Vitamin D is a novel biomarker of clinical disease severity in oral lichen planus

Sreedevi P. Unnikrishnan¹, Janice Boggon², Bernice Mclaughlin², Maggie E. Cruickshank,³ Rasha Abu-Eid¹, and Karolin Hijazi¹*

¹ Institute of Dentistry, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, UK.
² Aberdeen Royal Infirmary, Foresterhill, Aberdeen, UK.
³ Aberdeen Centre for Women’s Health Research, Aberdeen Maternity Hospital, Aberdeen, UK.

*To whom correspondence should be addressed. Tel: +44(0)1224-555153. Email: k.hijazi@abdn.ac.uk.

Abstract word count: 294
Total word count (Abstract to Acknowledgement): 3,573
Total number of tables: 3 in main manuscript and 1 in Appendix.
Number of References: 32

MeSH terms: Lichen Planus, Oral; Lichen Planus; Vitamin D; Patient Acuity; Risk Factors; Prognosis
ABSTRACT

Background

Oral lichen planus (OLP) is a chronic inflammatory condition known to adversely impact patient quality of life and is associated with an increased risk of cancer. The diverse clinical presentation and poor knowledge of clinical factors that determine the course of disease are amongst the main challenges that hinder effective and personalised treatment for OLP patients.

Aim

This study aimed to systematically identify clinical predictors of disease severity in OLP patients.

Methods

A cohort of patients with histologically confirmed OLP (n=87) was recruited in a cross-sectional and single site study. A comprehensive assessment of clinical characteristics, medical and social history, haematological parameters, vitamin D levels, and Perceived Stress Scale (PSS-10) was carried out. Hierarchical linear regression identified the predictive value of clinical factors to OLP disease severity measured by the Oral Disease Severity Score (ODSS) and the Reticular/hyperkeratotic, Erosive/erythematous, Ulcerative (REU) scoring system.

Results

Our results revealed that extraoral lichen planus and insufficient vitamin D levels were significant predictors of both overall and gingival disease severity of OLP. Specifically, patients with lichen planus affecting the skin or other mucosal sites had a 5.9-unit higher OLP severity score ($\beta=5.998$, 95% CI=8.888-11.107, $p=.022$) than those without extraoral involvement as measured by ODSS. Interestingly, patients with insufficient vitamin D levels exhibited 5.3-unit increase in OLP severity ($\beta=5.344$, 95% CI =9.14-9.774, $p=.019$) compared to those with adequate vitamin D levels. The presence of dental plaque induced gingivitis ($\beta=4.467$, 95% CI =9.00-8.333, $p=.024$), was found to be a significant factor affecting gingival disease severity.

Conclusion

Our study revealed the importance of adequate vitamin D levels in OLP patients and suggests embedding vitamin D pre-treatment screening to optimise management of OLP. Future research should focus on elucidating the biological mechanisms underlying the protective effects of vitamin D in OLP.
INTRODUCTION

Oral lichen planus (OLP) is a chronic inflammatory disease of the stratified squamous epithelium of the oral mucosa, characterised by distinctive clinical and histopathological features. The global prevalence of OLP is estimated at 1% (González-Moles et al. 2021). Women are more frequently affected than men, with a peak incidence in the fifth and sixth decades of life (Cheng et al. 2016). The pathogenesis and aetiology of OLP remain poorly understood, but it is thought to be a T-cell-mediated autoimmune disorder (Cheng et al. 2016).

OLP presents with a spectrum of clinical subtypes with the most common clinical presentation being bilateral, symmetrical white reticular lesions on the posterior buccal mucosa (Olson, Rogers, Bruce 2016). Most cases of reticular OLP are asymptomatic, and incidentally identified by a dental professional (De Rossi and Ciarrocca 2014). In approximately 10% of cases, erosive or ulcerative lesions are confined to the gingiva, a clinical presentation known as desquamative gingivitis (Olson, Rogers, Bruce 2016). Erosive and atrophic OLP can cause varying degrees of discomfort and pain (De Rossi and Ciarrocca 2014) and some studies have associated these forms with an increased risk of carcinoma (Olson, Rogers, Bruce 2016). The biological basis of inter-patient variability in the clinical presentation and course of disease of OLP is not well understood.

Therapeutic interventions for OLP evaluated in clinical trials, include topical and systemic corticosteroids, topical calcineurin inhibitors, retinoids and photochemotherapy, primarily with the goal of pain reduction (Lodi et al. 2012). However, these treatments are not effective in all OLP patients, notwithstanding that standardised measurement of efficacy is hampered by the lack of universal severity indicators (Unnikrishnan et al. 2023). Diversity of response to treatment is attributable to differences in host-related clinical and molecular factors.

