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Abstract
When developing Machine Learning models to support emergency medical triage, it is important
to consider how changes over time in the data can negatively affect the models’ performance. The
objective of this study was to assess the effectiveness of novel Deep Continual Learning pipelines
in maximizing model performance when input features are subject to change over time, including
the emergence of new features and the disappearance of existing ones. The model is designed
to identify life-threatening situations, calculate its admissible response delay, and determine its
institutional jurisdiction. We analyzed a total of 1 414 575 events spanning from 2009 to 2019.
Our findings demonstrate important performance improvements, up to 4.9% in life-threatening,
18.5% in response delay and 1.7% in jurisdiction, in absolute F1-score, compared to the current
triage protocol, and improvements up to 4.4% in life-threatening and 11% in response delay, in
absolute F1-score, respect to non-continual approaches.

Keywords: Continual Learning, Covariate Shift, Deep Learning, Dataset Shifts, Emergency Medical
Call Incidents, Emergency Medical Dispatch

1 Introduction
Out-of-hospital emergency medical triage presents a complex challenge, involving fast-paced decisions
with considerable uncertainty, where errors can have fatal consequences. To aid dispatchers and
reduce variability among professionals, emergency medical dispatch centers provide clinical guidelines,
collectively known as clinical protocols [1]. These protocols include well-known systems such as the
Manchester Triage System [2], the Canadian Triage Scale [3] or the Emergency Severity Index [4],
which share a common structural arrangement as decision trees with clinical queries and branching
pathways leading to a terminal node specifying the assigned priority level for the incident.

Within the domain of out-of-hospital emergency medical triage in the Valencian Community
(Spain), an in-house triage protocol was conceived by experts within the Health Services Department
(HSD) of this region. Initially inspired by the Manchester Triage System, the protocol underwent
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iterative adaptations over time, drawing upon the insights and expertise of coordinator physicians.
Consequently, the protocol is hierarchical, featuring queries linked to distinct branches. The responses
to these queries correspond to values attributed to structured clinical variables, culminating in final
leaf nodes that are related to specific priority levels.

Nonetheless, the phenomenon of distributional drifts [5, 6] manifests over time. In the context
of healthcare processes and medicine, these distributional variations are intrinsic [7–10], and out-of-
hospital emergency medical triage processes in the Valencian region are no exception. Focusing on
this specific context, the occurrence of these shifts is attributed to a multitude of factors. Foremost, it
is imperative to underscore the alteration in the information system during 2013, which engendered
substantial shifts in protocols, personnel, and emergency coordination. Furthermore, changes in tele-
phone operators, targeted training initiatives and updates to clinical variables via the evolution of
the in-house triage protocol, have collectively exerted their impact over time.

In the context of the Valencian region, a deep multitask ensemble model named DeepEMC2 was
developed to support incident severity assessment processes within this area [11]. This model is con-
stituted by four main deep neural networks, each one specialized on a specific data type: the Context
network, focused on demographics and circumstantial data; the Clinical network, designed to deal
with the clinical features derived from the protocol; the Text network, which considers the free text
data written by the dispatcher; and the Ensemble network, which combines the inner representations
of the previous networks to offer severity assessment. DeepEMC2, the global network resulting from
the combination of the later four, showed promising results when compared with the in-house triage
protocol of the Valencian region, providing performance enhancements of 12.5%, 17.5%, and 5.1%
when assessing the life-threatening level, the admissible response delay and the jurisdiction of incom-
ing incidents, in terms of absolute macro F1-score. Hence, its implantation could derive in a huge
positive impact over patient well-being and health services sustainability.

