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Abstract

Long-term COVID-19 complications are a globally pervasive threat, but their plausible social
drivers are often not prioritized. Here, we use data from a multinational consortium to quantify
the relative contributions of social and clinical factors to differences in quality of life among
participants experiencing long COVID and measure the extent to which social variables’ impacts
can be attributed to clinical intermediates, across diverse contexts. In addition to age,
neuropsychological and rheumatological comorbidities, educational attainment, employment
status, and female sex were identified as important predictors of long COVID-associated quality
of life days (long COVID QALDs). Furthermore, a great majority of their impacts on long COVID
QALDs could not be tied to key long COVID-predicting comorbidities, such as asthma, diabetes,
hypertension, psychological disorder, and obesity. In Norway, 90% (95% CI: 77%, 100%) of the
effect of belonging to the highest versus lowest educational attainment quintile was not
attributed to intermediate comorbidity impacts. The same was true for 86% (73%, 100%) of the
protective effects of full-time employment versus all other employment status categories
(excluding retirement) in the UK and 74% (46%,100%) of the protective effects of full-time
employment versus all other employment status categories in a cohort of four middle-income
countries (MIC). Of the effects of female sex on long COVID QALDs in Norway, UK, and the
MIC cohort, 77% (46%,100%), 73% (52%, 94%), and 84% (62%, 100%) were unexplained by
the clinical mediators, respectively. Our findings highlight that socio-economic proxies and sex
may be as predictive of long COVID QALDs as commonly emphasized comorbidities and that
broader structural determinants likely drive their impacts. Importantly, we outline a multi-method,
adaptable causal machine learning approach for evaluating the isolated contributions of social
disparities to long COVID quality of life experiences.
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Introduction

Long-term COVID-19 sequelae have resulted in a pressing public health crisis since early 2020.
A diagnosis of long COVID is defined by the World Health Organization as unexplainable
symptoms which persist at least three months after an infection, and occur over the span of two
or more months.1 The widespread presence and impacts of this condition have been immense:
a multinational study found that nearly half of individuals who were previously infected with
SARS-CoV-2 went on to experience long-term symptoms around four months post infection2;
further, an estimated 59% of previously infected subjects reported a reduced quality of life
(QoL), and total disability-adjusted life years (DALYs) for hospitalized patients have been
estimated to be as high as 642.8 DALYs/1000 individuals.3,4 Prior work has focused on
identifying a myriad of clinical risk factors for long-term COVID-19 consequences, including
co-infections and pre-existing conditions, a number of laboratory measures, severe acute
infection, vaccination, age, and sex.5–14 Conditions that have been consistently identified as key
correlates of long-term sequelae include obesity, asthma and other pulmonary diseases, chronic
cardiac disease, diabetes, tuberculosis (TB), liver disease, lung disease, and reactivated
Epstein-Barr infection.5–8,10

Beyond clinical factors, social vulnerabilities are often critical determinants of differential disease
burden overall, with such inequities attributed to broader challenges in access to disease
prevention and management services and an array of health-limiting exposures, including but
not limited to food and housing insecurity, financial discrimination, and air pollution.15–19

While there have been efforts to examine social factors potentially linked to long-term symptoms
of COVID-19, findings on these relationships have been somewhat mixed.6,8,10,12,14,20–26 For
instance, a 2021 study in the United Kingdom (UK) found that living in high-deprivation settings
was associated with both higher and lower odds of symptom persistence, depending on the
measure of deprivation index used, and a 2021 study in Michigan (USA) found that lower
income was both significantly associated and not associated with long COVID symptoms’
prevalence, depending on the post-illness duration considered.8,21 It is also important to highlight
that many of these studies rely on self-reported binary measures of COVID recovery or
continued symptomatology, some of which may be subjective classifications, with potential
between-group differences in the tendency to report such experiences.

Given this context, we aimed to complement existing efforts centered on uncovering disparities
in long-term COVID outcomes, leveraging a large dataset from a prospective, observational,
multinational study of hospitalized and non-hospitalized COVID patients with post-infection
follow-up data, focusing on Norway, the United Kingdom (UK), India, Brazil, Russia, and South
Africa. Specifically, we formally assessed the relationship between a diverse group of biological
and social exposures, and our long-term long COVID QoL measure, reasoning that factors like
socio-economic status (SES) would matter as much or more than commonly considered
comorbidities, as has been recently illustrated for related outcomes, such as “healthy aging”.27

We further evaluated the extent to which clinical intermediates contribute to any observed
disparities, hypothesizing that they may only partially explain these effects. Our analysis applies
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a similar mediation-centered lens to that of Vahidy et al.25 and Lu et al.28 However, rather than
focusing on evaluating whether various mediators can independently explain the effects of a
given social factor on long COVID risk25 or on how much social factors mediate disparities in
all-cause mortality28 we measured the degree to which the effects of social variables on long
COVID-associated QoL cannot be explained by comorbidities.