While the exact cause of OLP remains elusive, several risk factors have been linked to the development of this chronic inflammatory condition. These include genetic predisposition (Gupta and Jawanda 2015; Sun et al. 2000), potential involvement of infectious agents (Baek and Choi 2017), pre-existing connective tissue diseases (De Porras-carrique et al. 2022) and other systemic conditions like diabetes mellitus (Mallah et al. 2021; Otero Rey et al. 2018), thyroid diseases (Dave, Shariff, Philipone 2020; De Porras-carrique et al. 2022; Li et al. 2017), hyperlipidaemia (Lai, Yew, Schwartz 2016) and hypertension (De porras-carrique, Ramos-garcía, González-moles 2023). Additionally, psychological factors like stress (Chaudhary 2004; De Porras-Carrique et al. 2021) have been implicated in OLP progression. Despite these associations, there is little or no understanding how these risk factors influence the course of disease in OLP patients. This study aimed to identify clinical predictors of disease severity in OLP to inform treatment optimisation and prognosis of OLP patients.

MATERIALS AND METHODS

Study population

Ethical approval for recruitment of OLP patients in this study was obtained from the West Midlands-Black Country Research Ethics committee (Reference number: 21/WM/0247). Written informed consent was obtained from all participants in compliance with the Declaration of Helsinki. The study is registered at ClinicalTrials.gov. NCT05330572. Patients presenting with OLP diagnosed using Van der Meij and Van der Waal criteria (Van Der Meij and Van Der Waal 2003) at the Departments of Oral Medicine and Oral & Maxillofacial
Surgery (Aberdeen Royal Infirmary) between December 2021 and December 2023 were eligible to the study. The following exclusion criteria were applied: age <18 years, current systemic steroid or immunosuppressive therapy for OLP, oral lichenoid contact reactions caused by dental materials, lichenoid drug reactions, graft-versus-host disease, other systemic inflammatory conditions associated with lichen planus-like oral lesions, isolated palatal lesions clinically consistent with Discoid Lupus Erythematosus, other concurrent oral mucosal inflammatory disorders or potentially malignant lesions, pregnancy or lactation.

Study protocol
Participants' medical and social history was recorded. Demographic and relevant clinical data (medical history, smoking status, and alcohol consumption) of study participants were collected from electronic patient records. If unavailable in electronic patient records, data were collected directly from patients during the study visit. The 10-item Perceived Stress Scale (PSS-10), a validated self-report instrument, was used to assess perceived stress levels in patients with OLP (Wiriyakijja et al. 2020). All patients underwent an oral examination to assess OLP disease severity, oral hygiene status, and routine basic periodontal examination. Venous blood samples were collected.

Assessment of clinical disease severity
All study participants underwent OLP severity measurements. A single trained examiner assessed the disease activity of oral lichen planus using the Oral Disease Severity Score (ODSS) (Escudier et al. 2007) and Reticular/hyperkeratotic, Erosive/erythematous, Ulcerative (REU scoring system) (Piboonniyom et al. 2005).

The ODSS is considered the most validated grading tool of disease activity in OLP, according to a recent systematic review (Unnikrishnan et al. 2023). ODSS assesses the site score and severity score of OLP-related lesions at seventeen oral mucosal subsites (Escudier et al. 2007). The activity score is the product of the site and severity scores, whilst the total activity score is combined with a pain score, self-assessed by the patient on an eleven-point numeric rating scale (NRS) for average oral pain over the two weeks prior to scoring, resulting in combined scores ranging from 0 to 106 (Escudier et al. 2007). Gingival disease severity scores were calculated as the sum of site and activity scores (Escudier et al. 2007), confined to gingival sextants.

The REU scoring system is one of the most reported scoring systems and has undergone the highest number of reliability assessments (Unnikrishnan et al. 2023). The total REU score, calculated as the weighted sum of reticulation, erythematous, and ulcerative scores (1, 1.5, and 2, respectively), reflects the extent of these clinical phenotypes across ten oral sites (Piboonniyom et al. 2005).

Assessment of oral health
Oral hygiene status was assessed using the Simplified Oral Hygiene Index (OHI-S), a validated two-component index that measures debris and calculus (Greene and Vermillion 1964). A basic periodontal examination (BPE) was performed according to British Society of Periodontology guidelines (Ower 2016). The highest score for each sextant was recorded based on the scoring codes, which indicate probing depth, calculus presence, and bleeding on probing. A single trained examiner performed the BPE using a World Health Organization (WHO) BPE probe. The number of missing teeth was also recorded. Gingivitis was diagnosed based on bleeding on probing sites (Chapple et al. 2018) and periodontitis based on amount of clinical attachment loss according to the 2017 classification system (Tonetti, Greenwell, Kornman 2018).
Blood sampling

Fourteen millilitres of venous blood were collected from patients. All parameters were assessed at the Laboratory Medicine diagnostic departments of Aberdeen Royal Infirmary and local reference ranges used.

