by 

radiological findings [20]. However, pneumonia diagnosis is clinical, and routine chest 

radiographs are not necessary for the confirmation diagnosis [21]and do not improve outcomes 

[22].  In addition, chest radiography (CXR) can be used only in inpatient settings to identify 

complications or evaluate response to treatment. 

AI studies aiming to create a decision support system are often on either risk prediction 

(prognostics) or classification (diagnostics) [9]. Although strong diagnostic support algorithms 
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have been published in pneumonia-related studies in recent years, there is still a need for 

prognosis prediction studies for case management [20]. Determining the severity of a disease 

or predicting its prognosis answers essential questions of physicians in medical decision-

making, such as “Where should it be treated? Outpatient? ICU?”, “Which therapy should I 

start? How long should I give it?”, “When should I discharge the patient? When should I call 

for control?”. There are several studies and guidelines in the literature for severity assessment 

and prognosis prediction of pneumonia [23]. For the majority, mortality and/or development of 

complications were the primary outcomes, and clinical, radiological, and laboratory variables 

are the key predictors. 

This study reviewed important clinical data and prognostic outcomes of pneumonia 

patients hospitalized in a major tertiary hospital before the pandemic. Two pediatricians from 

our research team were only in charge of labeling and encoding the data from the records of 

hospitalized children. Other pediatricians were involved in data analysis, model development, 

and literature review. Our main outcome was to assess the necessity of referral to tertiary care. 

For this reason, we asked physicians to encode clinical and laboratory data that can be obtained 

in primary care settings.  

In this study, we balanced the dataset with SMOTE-Tomek and, selected features by 

SHAP values, then conducted experiments with a variety of advanced machine learning 

algorithms on this new structured dataset. Since our raw dataset was imbalanced in terms of 

outcome variables.  

Imbalanced datasets can reduce the ML algorithm's performance. For example, if 

models are prepared with imbalanced data, results will be more likely in the majority class. The 

minority class of target has a low precision value, which led to an accuracy paradox, as 

previously shown [24]. To overcome this issue, re-sampling methods have already been widely 
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implemented in order to reduce the weight of the majority class to the minority class. However, 

there is a possibility of losing valuable medical data in this way. One of the proposed re-

sampling methods is SMOTE. Recently, there are studies that support SMOTE-Tomek, a 

variant method of SMOTE, which can be effectively employed in preprocessing imbalanced 

medical data for the prediction of disease classification [25], [26]. 

In terms of feature selection, there may be certain variables in the dataset that are not 

beneficial for the model-developing process. These low-importance features create noise and 

reduce the precision of the model. Therefore, we determined the optimum number of features 

with RFECV to minimize noise. RFECV was already employed in medical research, and it was 

successful in our study as well [27].  

Conventional feature selection methods include a variety of post-hoc analyses. New 

feature selection techniques have been introduced in conjunction with the development of ML 

algorithms. We used SHAP values to explain the ML model's results in part because they are 

more robust for categorical and numerical variables and more commonly utilized in clinical 

data science. Furthermore, articles have been published promoting how SHAP is superior to the 

others, such as Local Interpretable Model-agnostic Explanations (LIME) [28]–[30]. 

The main outcome of this study was not only to create the best model but also to answer 

the question for a primary care physician “Where the case should be managed in?”.  We 

achieved a score of 84% (Supp. Figure 1.) with the five most important clinical findings such 

as hypoxia, respiratory distress, age, fever and complaint period. It was be observed that these 

variables are already involved in previous prognosis studies [22], [23], [31], [32]. It could be a 

life-saving decision for an inexperienced doctor, who uses these five features in limited 

resources, to foresee the critical care need of the patient.  
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In conclusion, we applied contemporary data pre-processing and ML methods to our 

dataset and developed substantially successful models. While investigating feature importance 

that enhances the performances of models, we encountered the same variables which are 

already considered to be prognosis predictors by previous studies and guidelines. Even in 

small-size samples like in our study, ML methods can reach current wisdom. Since ML 

algorithms facilitate the transformation and purification of expert knowledge for universal 

applications, we think also have a great deal of potential for other diseases. 
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Summary Table 

What was already known on this topic What this study added to our knowledge 

Many AI medical studies look at radiological 
images, but pneumonia is mainly a clinical 
diagnosis. Also, primary care often lacks this 
imaging equipment. 

In our study, using clinical characteristics, an 
AI algorithm predicts patient prognoses with 
85% accuracy, emphasizing the need for 
prognostic support in regions lacking 
advanced diagnostic tools. 

In conventional data analyses, if data 
imbalance is not balanced, prediction models 
are biased towards the majority group. 

In this study, the SMOTE method was used 
to balance the data, which in turn enhanced 
the model's generalizability. 

Many valuable studies are either confined to 
their specific centers or the tools developed 
are not made accessible to other healthcare 
professionals. 

The models in this study have been deployed 
online and can be accessed at 
“https://pnm.pediatridefteri.com”, and this 
represents a potential publishing initiative. 
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