Methods

This study uses data from the International Severe Acute Respiratory and emerging Infection
Consortium’s (ISARIC) multi-cohort consortium.29 This prospective study across 76 countries
collected demographic and illness-associated data during acute SARS-CoV-2 infection, with a
subset of sites assessing participants 3 months (+/-1) following infection and 3-6 months
thereafter. Recruitment was aimed at clinical settings. Complete details on the study design and
recruitment procedures can be found in the published follow-up protocol.30

We selected representative locations defined by varying pandemic experiences and
demographic/socio-cultural contexts, with data available on indicators of socio-economic status
(educational attainment and employment status), resulting in the following individual cohorts:
Norway (n=1672) and the UK (n=1064). We combined data from India, Brazil, Russia, and
South Africa into one cohort representing upper and lower middle-income countries (MICs), as
defined by the World Bank31. Sample sizes were insufficient (n<1000) for each of these locations
individually (n=264, n=125, n=57, for India, South Africa, and Brazil, respectively), with the
exception of Russia (n=1155). Our study incorporates information on two outcome measures
capturing long COVID experiences, self-reported continued symptomatology and post-illness
quality of life, thereby reducing the influence of between-group reporting patterns that may exist
within either of these measures.

Long-term health utility values were obtained using standard quality of life-adjustment
estimation procedures, based on subjects’ responses to the EQ-5D-5L survey included in the
ISARIC follow-up case report forms.32 The purpose of the EQ-5D-5L survey is to elicit
self-reported rankings on five dimensions of health (mobility, self-care, usual activities,
pain/discomfort, and anxiety/depression), representing the intensity of problems experienced
along that dimension. All possible rankings for each of the five dimensions were assigned
weights, which quantify preferences for different health states. Participants were asked to report
these five rankings based on their experiences prior to their COVID infection and in the present,
yielding two sets of rankings. Weights were sourced from studies conducted in the country in
question or in a related country (see Supplementary Appendix Table S1).

We subset each country cohort to only subjects reporting, at any follow-up survey, at least one
long COVID-associated symptom that was not present prior to illness. Utility scores were
computed following standard practice and then time-transformed (Supplementary Appendix:
Methods). Similar to Sandmann et al.14, we used a measure of quality-adjusted life days or
QALDs, as opposed to quality-adjusted life years (QALYs), given the limited variability across
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subjects expected for the latter measure, where utility scores would be simply scaled by one
year, i.e., the assumed duration, based on other study findings.33,34 We additionally chose to
focus on quality of life at least three months following infection, or quality of life in the ‘present’
as recorded in each follow-up survey. We did not consider QALD differences post- versus prior
to illness, given that issues with recalling experiences several months in the past are likely to
result in erroneous measures of pre-COVID QALDs.

We incorporated data on age, socio-demographic variables (female sex at birth and
socio-economic status proxies), a set of clinical comorbidities and risk behaviors, COVID-19
severity, antiviral treatment, and vaccination status (Supplementary Appendix: Methods). For all
countries included in our analysis, variables directly reflecting socio-economic status, such as
income/wealth or job category are not available, so we generated a series of associated
indicators depending on the data available. For Norway, we used quintiles of educational
attainment (years). For the UK and the combined MIC cohort, we used information on pre-illness
employment status (Supplementary Appendix Table S2).

For a subset of variables with incomplete data, we used multiple imputation by chained
equations (MICE) to assign values to missing entries (Supplementary Appendix: Methods). We
cannot make a definitive conclusion on the missingness mechanisms for sex at birth, i.e., we
have no reason to believe that females compared to males are less likely to self-report their sex,
which would result in a missing not at random (MNAR) mechanism. Thus, the use of MICE,
which assumes a missing (completely) at random mechanism, appears justified. However,
vaccination status and socio-economic indicators of educational attainment and employment
status are more likely to be MNAR due to social stigmas and fear of judgment. Nonetheless, a
relatively low fraction of most of these values were missing, with the exception of the
vaccination status indicator in the UK and combined MIC cohorts and antiviral treatment in the
Norwegian and combined MIC cohorts (Supplementary Appendix: Methods). Consequently, to
avoid imposing significant bias, we chose not to impute these specific variables and excluded
them from their respective variable sets. Finally, as the distribution of sex at birth in our sampled
populations non-negligibly deviated from that of the underlying population in the individual
cohorts, i.e., Norway and the UK, we conducted sensitivity analyses where subjects were
assigned post-stratification weights according to the raking method (Supplementary Appendix:
Methods).35–37