Statistical analyses

For descriptive statistics, normally distributed variables are presented as mean ± standard deviation (SD), and skewed variables as median and interquartile range [IQR]). Categorical variables are summarized as frequencies (n) and percentages (%).

We employed a two-phase analytical approach to identify significant predictors of OLP disease severity measured by ODSS. Initially, simple linear regression explored significant associations between clinical indicators and ODSS (p < 0.05). Subsequently, hierarchical linear regression examined the independent contributions of selected clinically relevant indicators to ODSS, ODSS excluding pain score and REU scores. Covariate selection for the basic regression model employed a dual approach considering both evidence of existing literature and clinical relevance (Appendix Table 1). The basic regression model-I prioritised well-established comorbidities from systematic reviews, namely diabetes mellitus (Mallah et al. 2021; Otero Rey et al. 2018), hypothyroidism (De Porras-carrique et al. 2022; Li et al. 2017), hyperlipidaemia (Lai, Yew, Schwartz 2016) alongside clinically relevant demographic factors (age, gender) as listed in Supplemental Table 1. Confounding factors recorded were (use of medications associated with lichenoid drug reactions and use of oral topical steroids within the past two months. Subsequent models incorporated additional markers of interest individually: PSS-10, extraoral manifestations of lichen planus, involvement of typically spared oral sites, vitamin D, vitamin B12, ferritin and serum folate levels. Each linear regression model quantified the incremental change (β) and 95% confidence intervals (CIs) in disease severity associated with a unit change in the respective marker. Statistical significance was set at p < 0.05.

Similarly, for gingival lichen planus, we constructed a baseline linear regression model-I considering key confounders such as dental plaque-induced gingivitis and periodontitis alongside relevant covariates (age, gender, systemic comorbidities, erosive clinical phenotype, and use of oral topical steroids). Subsequent models incorporated covariates of interest individually (extraoral involvement, vitamin D, and haematins) to explore their independent associations with gingival disease severity measured by the gingival ODSS. Each model again provided the β and 95% CI for the incremental change in gingival severity associated with a unit change in the respective covariate.

Data were analysed using IBM SPSS Statistics v.25 (IBM, Hampshire, UK).

RESULTS

Characteristics of study participants and distribution of scores

Eighty-seven patients out of a total of 270 eligible OLP patients presenting consecutively to the Oral Medicine and Oral & Maxillofacial Surgery outpatient clinics between December 2021 and December 2023 agreed to participate and were enrolled into the study. Characteristics of study participants are reported in Table 1. The median [IQRs] age of the study population was 66 [58 to 73] years, and 63 (72.4%) patients were females. The cohort was representative of the typical OLP population: higher prevalence of females in post-menopausal age. Seventeen participants (17.2% females) presented with extraoral lichen planus, with a notable prevalence of genital involvement (over two-thirds).
The median total ODSS score was 10 (range: 0-44), indicating a mild to moderate disease presentation. The median ODSS score, excluding the pain component, was 9 (range: 0-38), while the median Gingival ODSS score was 2 (range: 0-18). The median REU score was 8 (range: 0-49).

Selection of clinically relevant co-variates

For exploratory analysis of clinical factors significantly associated with the severity of OLP, a simple linear regression analysis was conducted, with OLP severity assessed using the ODSS as the dependent variable (Appendix Table 1). Statistically significant clinical variables (p < 0.05) associated with OLP severity included hyperlipidaemia, extraoral manifestations of lichen planus, erosive clinical phenotype, involvement of typically spared oral sites, recent use of oral topical steroids (within the past two months), dental plaque-induced gingivitis and insufficient vitamin D levels (Appendix Table 1). Additional co-variates were based on formal evidence of clinical characteristics associated with OLP and irrespective of statistical significance in exploratory analyses, namely age, gender, diabetes mellitus, hypothyroidism, connective tissue diseases (scleroderma, rheumatoid arthritis, Primary Sjögren’s syndrome), other autoimmune diseases (psoriasis, vitiligo, alopecia areata, coeliac disease, pernicious anaemia), hypertension, coronary artery disease, cerebrovascular disease, inflammatory bowel disease, history of cancer, anxiety or depression, smoking, alcohol consumption, Body Mass Index (BMI), PSS-10, medications associated with lichenoid drug reactions, use of over-the-counter supplements, amalgam restorations, use of antifungals, vitamin D, vitamin B12, ferritin, and serum folate levels. Comorbidities identified as risk factors for OLP by systematic reviews, namely diabetes mellitus (Mallah et al. 2021; Otero Rey et al. 2018), hypothyroidism (De Porras-Carrique et al. 2022; Li et al. 2017), hyperlipidaemia (Lai, Yew, Schwartz 2016) alongside clinically relevant demographic factors (age, gender) and important confounding factors (use of medications associated with lichenoid drug reactions, erosive phenotype, use of oral topical steroids within the past two months) (Appendix Table 1) were prioritised in the basic regression model.