However, due to data availability reasons, the data considered to train and evaluate these multiple
networks covered the period from 2009 to 2012. As previously discussed, when developing a Machine
Learning-based system for providing triage decision support, it is crucial to consider the dataset
shift phenomenon that naturally occurs over time [12, 13]. In the context of the Valencian region,
shifts associated with the appearance and disappearance of clinical features over time pose a tough
challenge that, if unaddressed, harms model performance through time, as exemplified in Figure 1. In
this figure, the behavior of the original Clinical network—constituent of DeepEMC2 which deals with
the clinical features derived from the in-house triage protocol—is represented over the different years.

Fig. 1 Performance of the Clinical network of the DeepEMC2 model over time, for each of the three severity labels,
in terms of F1-score. This F1-score is referenced to the positive class in the life-threatening and emergency system
jurisdiction label, while it is macro-averaged for the admissible response delay label.
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Given the observed negative performance impacts resulting from the changing environment, it is
imperative to incorporate mechanisms to mitigate the adverse effects arising from these shifts. Hence,
within this study, we have designed novel deep architectures for the Clinical network along with novel
Deep Continual Learning pipelines [14, 15], aiming to face the changing clinical features challenge
over time, while maximizing model performance. After their design, we have implemented and applied
them to multiple temporal sets of out-of-hospital emergency medical data from the Valencian region,
to assess their effectiveness. Despite the existence of previous works addressing the training and
deployment of Machine Learning models in the context of medical data with temporal dataset shifts
[12, 13, 16–18], to our knowledge, this is the first study facing evolving clinical features within the
domain of out-of-hospital emergencies.

2 Materials
We considered a total of 1 414 575 independent out-of-hospital emergency medical incidents from the
HSD of the Valencian region, compiled from 2009 to 2019, excluding 2013—since the emergency
information system changed during that year. Data usage was approved by the Institutional Review
Board of the HSD. No information that may disclose the identity of the patient was kept for any of
the analyses.

The data employed in these studies encompassed both during-call and after-call data. During-
call data were recorded during the emergency medical call and included clinical tree variables and
values associated with the in-house decision tree. Some examples of possible clinical features sets
associated each one to a different incident are: 1) “Previous trauma: no; Shortness of breath: yes; Nasal
congestion: no” and 2) “Active arrhythmia: yes; History: cardiac pathology; Dizziness: yes; Incident
location: public road/street”. These data were used at inference time as input for the prediction. On
the other hand, after-call data were recorded at a time after the call. They include physician diagnosis,
hospitalizations, urgency stays, maneuvers, and procedures the patient underwent. After-call data
were used offline—i.e., not in prediction time—to infer the output variables of the predictive model:
if the emergency event implied or not a life-threatening situation, which was the admissible response
delay—undelayable, minutes, hours, days—and if the event was jurisdiction of the emergency system
or primary care.

As stated in the previous section, the clinical tree features have undergone significant changes
over time. Some features have experienced shifts in their occurrence rates, others have been entirely
phased out after several years, and new features have emerged. This phenomenon is illustrated in
Figure 2, which depicts the empirical frequency of the most common clinical features in our dataset
across different time periods.

3 Methods

3.1 Data preparation
We segmented our data to capture temporal variations while assessing overfitting. We initially parti-
tioned our dataset into distinct time windows. The first window comprised data solely from the years
spanning from 2009 to 2012 and, subsequently, each ensuing time window corresponded to a spe-
cific year (2014-2019). This partitioning strategy was selected due to forthcoming architectural and
training variations within the original Clinical network. This network was trained collectively on the
entire 2009-2012 data batch, rather than in a year-by-year manner. Thus, if we intend to evaluate
the impact of architectural modifications, it is imperative to ensure the use of consistent data sets
for performance metric comparisons.

Following this initial partition, another division was performed. For each time window, a training
and test split was conducted, allocating 80% for training and 20% for testing. Subsequently, the
training set was divided into a pure training subset and a validation subset, with proportions 70%
and 30%, respectively. The validation subset was exclusively employed for hyperparameter tuning,
with no inclusion of cases from the test set.