To identify social predictors of long COVID QALDs, we implemented a series of random forest
ensemble learners for each country, fit to all available clinical and demographic data, where
variables were either treated individually (RF #1), grouped algorithmically via hierarchical
clustering (RF #3), or pre-grouped based on subject matter knowledge (RF #2). We
implemented a pre-grouped procedure, which incorporates subject matter knowledge, as an
alternative to model-grouped approaches agnostic to such context.

For RF #1, we trained a simple random forest treating each variable as individual predictors
over an ensemble of decision trees. For RF #2, we manually grouped comorbidities depending
on similar clinical categorizations or latent mechanisms (Supplementary Appendix Table S3),
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applying multiple factor analysis38 to the groups to provide a summary measure for each prior to
implementing the random forest (Supplementary Appendix: Methods).For RF #3, we applied a
combined “variable clustering/variable selection” method introduced by Chavent et al.39, i.e.,
Clustering of Variables-Variable Selection Using Random Forest (CoV-VSURF), which enables
related variables to be grouped prior to being used as inputs in training a random forest.39

To estimate the natural direct effects (NDE) and natural indirect effects (NIE) of binary
educational attainment and employment status categorizations or female sex on long COVID
QALDs in each cohort, we applied a flexible semi-parametric statistical approach.40,41 We note
that the NDE and NIE are, under well-studied assumptions, interpreted causally, as defined by
Pearl42 and Robins and Greenland43, although our “exposures” of interest are not directly
intervenable as they are social constructs.44 For Norway, our binary proxy of SES was high/low
educational attainment, where ‘high’ encompassed quintiles 3-5 and ‘low’ encompassed
quintiles 1 and 2. For the UK and the combined MIC cohorts, our binary proxy of SES was
high/low employment status. For the UK, ‘high’ encompassed full-time employment and ‘low’
encompassed all other employment status categories (furloughed, part-time employment,
student, and the unemployed), with the exception of retirement. For the combined MIC cohort,
‘high’ encompassed full-time employment and ‘low’ encompassed all other employment status
categories, where retirees are included due to notable disparities in representation of full-time
employees vs all other categories in this cohort .

Estimates of the NDE and NIE are obtained using targeted maximum likelihood estimation.40,45

Through this procedure, “nuisance parameters”40,41,45,46 are first estimated via ensemble machine
learning or super learning, then updated in such a way to diminish bias and inform a more
correct characterization of uncertainty for the target parameter of interest (Supplementary
Appendix: Methods).40,41 In this context, nuisance parameters include the conditional probability
of each of our binary SES proxies or female sex, dependent on confounders; the conditional
probability of each of our binary SES proxies or female sex, dependent on confounders and
mediators; and the conditional mean of long COVID QALDs dependent on each of our binary
SES proxies or female sex, the confounders, and mediators.

To obtain these estimates, we incorporated a multi-model learner consisting of an assortment of
parametric and nonparametric approaches (Supplementary Appendix: Methods). The causal
structures assumed here are depicted in the Directed Acyclic Graphs (DAGs) presented in
Supplementary Appendix Figures S1-2. Mediators were selected following a literature search of
studies distinguishing key long COVID predictors11,12, consistent with the data available for each
country, resulting in the following final mediator sets: asthma, chronic cardiac disease (not
hypertension), hypertension, chronic pulmonary disease (not asthma), type 1 diabetes (T1D),
type 2 diabetes (T2D), diabetes (type not specified), psychological disorder, smoking, and
vaccination status (Norway), asthma, chronic cardiac disease (not hypertension), hypertension,
chronic pulmonary disease (not asthma), T2D, diabetes (type not specified), psychological
disorder, ischemic heart disease, smoking, obesity, and antiviral treatment (UK) and asthma,
chronic cardiac disease (not hypertension), hypertension, chronic pulmonary disease (not
asthma), T1D, T2D, diabetes (type not specified), smoking and obesity (combined MIC cohort).
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Here, the NDE broadly describes the effect of a given social variable on long COVID QALDs not
operating through the included mediators while the NIE specifically describes the effect of that
social variable on long COVID QALDs through the included mediators. We define the proportion
non-mediated as the % contribution of NDE to the total effect (TE), reflecting the share of the TE
of the social variable on long COVID QALDs that cannot be explained by the clinical
intermediates, consistent with the social disparities conceptual framing provided in Bellavia et
al., 2018.47 For the combined MIC cohort, we additionally conducted country-specific analyses
to assess whether the directionality of effects were generally consistent compared to their
analogues in the overall analysis.