Independent predictors of disease severity in OLP

The basic model-I (age, gender, diabetes mellitus, hypothyroidism, hyperlipidaemia, use of medications associated with lichenoid drug reactions, erosive phenotype, use of oral topical steroids) explained 30.2% of the variance in OLP severity and was a statistically significant predictor of OLP severity as assessed by total ODSS (p< 0.001) (Table 2). The analysis identified three significant associations between OLP severity and the following independent variables: hyperlipidaemia (β= 6.570, p=0.045); erosive phenotype (β=11.533, p=<.001) and oral topical steroid use (β=4.695, p=0.032) (Table 2).

Subsequently, after adjusting for basic model co-variates, hierarchical linear regression revealed that extraoral manifestations of lichen planus (model III, β=5.998, 95% CI=888-11.107, p=.022), involvement of typically spared oral sites (model IV, β=9.936, 95% CI=5.177-14.694, p=.001) and insufficient vitamin D (model V, β=5.344, 95% CI=914-9.774, p=.019) were significant predictors of disease severity (Table 2). Specifically, patients with lichen planus affecting skin or other mucosal sites had a 5.9-unit higher OLP severity score than those without extraoral involvement. Similarly, individuals with OLP affecting less frequent oral subsites (palate, floor of the mouth and upper lip) had a 9.9-unit increase in OLP severity compared to those with more typical involvement (buccal mucosa, tongue). Finally, patients with insufficient vitamin D levels exhibited 5.3-unit increase in OLP severity compared to those with adequate vitamin D levels.
The predictive value of covariates was assessed in relation to other measures of OLP severity (ODSS excluding pain score and REU scores) to test generalisability of findings to other grading tools.

The basic model-I was a statistically significant predictor and explained 25.3% and 34.3% of the variance in OLP severity as assessed by ODSS excluding pain scores and REU scores, respectively. Subsequent hierarchical regression in relation to ODSS excluding pain scores and REU scores as outcome and adjusted for confounders, revealed the same three independent predictors as regression in relation to total ODSS, namely extraoral manifestations of lichen planus (model III, $\beta=5.580$, 95% CI=1.021-10.139, $p=.017$), involvement of typically spared oral mucosal sites (model IV, $\beta=8.397$, 95% CI=4.087-12.707, $p<.001$) and insufficient vitamin D levels (model V, $\beta=4.980$, 95% CI=1.035–8.925, $p=.014$) (Table 2).

On the other hand, hierarchical regression in relation to REU scores, again adjusted for confounders, revealed less commonly involved oral sites (model IV, $\beta=8.322$, 95% CI=4.031-12.614, $p<.001$), deficient vitamin D levels (model V, $\beta= 6.949$, 95% CI=.438 – 13.460, $p=.037$) and deplete folate levels (model VIII, $\beta=-11.207$, 95% CI=-22.108 – -.307, $p=.044$) (Table 2) as independent predictors

Independent predictors of gingival disease severity in OLP

Independent predictors of gingival disease severity were assessed separately in order to consider confounding factors specifically relevant to gingival lichen planus, in particular dental plaque induced gingivitis and periodontitis. A basic linear regression model-I (age, gender, diabetes mellitus, hypothyroidism, plaque-induced gingivitis, periodontitis, erosive phenotype, use of oral topical steroids) explained 11.5% of the variance of OLP severity as measured by gingival ODSS. In this model, dental plaque induced gingivitis ($\beta=4.467$, $p=.024$), and erosive phenotype ($\beta=3.709$, $p=.044$) were confirmed as significant predictors of gingival disease severity (Table 3). Following adjustment for basic model covariates, hierarchical linear regression confirmed extraoral involvement (model II, $\beta=4.797$, 95% CI=.805 – 8.784, $p=.019$), and insufficient vitamin D (model III, $\beta=5.011$, 95% CI=1.837–8.184, $p=.002$) as independent predictors (Table 3).

DISCUSSION

The diverse clinical presentation and poor knowledge of clinical factors that determine the course of OLP are amongst the main challenges that hinder effective and personalised treatment. In this cross-sectional study of OLP patients presenting with a spectrum of clinical severity, we revealed that extraoral manifestations of lichen planus and vitamin D were consistent clinical predictors of both overall and gingival disease severity of OLP.