Subsequently, we transformed the categorical clinical features into indexes. This conversion was
necessary to enable the subsequent utilization of an Embedding Layer [19], which will map every
index to a dense vector in our models. Additionally, we undertook padding and truncation operations
to ensure a consistent sequence length, thereby fastening training processes.
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Fig. 2 Square root of the empirical probabilities associated with the 20 most frequently occurring clinical features in
our dataset.

Finally, with respect to the labels, they were encoded through one-hot encoding. As such, from
the life-threatening label, two variables were derived. Likewise, four variables originated from the
admissible response delay label and an additional two from the emergency system jurisdiction label.

3.2 Deep neural network design
Considering the outcomes detailed in [11], where Deep Learning models exhibited superior perfor-
mance compared to other Machine Learning approaches such as Random forest [20] or Gradient
boosting [21], the focus in this work remains on models of a similar nature. However, the present
study excludes the adoption of recurrent architectures as the original Clinical Network, since we aim
to build an order-invariant model, able to generate consistent predictions even when clinical features
are presented in varying orders and hence, being robust to this type of shifts. In addition, this model
has to be able to handle the challenge posed by the emergence and disappearance of novel features
over time.

In the next section, we introduce the model that we developed to align with these specific require-
ments. Due to its inherent characteristics, we have named this model the Clinical Invariant Network,
denoted as CliInvNet for brevity.

3.2.1 Clinical Invariant Network

The Clinical Invariant Network comprises a multitask [22] deep neural network, constituted by two
main components: the Indexes Encoder and the Multitask Classifier. The Indexes Encoder, serving
as the network’s hard parameter sharing element, forms its core. Meanwhile, the Multitask Classifier
contains distinct branches, each associated with a specific label. These branches are responsible for
computing predicted scores for the various classes within each label.

Focusing on the Indexes Encoder, we constructed it with an initial Embedding Layer [19]. This
layer facilitates the mapping of clinical variables, expressed as indexes, into dense vector represen-
tations, a significantly more efficient alternative to one-hot encodings. Moreover, this Embedding
Layer enables the accommodation of novel features over time. We achieve this by pre-allocating a
substantial number of entries within the corresponding lookup matrix without impacting subsequent
architectural elements. Following the Embedding Layer, an Adaptive Average Pooling block [23] was
employed. This component serves to aggregate the representations of all features within an observa-
tion into a singular representation. This functionality allows the network to accommodate varying
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numbers of features per entry. Additionally, the Adaptive Average Pooling Layer endows the net-
work with order-invariant capabilities, preserving results even with altered feature orders. Following
this, multiple dense blocks were introduced, each encompassing a Fully Connected Layer [24], Layer
Normalization [25], a GELU activation function [26], and a Dropout Layer [27] to counteract neuron
co-adaptation.

The Multitask Classifier, responsible for incorporating task-specific components into the architec-
ture, consists of three branches. Each branch contains several dense blocks, culminating in an output
block. These output blocks consist of a Fully Connected Layer followed by a Softmax activation
function. Illustrated in Figure 3, the main architecture of CliInvNet is visually represented.

Fig. 3 Clinical Invariant Network architecture. It is a deep multitask neural network composed of two primary com-
ponents: the Indexes Encoder and the Multitask Classifier. The Indexes Encoder transforms input clinical variables,
encoded as indexes, into deep continuous embeddings. The Multitask Classifier then utilizes these embeddings to make
predictions. It assesses the probability of a life-threatening event, categorizes the admissible response delay at various
levels, and determines whether the incident falls under the jurisdiction of the emergency system.
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3.3 Parameter tuning
Concerning the parameter tuning process, we used the AdamW [28] optimizer. The feeding paradigm
followed was a mini-batch training approach [29], while the loss function considered was the soft F1-
score [30]. To further enhance our training, we incorporated a cosine annealing learning rate scheduler,
which aligns aptly with deep transfer learning scenarios [31].