Data availability statement
The data that underpin this analysis are highly detailed clinical data on individuals hospitalised
with COVID-19. Due to the sensitive nature of these data and the associated privacy concerns,
they are available via a governed data access mechanism following review of a data access
committee. Data can be requested via the IDDO COVID-19 Data Sharing Platform
(http://www.iddo.org/covid-19). The Data Access Application, Terms of Access and details of the
Data Access Committee are available on the website. Briefly, the requirements for access are a
request from a qualified researcher working with a legal entity who have a health and/or
research remit; a scientifically valid reason for data access which adheres to appropriate ethical
principles.The full terms are at: https://www.iddo.org/document/covid-19-data-access-guidelines.
A small subset of sites who contributed data to this analysis have not agreed to pooled data
sharing as above. In the case of requiring access to these data, please contact the
corresponding author in the first instance who will look to facilitate access.

All code (with the exception of code used to process the individual datasets) is publicly available
at: https://github.com/goshgondar2018/social_long_covid.

Results

Combined MIC cohort (India, Brazil, Russia, and South Africa)

The mean age of participants was 58.4 years (SD: 14.4 years). Females outnumbered males,
constituting 57% of the cohort. Hypertension was the most frequently reported comorbidity
(58%). Estimated long COVID QALDs were greatest in this cohort (median=346; Interquartile
range (IQR): 316-365), when compared to the Norway and UK cohorts.

Employment status was markedly skewed towards full-employment (53%) and retirement (35%),
with unemployment (7%) and part-time employment (2%) seeing less representation. Carers
and students were least represented (2% and 0.3%). Long COVID QALDs were highest among
students, full-time employees, and carers, and lowest among those in the retired and
unemployed categories. Males reported marginally higher long COVID QALDs than females
(p<0.0001).
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Age dramatically eclipsed all other variables in terms of its predictive power for long COVID
QALDs in this cohort, followed by employment status indicators, chronic neurological disorder,
and hypertension. Country fell next in the rankings, indicating that underlying cross-country
differences in long COVID QALD trends that are not tied to the variables under interest merit
consideration, validating our adjustment by country in the subsequent mediation analyses as a
source of confounding (Figure 1a). The acute COVID-19 severity indicator was found to be
unimportant. RF #2 supported these findings. The cluster containing solely age led the rankings,
followed by the principal components (PCs) of the cluster containing socio-demographic
variables employment status and sex, and the PCs of the cluster containing psychological
disorder and chronic neurological disorder (Figure 1c). Similarly, for RF #3, age, chronic cardiac
disease (not hypertension), chronic neurological disorder, as well as dementia, employment
status indicators, hypertension, rheumatological disorder, and sex led the set of most frequently
selected variables (Figure 1b). However, there were no perceptible differences in variable
selection across nearly all predictors, indicating that the CoV-VSURF procedure may not be
well-suited for variable rankings in a combined MIC cohort.

While we cannot directly comment on the directionality of associations based on these results,
the correlation matrix for all variables in the combined MIC cohort (Supplementary Figure S5)
indicates that QALDs were independently negatively associated with age, the acute COVID-19
severity indicator, and all top predicting comorbidities, particularly for chronic neurological
disorder, hypertension, and rheumatological disorder. Subjects with those comorbidities present
reported lower long COVID QALDs.