The significant association between extraoral lichen planus and increased OLP severity identified in our study supports the notion that multi-site disease contributes to greater oral involvement. This finding implies a systemic immune dysregulation potentially targeting epithelial basal cells across mucous membranes and the skin, leading to a more severe oral presentation. In our study, genital involvement, particularly vaginal/vulval lichen planus, was more prevalent than cutaneous involvement. This finding warrants further investigation to formally determine if predilection for certain extraoral sites influences OLP severity. Further, the involvement of typically spared oral mucosal sites (floor of the mouth, palate, and upper lip) (Olson, Rogers, Bruce 2016; Scully and Carrozzo 2007) was a significant predictor of OLP severity. This finding suggests that the localisation of lesions to atypical mucosal sites may be associated with a more severe disease course. The involvement of these sites could reflect more profound T-cell-mediated immune dysregulation in OLP resulting in severe disease manifestations.
Vitamin D is a pleiotropic hormone that exerts a wide range of physiological functions by binding to the vitamin D receptor (VDR) (Saeed et al. 2022). In vitro studies have shown that vitamin D/VDR signalling protects against oral lichen planus (OLP) by suppressing inflammation and epithelial cell apoptosis (Du et al. 2017; Zhao et al. 2018; Zhao et al. 2019). In this study, we showed for the first time that vitamin D was a robust predictor of OLP disease severity, suggesting that insufficient vitamin D levels significantly contribute to OLP disease severity.

Vitamin D exhibits anti-inflammatory properties through downregulation of Th1 and upregulation of Th2 responses (Saeed et al. 2022). Vitamin D/VDR signalling also suppresses apoptosis in oral keratinocytes by repressing miR-802 expression (Zhao et al. 2019), thereby protecting oral tissues from potential damage and preventing the progression of OLP to more severe clinical forms. Vitamin D deficiency in OLP may compromise this protective mechanism of vitamin D/VDR signalling, resulting in increased apoptosis to oral keratinocytes and contributing to the development of erosions or ulcerations seen in more severe clinical presentations.

In patients with gingival manifestations of OLP, we showed a significant association between gingival disease severity and plaque-induced gingivitis. This observation aligns with accepted knowledge that pain associated with gingival OLP interferes with effective oral hygiene, leading to plaque accumulation and in turn exacerbating existing OLP lesions and vice versa (Scribante et al. 2023). Extraoral lichen planus and insufficient vitamin D emerged as significant predictors of gingival disease severity in our study. This finding suggests a potential interplay between systemic and local factors influencing gingival health in OLP patients. It highlights the need for a holistic approach addressing both local and systemic factors, for example vitamin D supplementation, in optimising oral health outcomes of OLP patients.

Statistically significant relationships between haematinic factors and disease severity were not consistently identified across all outcomes of disease severity used. Specifically, we observed a significant association between folate deficiency and OLP severity only when this was measured by the REU score. This finding questions the role of haematinic deficiencies as a predictor of disease severity, notwithstanding the limitations of this single arm cross-sectional study. Further, our analysis did not identify a significant association between stress and OLP severity. This could be attributed to the inherent limitations of self-reported stress data, which are susceptible to recall bias. Likewise, we observed a statistically significant association between hyperlipidaemia and OLP severity as measured by ODSS, but the associated wider confidence interval suggests data uncertainty.

The inherent limitations of a cross-sectional study along with a single site and examiner method limit the generalisability of the data to the wider population. Notwithstanding the need to confirm the findings in controlled and multi-site observational studies, this study highlights the importance of adequate vitamin D supplementation in OLP patients. Future research should explore the biological mechanisms underlying the beneficial effects of vitamin D in OLP. Furthermore, interventional studies are required to assess the therapeutic efficacy of vitamin D supplementation in OLP to determine its clinical benefit and to optimise treatment guidelines.

Acknowledgement

S.P.U is supported by an Elphinstone Scholarship, University of Aberdeen. We extend our sincere gratitude to the clinical and administrative staff of the Departments of Oral Medicine and Oral & Maxillofacial Surgery at Aberdeen Royal Infirmary, whose invaluable assistance
with patient recruitment and research sessions significantly facilitated this study. We are further indebted to all the patients who generously participated, making this research possible. We also thank the medical statistics team at the University of Aberdeen for their guidance with the statistical analysis of our research.

Author contributions:

Sreedevi P Unnikrishnan: Data curation; formal analysis; methodology; writing – original draft.

Janice Boggon: Methodology; validation; writing – review and editing.

Bernice Mclaughlin: Methodology; validation; writing – review and editing.

Maggie E. Cruickshank: Conceptualization; funding acquisition; methodology; supervision; writing – review and editing.

Rasha Abu-Eid: Conceptualization; formal analysis; funding acquisition; methodology; supervision; validation; writing – review and editing.