Likewise, layers featuring ReLU activation functions were initialized using Kaiming initializa-
tion [32], whereas layers incorporating the softmax activation function were initialized with Xavier’s
initialization [33].

3.4 Continual Learning
In this section, we present Continual Learning strategies specifically designed to support the CliIn-
vNet’s adaptation across different time windows. It is important to emphasize a crucial distinction
at this point: the difference between approaches that focus on defining how the evolving clinical fea-
tures should be represented and updated over time windows—strategies for handling changing feature
domains—and procedures concerned about how CliInvNet’s parameters should be updated over the
different time windows—strategies to update parameters over time windows.

3.4.1 Strategies for handling changing feature domains

Static domain

The static domain strategy involves using the feature identifier-to-index conversion map from the
original Clinical Network (CliNet) within DeepEMC2. This map is fixed after the initial time window
and does not receive updates thereafter. If new variables arise that correspond to the 2009-2012
data batch, they are mapped to a known clinical feature. Conversely, features appearing over time
without any prior correspondence are assigned to the index representing unknown or infrequent nodes
within the CliNet. As a result, the number of active entries in the CliInvNet’s Embedding Layer stays
constant across all time windows. However, the values of these dense representations vary over time
as the model incorporates new data.

Dynamic domain

The dynamic domain strategy is based on the recurrent update of the feature identifier-to-index
map with each new time window. We establish a frequency threshold, mirroring the one employed in
the CliNet, to discern when a feature qualifies as infrequent. Such features are then either assigned
to the unknown index or mapped to a distinct integer designated solely for that feature. Across the
series of time windows, we monitor and revise the cumulative absolute frequency of each feature’s
occurrences. This iterative process facilitates the emancipation of features that were initially mapped
to the unknown integer, permitting their adaptation in subsequent time windows and preventing
them from becoming stagnant. Hence, the number of active entries of the Embedding Layer of the
CliInvNet varies over the time windows as long as the cumulative clinical variable frequency surpasses
the required threshold. In addition, the value of those enabled dense representations vary over time
as the model learns from new data.

Predefined domain

The predefined domain strategy employs a predefined embedding matrix derived from a large pre-
trained natural language processing model. Specifically, for this work, we selected the ALBERT model
[34] pretrained on a Spanish corpus [35]. This choice is motivated by the fact that our dataset con-
tains clinical variables originally in Spanish. Additionally, the dimensionality of the ALBERT model’s
embeddings closely matches that of the embeddings used in the static and dynamic approaches,
enabling effective comparisons across these strategies.

6

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted March 14, 2024. ; https://doi.org/10.1101/2024.02.20.24303094doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.20.24303094


Under this feature domain approach, the structured clinical variables are transformed into an
unstructured natural language processing representation. Subsequently, we apply subword tokeniza-
tion to the unstructured clinical data, breaking down the text into smaller, meaningful subtokens.
After subword tokenization, we utilize the embedding matrix derived from the pretrained ALBERT
model. This matrix allows us to obtain stable numerical representations for each subtoken. By leverag-
ing a pretrained NLP model like ALBERT, we harness its capacity to capture semantic and contextual
information from the clinical features in text format, thus enhancing the quality of our embeddings.

The predefined approach is intended to maintain stability through the consistent use of the
ALBERT embedding matrix across all time windows. This ensures that the numerical representations
for clinical variables remain robust and consistent, even as the model learns from new data.

We illustrate in Figure 4 a schematic representation of the three strategies for handling evolving
feature domains proposed in our work.

Fig. 4 Depiction of the three main strategies for handling changing feature domains proposed in our work: the static
domain strategy, the dynamic domain strategy, and the predefined domain strategy. The numbers are dense continuous
vectors representing entries associated with the Embedding Layer of the Clinical Invariant Network.