Full-time employment was associated with higher long COVID QALDs compared to all other
employment status categories. 8.95 (95% CI: 1.82, 16.1) more long COVID QALDs were
expected among subjects self-reporting full-time employment compared to all other employment
categories due to the direct effect of self-reported full-time employment on long COVID QALDs
(the NDE). An additional 4.03 (0.82, 7.24) long COVID QALDs were expected among subjects
self-reporting full-time employment compared to all other employment categories, due to the
indirect effect of self-reported full-time employment on long COVID QALDs through the
intermediates (the NIE). The proportion non-mediated was estimated to be 0.74 (0.46, 1), i.e.,
74.2% of the effect of full-time employment versus all other employment status categories on
long COVID QALDs could not be explained by the included mediators and must thus be
attributed to broader structural factors or other mechanisms. Female sex was associated with
lower COVID QALDs, with an estimated NDE of -5.24 (-10.8, 0.33), NIE of -0.85 (-2.59, 0.90),
and proportion non-mediated of 0.84 (0.62, 1), indicating that a high fraction of the sex-at-birth
effect cannot be tied to mediation by the considered clinical intermediates. We note that the
upper and lower bounds of the confidence intervals (CIs) for the proportions mediated for all
cohorts are not necessarily exactly aligned with what we expect based on the bounds of the CIs
for the corresponding NDEs and NIEs. The relationship between these measures may not hold
exactly for computational reasons, because CIs are estimated separately for each of the
measures using cross-validation, which may introduce technical noise due to the randomness
inherent in sample splitting. Finally, from the country-specific analyses, we observed the same
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directionality (positive), albeit at far reduced precision, for the NDE for the binary high SES
indicators in all countries as in the combined analysis, but opposing directionality (negative) for
the NIE for the binary high SES indicators in India and Brazil (Supplementary Figure S9).
Nonetheless, the TE for both these countries was positive overall, suggesting that, as in our
main analysis, high SES is associated with increased long COVID QALDs, but that the
mediators have an opposing intermediary effect (Supplementary Figure S9). Importantly, for all
countries except South Africa, the direct effect comprises the majority of the total effect,
although to differing degrees (Supplementary Figure S9). For the female sex ‘exposure’, we
found consistent directionality for all NDEs and NIEs (negative) as in the combined analysis,
with the exception of the estimated NDE for South Africa, and NDEs exceeding NIEs in
magnitude (Supplementary Figure S9). For Brazil, NDEs and NIEs could not be estimated
because of the large discrepancy between males and females (9 versus 84).

Norway

The Norwegian cohort was the youngest, with a mean age of 51.8 years (SD: 13.6 years). Most
participants self-identified as white (93%), with non-white race/ethnic minorities notably
underrepresented when compared to the approximate race/ethnicity distribution of Norway.48 As
a consequence of this imbalance and sparse numbers in some ethnic groups, we concluded
that any assessment of the role of race/ethnicity in shaping long COVID QALDs would not be
justified, omitting it from our social variables under consideration. Females constituted a majority
of this cohort (68%) compared to males and are thus overrepresented in relation to Norway’s
underlying population.49

The most commonly reported comorbidity was asthma (22%). From the total cohort, 50%
reported receiving at least one dose of any COVID-19 vaccine. The median (IQR) value for
estimated long COVID QALDs was 345 (313-360).

There was no broadly consistent trend in long COVID QALDs across increasing quintiles of
educational attainment, although the lowest mean QALDs occurred in the bottom two quintiles.
We observed the greatest differences in long COVID QALDs between, in order of increasing
magnitude, quintiles 3 and 1, quintiles 5 and 1, and quintiles 4 and 1. Estimated long COVID
QALDs in males slightly exceeded those in females (p<0.0001).

Among the leading individual predictors of long COVID QALDs in Norway, anxiety/depression
dominated the rankings, followed by educational attainment, rheumatological disorder, and age
(Figure 2a). Sex fell lower in the rankings. For RF #2, we observed that the first and second PCs
of the cluster containing all socio-demographic variables, i.e., educational attainment indicators
and sex, ranked below the first and second PCs of the cluster containing psychological disorder
and chronic neurologic disorder (Figure 2c). RF #3 largely corroborated these orderings, where
psychological disorder, rheumatological disorder, chronic neurological disorder, and asthma
were the most consistently selected variables within identified important clusters, followed by
educational attainment (in years) and a dummy educational attainment indicator for quintile 5
(vs 1) (Figure 2b). Our sensitivity analyses applying the sex-based population corrections
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produced nearly identical findings for RF #1 and RF #3 (Supplementary Figure S12a and c). As
expected, due to its greater intrinsic variability across model runs, the model-grouped
CoV-VSURF procedure provided somewhat contrasting rankings, with variables like T2D and
diabetes (type not specified) more frequently selected, and age and sex less frequently
selected, than in the main analysis (Supplementary Figure S12b). However, the top-ranking
variables – psychological disorder, rheumatological disorder, and chronic neurological disorder –
were preserved, and educational attainment indicators retained a similarly high ranking
(Supplementary Figure S12b).

QALDs were found to negatively correlate with all top comorbidities and moderately positively
correlate with age and the vaccination status indicator (Supplementary Figure S6).