Karolin Hijazi: Conceptualization; formal analysis; funding acquisition; methodology; supervision; validation; writing – review and editing.
<table>
<thead>
<tr>
<th>Table 1: General clinical characteristics of the study population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral lichen planus population (n=87)</td>
</tr>
<tr>
<td>Females, n (%)</td>
</tr>
<tr>
<td>Age in years (median, [IQRs])</td>
</tr>
<tr>
<td>Oral Disease Severity Score (median, [IQRs])</td>
</tr>
<tr>
<td>Oral Disease Severity Score excluding pain score (median, [IQRs])</td>
</tr>
<tr>
<td>Gingival Oral Disease Severity Score (median, [IQRs])</td>
</tr>
<tr>
<td>Reticulation, erythematous and ulcerative score (median, [IQRs])</td>
</tr>
<tr>
<td>Pain score (median, [IQRs])</td>
</tr>
<tr>
<td>Smoking pack years (median, [IQRs])</td>
</tr>
<tr>
<td>Alcohol consumption (units per week) (median, [IQRs])</td>
</tr>
<tr>
<td>Body Mass Index (kg/m²) (median, [IQRs])</td>
</tr>
<tr>
<td>10 item-Perceived Stress Scale score (mean ± standard deviation)</td>
</tr>
<tr>
<td>Extraoral lichen planus, n (%)</td>
</tr>
<tr>
<td>Genital lichen planus, n (%)</td>
</tr>
<tr>
<td>Cutaneous lichen planus, n (%)</td>
</tr>
<tr>
<td>Gingival involvement in oral lichen planus, n (%)</td>
</tr>
<tr>
<td>Erosive clinical phenotype, n (%)</td>
</tr>
<tr>
<td>Involvement of typically spared oral sites, n (%)</td>
</tr>
<tr>
<td>Involvement of more than two oral subsites, n (%)</td>
</tr>
<tr>
<td>Diabetes (type 2), under treatment n (%)</td>
</tr>
<tr>
<td>Hypertension, under treatment n (%)</td>
</tr>
<tr>
<td>Hyperlipidaemia, under treatment n (%)</td>
</tr>
<tr>
<td>Coronary artery disease, n (%)</td>
</tr>
<tr>
<td>Cerebrovascular disease, n (%)</td>
</tr>
<tr>
<td>Inflammatory bowel disease, n (%)</td>
</tr>
<tr>
<td>Connective tissue diseases (scleroderma, rheumatoid arthritis, Sjogren’s syndrome), n (%)</td>
</tr>
<tr>
<td>Other autoimmune diseases (psoriasis, vitiligo, alopecia areata, coeliac disease, pernicious anaemia), n (%)</td>
</tr>
<tr>
<td>Hypothyroidism, under treatment n (%)</td>
</tr>
<tr>
<td>Overall Oral Hygiene Index-Simplified, n (%)</td>
</tr>
<tr>
<td>Edentulous/missing index teeth</td>
</tr>
<tr>
<td>Good</td>
</tr>
<tr>
<td>Fair</td>
</tr>
<tr>
<td>Poor</td>
</tr>
<tr>
<td>Gingivitis, n (%)</td>
</tr>
<tr>
<td>Periodontitis, n (%)</td>
</tr>
<tr>
<td>Recent use of oral topical steroids (within past two months), n (%)</td>
</tr>
<tr>
<td>Coexisting fungal infection or treatment with</td>
</tr>
<tr>
<td>Condition</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Antifungals (within past two months)</td>
</tr>
<tr>
<td>Insufficient vitamin D levels (25-50)</td>
</tr>
<tr>
<td>Deficient vitamin D levels (<25)</td>
</tr>
<tr>
<td>On replacement therapy for vitamin B12</td>
</tr>
<tr>
<td>Deplete vitamin B12 levels</td>
</tr>
<tr>
<td>On replacement therapy for ferritin</td>
</tr>
<tr>
<td>Deplete ferritin levels</td>
</tr>
<tr>
<td>On replacement therapy for folate</td>
</tr>
<tr>
<td>Deplete folate levels</td>
</tr>
</tbody>
</table>

Abbreviation: IQR, Interquartile Range.
Table 2: Hierarchical linear regression of clinical indicators of oral lichen planus disease severity