3.4.2 Strategies to update parameters over time windows

From scratch

The from-scratch approach involves exclusively utilizing data from the current time window, neces-
sitating the initialization of a new model and training it anew on each occasion. This approach may
appear to be less advantageous, given that it incorporates a substantially smaller dataset compared
to the majority of Continual Learning strategies. However, in scenarios where there are pronounced
dataset shifts over time, this approach may indeed be prudent. By eschewing the integration of noise
from previous time windows into the current one, it emerges as a sensible option.

Continual fine-tuning

The continual fine-tuning strategy entails retraining the model exclusively with data from the most
recent time window. For each new time window, the model begins with the adjusted weights from
the previous training session’s conclusion. This approach is adopted because it strikes an effective
balance: it retains some past information since the model weights are not randomly initialized, yet
it primarily facilitates the transfer of forward knowledge, thereby avoiding an over-reliance on past
time windows.
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Cumulative

In this strategy, data from the current time window is combined with data from all preceding
time windows. Consequently, the volume of data employed for training expands with each new time
window. This augmentation in data utilization brings about heightened computational demands and
memory requirements. However, it offers the advantage of retaining a comprehensive record of previous
data patterns. As a result, the model stands to benefit from a data accumulation standpoint—an
advantageous attribute, given that Deep Learning models tend to exhibit enhanced performance with
a larger pool of available data.

3.5 Evaluation
To evaluate the performance of each deep continual pipeline and determine the one best suited
for severity assessment support over time, we calculated the F1-score associated with each severity
label for every pipeline. Specifically, we computed the F1-score for the positive class of the "life-
threatening" label (i.e., the "life-threat" class) and the "jurisdiction" label (i.e., the "emergency
system jurisdiction" class). For the "admissible response delay" label, we calculated the F1-score
using macro-averaging, as we cannot designate a reference class among the four classes.

To assess the real out-of-sample effect inherent to dataset shifts, we computed these metrics for
each time window, but considering the training of the model up to the previous time window. This
way, we can understand how model performance diminishes when applied to novel incoming data,
which may exhibit variations.

Then, we averaged and studied the performance for each feature domain and parameter updating
strategy over the different time windows to gain a better understanding of the effect of each approach.
Additionally, we obtained non-parametric 95% confidence intervals using bootstrap resampling [36],
with a total of 1000 resamples per pipeline.

Finally, we calculated the performance metrics for each time window for the in-house triage proto-
col of the Valencian region, as well as those for the original Clinical network from DeepEMC2. These
metrics served as baselines to assess the value added by the implemented deep continual approaches.

4 Results

4.1 Life-threatening

Fig. 5 Life-threatening performance over time with training up to the previous time window for each pipeline.
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Upon observing Figure 5 it becomes evident that all the deep continual pipelines designed in this
study provide substantial value with respect to the triage protocol as well as to the original Clinical
network, which does not consider a continual approach. Notably, most deep continual pipelines exhibit
their weakest out-of-sample performance in the 2014 time window, with improvements in subsequent
years. Likewise, a downward trend in performance begins in 2015, becoming more pronounced for the
triage protocol and the CliNet.

Table 1 Average F1-score values for life-threatening performance with training up to the previous time
window for each deep continual pipeline tested. Non-parametric 95% confidence intervals for each average value
are provided between brackets.

Parameter Feature domain
updating Static Dynamic Predefined Mean

From scratch 0.561 [0.558, 0.565] 0.573 [0.569, 0.576] 0.549 [0.545, 0.552] 0.561 [0.557, 0.564]
Fine-tuning 0.563 [0.56, 0.567] 0.566 [0.563, 0.57] 0.567 [0.564, 0.57] 0.566 [0.562, 0.569]
Cumulative 0.559 [0.555, 0.562] 0.573 [0.57, 0.576] 0.567 [0.563, 0.57] 0.566 [0.563, 0.57]

Mean 0.561 [0.558, 0.565] 0.571 [0.567, 0.574] 0.561 [0.557, 0.564] 0.564 [0.561, 0.568]

From the analysis of Table 1 it is noteworthy to highlight the differences among the static, dynamic,
and predefined feature domain approaches, with the dynamic approach outperforming the others.
Regarding parameter updating strategies, the outcomes for the fine-tuning and cumulative approaches
are closely matched, whereas the from scratch approach yields inferior results.