We estimated that falling in the top two quintiles of educational attainment was associated with
12.3 (6.49,18.2) additional long COVID QALDs, on average, via the NDE and 0.67 (-0.98, 2.32)
additional long COVID QALDs, on average, via the NIE. The corresponding proportion
non-mediated was estimated to be 0.90 (0.77, 1). We obtained consistent directionality in
findings for pairwise comparisons of quintiles 3 and 1, 4 and 1, and 5 and 1, with the greatest
proportion non-mediated observed for the quintile 5 vs 1 comparison. However, we note that
such pairwise comparisons warrant multiple testing corrections before any inferential claims can
be made. A clear negative association was also observed between female sex and long COVID
QALDs, with an estimated NDE of -6.79 (-12.8, -0.72), NIE of -3.05 (-5.89, -0.22) and proportion
non-mediated of 0.77 (0.46,1). Effect estimates for the NDE, NIE, and proportion non-mediated
were nearly equivalent, but with reduced stability, in the sensitivity analysis applying population
weights (Supplementary Figure 10).

UK

The UK cohort was skewed towards older adults (mean (SD): 59.0 (12.6) years). Nearly all
participants self-identified as white (96%), representing an even greater deviation from the
underlying race/ethnicity distribution in the UK.50 Again, for this reason, we exclude
race/ethnicity from our “exposure” variables/predictors for long COVID QALDs. Most were male
(59%), which is not reflective of the underlying UK population, as females are the slight majority
(51%).51

The most commonly reported comorbidity was hypertension (36%). The median (IQR) value for
estimated long COVID QALDs was 295 (233, 342), the lowest of all three cohorts.

Employment status was markedly skewed towards full-employment (51%), retirement (30%),
part-time employment (10%) and unemployment (7%). The least represented categories were
students (0.6%) and the furloughed (0.5%). Estimated long COVID QALDs were greatest
among participants who reported being furloughed, students or full-time employees and lowest
among those in the unemployed and retired categories.
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Employment status was the leading predictor for long COVID QALDs in the UK, followed by
psychological disorder, age, employment status category, chronic neurological disorder, and
rheumatological disorder (Figure 3a). Sex followed in the rankings, which, along with the acute
COVID-19 severity indicator, fell among the top ten predictors (Figure 3a). RF #2 also revealed
the prime predictive role of employment status and sex as a group, with the PCs of the
socio-demographic variables in aggregate dominating other grouped variables, closely followed
by the PCs of the group of mental health and neurological disorders (Figure 3c). Age alone
ranked highly, even in comparison to grouped factors (Figure 3c). Findings from RF #3 aligned
well with these results with age, chronic neurological disorder, employment status indicators,
and psychological disorder the most commonly selected variables, followed by rheumatological
disorder, across key clusters (Figure 3b). Finally, the population correction sensitivity analysis
reported very similar rankings of variables for both RF #1 and RF #3 implementations
(Supplementary Figure S13a and c). The same was true for RF #2, where all top ten most
selected variables were the same in the main and sensitivity analysis, with the exception of
obesity (Supplementary Figure S13b).

QALDs were negatively associated with all major predictive comorbidities, particularly for
psychological disorder and chronic neurological disorder, the acute COVID-19 severity indicator,
and acute treatment with antivirals (Supplementary Figure S7). In contrast, QALDs were
modestly positively associated with age (Supplementary Figure S7).

Increased income/job stability, as proxied by employment status, was consistently associated
with increased long COVID QALDs, irrespective of the binary designation used. We found that
self-reported full-time employment compared to any other employment status category
(excluding retirement) was associated with, on average, 31.7 (14.2, 49.3) higher expected long
COVID QALDs, via the NDE, and 4.90 (-0.065, 9.86) higher expected long COVID QALDs, via
the NIE. These results yield a proportion non-mediated of 0.86 (0.73, 0.996), i.e., 86% of the
effects of full-time employment versus all other employment status categories on long COVID
QALDs were unexplained by the mediators in question. We obtained an even stronger
relationship between self-reported full-time employment versus unemployment status, with, on
average, 79.5 (50.0, 109.0) increased long COVID QALDs among the full-time employed
relative to the unemployed (NDE) and 9.50 (1.04, 18.0) increased long COVID QALDs among
the full-time employed versus unemployed (NIE). The proportion non-mediated is thus slightly
higher at 0.91 (0.83, 0.98), suggesting that around 91% of the effect of full-time employment
versus unemployment on long COVID QALDs cannot be attributed as operating through the
considered mediators.

Female sex was associated with lower expected long COVID QALDs, with an NDE and NIE of
-24.2 (-37.8, -10.7) and -9.61 (-16.3, -2.95), respectively. The corresponding proportion
non-mediated was the lowest observed among all contrasts: only 73% (52%, 94%) of the effect
of female sex on long COVID QALDs were explained by the clinical intermediates. As in
Norway, the population correction sensitivity analysis reproduced these findings, but with greater
uncertainty (Supplementary Figure S11).
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Discussion

In this study, we provided a quantitative assessment of the extent to which social factors,
compared to commonly highlighted clinical conditions, contribute to varying experiences with
long COVID.