<table>
<thead>
<tr>
<th>Basic model I</th>
<th>Disease severity of oral lichen planus (measured by total ODSS)</th>
<th>Disease severity of oral lichen planus (measured by ODSS excluding pain score)</th>
<th>Disease severity of oral lichen planus (measured by REU scoring system)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>β</td>
<td>(95% CI)</td>
<td>p</td>
</tr>
<tr>
<td>Age</td>
<td>-.139</td>
<td>(-.342 - .064)</td>
<td>.175</td>
</tr>
<tr>
<td>Gender (female vs male)</td>
<td>1.338</td>
<td>(-3.121 - 5.797)</td>
<td>.552</td>
</tr>
<tr>
<td>Type 2 Diabetes Mellitus, under treatment (yes vs no)</td>
<td>1.299</td>
<td>(-5.874 - 8.472)</td>
<td>.719</td>
</tr>
<tr>
<td>Hypothyroidism, under treatment (yes vs no)</td>
<td>-3.068</td>
<td>(-8.725 - 2.590)</td>
<td>.284</td>
</tr>
<tr>
<td>Hyperlipidaemia, under treatment (yes vs no)</td>
<td>6.570</td>
<td>(.138 - 13.002)</td>
<td>.045*</td>
</tr>
<tr>
<td>Number of medications associated with lichenoid reactions</td>
<td>-3.061</td>
<td>(-6.810 - .688)</td>
<td>.108</td>
</tr>
<tr>
<td>Use of topical oral steroids, within the past two months (yes vs no)</td>
<td>4.695</td>
<td>(.414 - 8.976)</td>
<td>.032*</td>
</tr>
<tr>
<td>Adjusted R² for model I</td>
<td>.302</td>
<td></td>
<td>.253</td>
</tr>
<tr>
<td>p value for model</td>
<td>< 0.001*</td>
<td></td>
<td>< 0.001*</td>
</tr>
<tr>
<td>Model</td>
<td>Disease severity of oral lichen planus (measured by total ODSS)</td>
<td>Disease severity of oral lichen planus (measured by ODSS excluding pain score)</td>
<td>Disease severity of oral lichen planus (measured by ODSS scoring system)</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Model I (model I + vitamin D) (deficiency vs sufficient)</td>
<td>5.344 (1.941 - 9.776)</td>
<td>5.177 (1.891 - 11.100)</td>
<td>5.177 (1.891 - 11.100)</td>
</tr>
<tr>
<td>Model II (model I + extramoral manifestations of lichen planus)</td>
<td>5.998 (2.766 - 35.55)</td>
<td>5.580 (1.038 - 10.100)</td>
<td>5.580 (1.038 - 10.100)</td>
</tr>
<tr>
<td>Model III (model I + involvement of typically spared oral mucosal sites)</td>
<td>3.987 (1.031 - 12.641)</td>
<td>8.322 (4.385 - 17.32)</td>
<td>8.322 (4.385 - 17.32)</td>
</tr>
<tr>
<td>Model IV (model I + vitamin D deficiency)</td>
<td>6.225 (1.069 - 35.45)</td>
<td>7.327 (2.301 - 25.74)</td>
<td>7.327 (2.301 - 25.74)</td>
</tr>
<tr>
<td>Model VI (model I + vitamin B12)</td>
<td>0.096 (0.034 - 0.248)</td>
<td>0.336 (0.108 - 1.092)</td>
<td>0.336 (0.108 - 1.092)</td>
</tr>
<tr>
<td>Vitamin D deficiency</td>
<td>0.019*</td>
<td>0.22*</td>
<td>0.22*</td>
</tr>
<tr>
<td>Vitamin D sufficiency</td>
<td>0.019*</td>
<td>0.22*</td>
<td>0.22*</td>
</tr>
<tr>
<td>Vitamin B12 replacement vs no replacement</td>
<td>0.067</td>
<td>0.292</td>
<td>0.292</td>
</tr>
<tr>
<td>Vitamin B12 deficiency</td>
<td>0.037*</td>
<td>0.17</td>
<td>0.17</td>
</tr>
<tr>
<td>Vitamin B12 sufficient</td>
<td>0.037*</td>
<td>0.17</td>
<td>0.17</td>
</tr>
<tr>
<td>Model</td>
<td>(model I + vitamin B12) (on replacement vs no deficiency vs deplete)</td>
<td>(model I + ferritin) (on replacement vs no deficiency vs deplete)</td>
<td>(model I + folate) (on replacement vs no deficiency vs deplete)</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>On vitamin B12 replacement therapy</td>
<td>Deplete vitamin B12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.957 (-.343) & .281 & .911 & 1.224 & -.226 & (-.360 - 6.10) & .619 & (-.508) & -1.045 & (-5.371 - 4.355) & .836 & .705 & (.327)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>((-.6449 - 5.76)) & ([-5.725 - 5.27]) & (.935) & (.236) & (-1.045) & ((-.6521 - 4.430)) & (.327) & (.327)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Model VII (model I + ferritin) (on replacement vs no deficiency vs deplete) &</td>
<td>Model VIII (model I + folate) (on replacement vs no deficiency vs deplete) &</td>
<td></td>
</tr>
<tr>
<td></td>
<td>On ferritin replacement therapy</td>
<td>Deplete ferritin</td>
<td>On folate replacement therapy</td>
</tr>
<tr>
<td></td>
<td>1.975 (-2.269) & (1.082) & (-3.497) & (-.569) & (-7.706 - 9.24) & (.792) & (-.460) & -3.524 & (-12.550 - 5.501) & (.910) & .331 & (.439)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Model VIII (model I + folate) (on replacement vs no deficiency vs deplete) &</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>On folate replacement therapy</td>
<td>Deplete folate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-6.937) & (-8.156) & (1.25) & (.321) & (-7.551) & (-5.591) & (-.389) & (-.389) & (1.633) & (5.450) & (.062) & (.316) & (.277) & (-11.207) & (-.307) & (.198) & (.374)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>((-.15.83 - 1.96)) & ((-20.53 - 4.21)) & (.193) & (.193) & (-15.490 - 3.89) & (-.389) & (-.389) & (1.633) & (5.450) & (.062) & (.316) & (.277) & (-11.207) & (-.307) & (.198) & (.374)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: ODSS, Oral Disease Severity Score; REU, Reticular/hyperkeratotic, Erosive/erythematous, Ulcerative scoring system; R², Coefficient of Determination; β, Unstandardised Regression Coefficient; CI, Confidence Interval. * = statistically significant (p<0.05).
Table 3: Hierarchical linear regression of clinical indicators of gingival disease severity