4.2 Admissible response delay

Fig. 6 Admissible response delay performance over time with training up to the previous time window for each pipeline.

From an examination of Figure 6, it is clear that all the deep continual pipelines designed in this
study provide substantial value with respect to the triage protocol as well as to the original Clinical
network, which does not consider a continual approach. The weakest out-of-sample performance of
the deep continual pipelines are achieved in 2014, from which performance highly increases. This
contrasts with the in-house protocol and the CliNet, which both exhibited better performance in
2014, followed by a gradual decline thereafter.

After observing Table 2 it is evident that the dynamic feature domain approach presents a more
favorable behavior than the static and predefined feature domain paradigms. Regarding parameter
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Table 2 Average macro F1-score values for admissible response delay performance with training up to the
previous time window for each deep continual pipeline tested. Non-parametric 95% confidence intervals for
each average value are provided between brackets.

Parameter Feature domain
updating Static Dynamic Predefined Mean

From scratch 0.489 [0.487, 0.491] 0.492 [0.49, 0.495] 0.474 [0.472, 0.477] 0.485 [0.483, 0.488]
Fine-tuning 0.487 [0.484, 0.489] 0.497 [0.494, 0.499] 0.481 [0.479, 0.484] 0.488 [0.486, 0.49]
Cumulative 0.487 [0.485, 0.489] 0.494 [0.492, 0.497] 0.485 [0.483, 0.487] 0.489 [0.486, 0.491]

Mean 0.488 [0.485, 0.49] 0.494 [0.492, 0.497] 0.48 [0.478, 0.482] 0.487 [0.485, 0.49]

updating strategies, the comparison reveals that the fine-tuning strategy and the cumulative approach
yield the most favorable results, followed by the from-scratch strategy.

4.3 Emergency system jurisdiction

Fig. 7 Emergency system jurisdiction performance over time with training up to the previous time window for each
pipeline.

Upon observing Figure 7, it is inferred that the deep continual pipelines provide a notable improvement
in performance over time compared to the in-house triage protocol. While some pipelines slightly
outperform the outcomes of CliNet, the performance of CliNet generally aligns with the trend set
by the deep continual pipelines, without significant deviations. Although some pipelines experience
noticeable performance declines in 2014, the overall behavior remains quite stable with only minor
fluctuations.

Table 3 Average F1-score values for emergency system jurisdiction performance with training up to the previous
time window for each deep continual pipeline tested. Non-parametric 95% confidence intervals for each average
value are provided between brackets.

Parameter Feature domain
updating Static Dynamic Predefined Mean

From scratch 0.720 [0.718, 0.722] 0.735 [0.733, 0.737] 0.731 [0.729, 0.733] 0.729 [0.726, 0.731]
Fine-tuning 0.726 [0.724, 0.728] 0.734 [0.732, 0.736] 0.739 [0.737, 0.741] 0.733 [0.731, 0.735]
Cumulative 0.717 [0.714, 0.719] 0.737 [0.735, 0.739] 0.734 [0.732, 0.737] 0.729 [0.727, 0.731]

Mean 0.721 [0.719, 0.723] 0.735 [0.733, 0.737] 0.735 [0.733, 0.737] 0.730 [0.728, 0.732]
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From the analysis of Table 3 it is observed that both the dynamic and predefined feature domain
approaches surpass the performance of the static approach, with the dynamic and predefined meth-
ods exhibiting similar levels of performance. When assessing different strategies for updating model
parameters over time, fine-tuning stands out as the most effective strategy.