The data provided compelling evidence for specific categories of pre-existing comorbidities,
namely neurological, psychological, and rheumatological, being major predictors of long
COVID-associated quality of life. Age also consistently ranked highly as a predictor across the
multiple middle and high income countries represented in Europe, Asia, Africa, and South
America, although the direction of this association differed by context. However, of note, our
evaluated bivariate associations reflect the unadjusted role of a given factor of interest on long
COVID QALDs and cannot be used to draw any meaningful conclusions about causality. For
instance, the negative association observed between antiviral treatment and long COVID
QALDs in the UK is likely to be an artifact of confounding by acute disease severity.

Importantly, we observed that socio-demographic variables educational attainment or
employment status and sex at birth were generally as or more predictive of long COVID QALDs
than the aforementioned comorbidities. Our mediation analyses further suggest that not only are
indicators of societal disadvantage highly predictive of lower long COVID QALDs, but also that
the impacts of these variables on long COVID QALDs could only be partially explained by key
long COVID-predicting comorbidities. This general finding, i.e., that disparities are not solely
attributable to underlying differences in comorbidity rates across various demographic groups,
has been validated in other studies conducted over the course of the pandemic.20,25,52

Our study benefited from the use of a sizable and diverse international cohort with data on
long-term quality of life following SARS-CoV-2 infection, providing more exhaustive information
on post-acute COVID-19 experiences beyond simply whether patients experience long COVID
symptoms. Given the sufficiently large sample sizes for our selected cohorts, we were able to
apply adaptable machine learning tools, including recent developments in causal machine
learning.40,46 The variable selection methods we used avoid strict and potentially biased
modeling assumptions required for commonly used parametric regressions and accommodate
inherent variable groupings. Additionally, the causal mediation approaches we applied extend
traditional causal inference frameworks53 through the integration of flexible, but simultaneously
relatively precise, model-free regression algorithms 40,46, providing a promising alternative, as
aligned with previously outlined frameworks54, to parametric, model-based approaches.

There are several important limitations of our analysis. First, as our outcome of interest was
post-acute COVID-19 long-term quality of life, we were unable to examine the varying roles of
the different social and clinical factors on changes in quality of life. For future work, it is thus
imperative to collect information on quality of life measures at all stages of illness, not simply ex
post facto, to avoid issues with recall by positioning readily implementable epidemic study
protocols at the outset of an outbreak. Relatedly, we did not have information on subject-specific
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duration of long COVID, and instead assumed uniform duration for all participants consistent
with examples in the literature on the duration of long COVID.33,34 Additionally, while participant
recruitment was extensive for each of the cohorts considered in this analysis, filtering each
dataset to subjects with available demographic, comorbidity, and quality of life data led to
sharply reduced sample sizes, especially for MICs. This led to reduced power and the need to
combine multiple, highly varying, MIC countries into one cohort, despite potentially profoundly
different relationships between each of the social factors and long COVID QALDs in each
country. While we found evidence for generally comparable directions of association for the
country-specific analyses compared to those of the full combined cohort, which would indicate
that there may not be meaningful effect modification by country, some measures did vary in sign
and magnitude, notably lower estimated proportions non-mediated, and all results were
generally less stable. Consequently, country-specific analyses where sample sizes are sufficient
are necessary for disentangling whether these represent real differences by country within the
combined cohort, or possible artifacts of small samples. Finally, variables like vaccination status
and antiviral treatment were sparsely recorded in some cohorts mainly due to early
implementation of the follow-up studies before vaccination was available.

In the Norway cohort, we observed that vaccination status was a very weak predictor of long
COVID QALDs, but we note that there could be possible type-specific, dose-specific, or
duration-specific effects that we were unable to evaluate here given that the relevant data was
nonexistent or insufficient. Thus, the prioritization of both data unification procedures that enable
the synchronous collection of the range of variables considered, and the collection of data in
less resource-rich/high-attention settings, is crucial.

Finally, it can be concluded that survivorship bias might affect our results, as only subjects who
completed a follow-up survey at any follow-up interval can have their quality of life measures
recorded. Those lost to follow up due to death from early myocardial infarction, vascular strokes,
etc. are also likely to have a reduced quality of life prior to this event.55 However, no participants
in the Norway and UK cohorts died at any point during follow up and only 1.3% of subjects in
the combined MIC cohort with follow-up information died by the conclusion of the study.