<table>
<thead>
<tr>
<th>Basic model I</th>
<th>Gingival disease severity of oral lichen planus (measured by Gingival ODSS)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>β</td>
<td>(95% CI)</td>
</tr>
<tr>
<td>Age</td>
<td>-.018</td>
<td>(-.164 -.128)</td>
</tr>
<tr>
<td>Gender (female vs male)</td>
<td>.477</td>
<td>(-2.852 - 3.805)</td>
</tr>
<tr>
<td>Type 2 Diabetes Mellitus, under treatment (yes vs no)</td>
<td>3.682</td>
<td>(-1.214 - 8.578)</td>
</tr>
<tr>
<td>Hypothyroidism, under treatment (yes vs no)</td>
<td>-2.371</td>
<td>(-6.318 - 1.576)</td>
</tr>
<tr>
<td>Dental plaque induced gingivitis based on bleeding on probing (≥10% bleeding site vs <10% bleeding site)</td>
<td>4.467</td>
<td>(.600 - 8.333)</td>
</tr>
<tr>
<td>Presence of periodontitis (yes vs no)</td>
<td>.907</td>
<td>(-2.201 - 4.015)</td>
</tr>
<tr>
<td>Erosive clinical phenotype (erosive vs non-erosive)</td>
<td>3.709</td>
<td>(.290 - 7.128)</td>
</tr>
<tr>
<td>Use of topical oral steroids, within the past two months (yes vs no)</td>
<td>1.328</td>
<td>(-1.787 - 4.444)</td>
</tr>
<tr>
<td>Adjusted R^2 for model I</td>
<td>.115</td>
<td></td>
</tr>
<tr>
<td>p value for model</td>
<td>.023*</td>
<td></td>
</tr>
<tr>
<td>Subsequent models</td>
<td>Gingival disease severity of oral lichen planus (measured by Gingival ODDS)</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Clinical indicators of disease severity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model II (model I + extraoral manifestations of lichen planus)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(presence vs absence)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>(95% CI)</td>
<td>P</td>
</tr>
<tr>
<td>4.794</td>
<td>(.805 - 8.784)</td>
<td>.019*</td>
</tr>
<tr>
<td>Model III (model I + vitamin D) (deficiency vs insufficient vs adequate)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vitamin D insufficiency</td>
<td>Vitamin D deficiency</td>
<td></td>
</tr>
<tr>
<td>5.011</td>
<td>(1.837 - 8.184)</td>
<td>.002*</td>
</tr>
<tr>
<td>3.895</td>
<td>(-1.279 - 9.069)</td>
<td>.138</td>
</tr>
<tr>
<td>Model IV (model I + vitamin B12) (on replacement vs no deficiency vs deplete)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>On vitamin B12</td>
<td>Deplete vitamin B12</td>
<td></td>
</tr>
<tr>
<td>.913</td>
<td>(-3.101 - 4.926)</td>
<td>.652</td>
</tr>
<tr>
<td>-.396</td>
<td>(-4.815 - 4.023)</td>
<td>.859</td>
</tr>
<tr>
<td>Model V (model I + ferritin) (on replacement vs no deficiency vs deplete)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>On ferritin replacement therapy</td>
<td>Deplete ferritin</td>
<td></td>
</tr>
<tr>
<td>2.205</td>
<td>(-4.529 - 8.938)</td>
<td>.516</td>
</tr>
<tr>
<td>-2.939</td>
<td>(-10.515 - 4.637)</td>
<td>.442</td>
</tr>
<tr>
<td>Model VI (model I + folate) (on replacement vs no deficiency vs deplete)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>On folate replacement therapy</td>
<td>Deplete folate</td>
<td></td>
</tr>
<tr>
<td>-5.099</td>
<td>(-11.784 - 1.586)</td>
<td>.133</td>
</tr>
<tr>
<td>-3.856</td>
<td>(-13.192 - 5.481)</td>
<td>.413</td>
</tr>
</tbody>
</table>
ODSS, Oral Disease Severity Score; R^2, Coefficient of Determination; β, Unstandardised Regression Coefficient; CI, Confidence Interval. * = statistically significant ($p<0.05$).
References