5 Discussion
The findings of our study underscore the advantages of employing a Deep Continual Learning approach
for assessing out-of-hospital incident severity, in scenarios where clinical features evolve over time
and dataset shifts occur. The deep continual pipelines significantly surpass the performance of the
in-house triage protocol of the Valencian region across all three severity labels examined in this
research. Moreover, these pipelines demonstrate considerable value over non-continual approaches for
the life-threatening label and the admissible response delay label.

In evaluating the feature domain strategies within the context of our out-of-hospital medical emer-
gency data, the dynamic feature domain approach emerges as particularly beneficial for predictions
in the upcoming time window. Consequently, we recommend selecting this approach over the static
and predefined methods.

Concerning the strategies for updating model parameters over time, continual fine-tuning is identi-
fied as the optimal choice. Although it may not always yield the best results, this strategy is prominent
for its balance of effectiveness and computational efficiency. It enables substantial knowledge transfer
at a manageable computational cost, unlike the cumulative approach. Moreover, by retaining partial
information from past time windows during its initialization phase, it offers an advantage over the
from scratch approach, making it the preferred strategy for parameter updating in our context.

The observation that the cumulative approach does not always result in optimal performance,
despite utilizing a larger training data pool, can likely be linked to the challenges posed by dataset
shifts. In such scenarios, adding data from earlier time windows may introduce noise, detracting from
prediction performance rather than improving it. Hence, it is plausible to suggest that retraining
with historical data might hinder effective knowledge transfer and that disregarding information from
previous time windows could prove more beneficial.

Another point for consideration is that the Clinical network keeps its performance at consistent
levels from 2014 to 2019 for the emergency system jurisdiction label. This could be explained by the
relative ease of predicting this particular label, suggesting that despite data variations over time,
these changes have not significantly impacted performance for this label since 2014.

While there are studies addressing the training and deployment of Machine Learning models in
the context of medical data with temporal shifts [12, 13, 16–18], it is challenging to find similar studies
for out-of-hospital emergencies. Furthermore, although the predefined feature domain strategy shares
some similarities with the domain invariant feature approach proposed by [12] and the foundational
model strategy described in [17], our approach in this work differs from previous solutions. We do
not rely on raw feature aggregation [16], pre-shift patient weighting [13], or parsimonious models [18].
We instead integrate various strategies to address both the variability in the feature domain and the
dynamic nature of parameter updating. This approach effectively evaluates their impact and offers
an appropriate solution to the issue of changing feature domains.

Finally, it must be noted that this study is part of the ongoing developments aimed at effectively
implementing a supportive Machine Learning-based tool in the emergency medical dispatch center of
the Valencian region. Therefore, the findings from this research will directly influence the performance
of severity assessment support in this area, impacting patient well-being and the sustainability of
health services.

6 Conclusions
Throughout time, data in healthcare and medicine naturally undergoes changes due to factors such
as population evolution, the introduction of new health policies, and updates in information systems,
leading to dataset shifts. These distributional changes, if unaddressed, can severely harm the perfor-
mance of any Machine Learning model over time. In this work, our focus has been on the design,
implementation, and evaluation of novel Deep Continual Learning pipelines centered on providing
estimates of the life-threatening level, the admissible response delay, and emergency system jurisdic-
tion of an out-of-hospital emergency medical event, under the presence of these shifts, considering as
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input features a set of clinical variables which evolve over time. Results from our study reveal that,
considering the pool of 1 414 575 out-of-hospital medical emergency events from the Valencian region,
a dynamic feature domain approach combined with a continual fine-tuning parameter updating strat-
egy stands out as the best option. This approach provides improvements of 4.9% in life-threatening,
18.5% in response delay and 1.7% in jurisdiction, in absolute F1-score, compared to the in-house
triage protocol of the Valencian region, and improvements of 4.4% in life-threatening and 11% in
response delay, in absolute F1-score, respect to non-continual approaches.
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