There were additional limitations related to the type of information we had at our disposal. First,
the marked underrepresentation of race/ethnic minorities in the UK and Norway cohorts, and the
lack of race/ethnicity data or relevance of this construct in some contexts, such as the Russian
and Indian cohorts, prevented us from investigating the impacts of race/ethnicity. It is crucial that
future studies seek to recruit more balanced cohorts in this respect, and, where applicable,
address constraints with documenting such information. Importantly, in order for a meaningful
analysis of race/ethnic risk factors to be conducted in settings where race/ethnicity is a relevant
determinant of health, controlled definitions of minority groups must be tailored to and assessed
independently in each context. Additionally, while we did have data available for socio-economic
proxies, we were limited to specific variables that may not fully reflect participants’ levels of
socio-economic deprivation and had to apply somewhat arbitrary aggregations of variables due
to data and methodological constraints. For future work, it would be useful to both emphasize
the collection of more proximate indicators of socio-economic status and consider extensions of
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the mediation approaches that allow for categorical exposures. Finally, we were limited to data
on sex at birth, which does not capture important gender-based disparities that exist beyond this
binary.56

Despite these challenges, the central aim of this analysis was to outline a robust statistical and
causal-analytic framework, applied to example case studies, for highlighting the contribution of
social disparities to chronic ill-health. Our framework can be used both as a standardized
comparison of a collective of diverse variables, grouping related factors when necessary, as
determinants of worsened post-acute COVID-19 health and well-being and a way to distill the
unique impacts of any social variable of interest on these outcomes. Our data highlights the
multifactorial relationship between pre-existing risk factors and socio-economic factors and
recovery from SARS-CoV-2 infection. As such, we demonstrate that accounting for social
vulnerabilities when evaluating determinants of post-acute COVID-19 trajectories is essential
and that studies focusing solely on clinical targets may not be sufficient. Consequently,
approaches aiming to alleviate social disparities in long COVID recovery by exclusively targeting
comorbidity prevention and management are likely to be restricted in their impact. Conversely,
transformational societal interventions, that can address disease exposures and access to care,
educational, and employment, and other social determinants of health, have the opportunity to
lead to potentially more comprehensive benefits and improve overall well-being in marginalized
communities.
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Table 1: Summary of demographic variables (excluding SES proxies) and common
comorbidities in the final study populations for each cohort, post-missing data imputation. Note
the combined middle-income country cohort consists of the following countries: India, Brazil,
Russia, and South Africa

Figure 1a. Estimated variable importance measures, i.e. % increase in mean squared error or
MSE, from individual random forest implementation (RF #1) for the combined middle-income
country cohort.
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Figure 1b. Number of times (frequency) each variable appears in clusters selected for each
CoV-VSURF run (RF #3) for the combined middle-income country cohort.
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Figure 1c. Estimated variable importance measures, i.e. % increase in mean squared error or
MSE, from pre-grouped random forest implementation (RF #2) for the combined middle-income
country cohort. Rows indicate cluster names (a full list of variables belonging to each cluster can
be found in Supplementary Table S3) and corresponding principal components, if the cluster
consists of multiple variables. PC1 denotes principal component 1 and PC2 denotes principal
component 2.
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Figure 2a. Estimated variable importance measures, i.e. % increase in mean squared error or
MSE, from individual random forest implementation (RF #1) for Norway.
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Figure 2b. Number of times (frequency) each variable appears in clusters selected for each
CoV-VSURF run (RF #3) for Norway.
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Figure 2c. Estimated variable importance measures, i.e. % increase in mean squared error or
MSE, from pre-grouped random forest implementation (RF #2) for Norway. Rows indicate
cluster names (a full list of variables belonging to each cluster can be found in Supplementary
Table S3) and corresponding principal components, if the cluster consists of multiple variables.
PC1 denotes principal component 1 and PC2 denotes principal component 2.
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Figure 3a. Estimated variable importance measures, i.e. % increase in mean squared error or
MSE, from individual random forest implementation (RF #1) for the UK.
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Figure 3b. Number of times (frequency) each variable appears in clusters selected for each
CoV-VSURF run (RF #3) for the UK.
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Figure 3c. Estimated variable importance measures, i.e. % increase in mean squared error or
MSE, from pre-grouped random forest implementation (RF #2) for the UK. Rows indicate cluster
names (a full list of variables belonging to each cluster can be found in Supplementary Table
S3) and corresponding principal components, if the cluster consists of multiple variables. PC1
denotes principal component 1 and PC2 denotes principal component 2.
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