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Abstract 

Objective 

Early identification of bipolar disorder (BD) provides an important opportunity for timely 

intervention. In this study, we aimed to develop machine learning models using large-scale 

electronic health record (EHR) data including clinical notes for predicting early-onset BD. 

 

Method 

Structured and unstructured data were extracted from the longitudinal EHR of the Mass General 

Brigham health system. We defined three cohorts aged 10 – 25 years: (1) the full youth cohort 

(N=300,398); (2) a sub-cohort defined by having a mental health visit (N=105,461); (3) a sub-

cohort defined by having a diagnosis of mood disorder or ADHD (N=35,213). By adopting a 

prospective landmark modeling approach that aligns with clinical practice, we developed and 

validated a range of machine learning models including neural network-based models, across 

different cohorts and prediction windows.  

 

Results 

We found the two tree-based models, Random forests (RF) and light gradient-boosting machine 

(LGBM), achieving good discriminative performance across different clinical settings (area 

under the receiver operating characteristic curve 0.76-0.88 for RF and 0.74-0.89 for LGBM). In 

addition, we showed comparable performance can be achieved with a greatly reduced set of 

features, demonstrating computational efficiency can be attained without significant compromise 

of model accuracy. 

 

Conclusion 

Good discriminative performance for early-onset BD is achieved utilizing large-scale EHR data. 

Our study offers a scalable and accurate method for identifying youth at risk for BD that could 

help inform clinical decision making and facilitate early intervention. Future work includes 

evaluating the portability of our approach to other healthcare systems and exploring 

considerations regarding possible implementation.  
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1. Introduction 

Bipolar disorder (BD) is a serious mental illness typically characterized by recurrent episodes of 

mania (or hypomania) and depression1.  A recent analysis of data from 29 countries revealed a 

lifetime prevalence of 2.3% (among females) - 2.5% (among males) and a median age of onset of 

approximately 20 years2. Earlier-onset BD has been associated with a more severe course 

including higher rates of recurrent mood episodes, comorbid psychopathology, and suicide 

attempts3–6. Unfortunately, the interval between onset of the disorder and accurate diagnosis or 

treatment averages 6-10 years, and longer duration of untreated BD is associated with poorer  

outcomes7–11. Given this, early identification of BD provides an important opportunity for 

intervention and prevention of adverse sequelae.   

 

A number of clinical indicators have been reported to be associated with risk for BD, including 

positive family history, early-onset depressive episodes, and history of attention 

deficit/hyperactivity disorder (ADHD)12. However, the utility of these indicators for 

individualized risk stratification has not been demonstrated. Several studies have used 

longitudinal assessments of children at risk for BD to predict incident disorder. In a community-

based longitudinal cohort of offspring (N = 412 under age 18) of parents with BD, Hafeman and 

colleagues13 developed a Cox proportional hazards model to predict conversion to a bipolar 

spectrum disorder and achieved good discrimination at 5 years (AUC = 0.76). Uchida and 

colleagues14 applied machine learning to longitudinal pediatric cohorts (N = 492) ascertained for 

studies of ADHD. In that study, a random forest model incorporating a battery of survey 

instruments achieved an AUC of 0.75 for predicting conversion to bipolar I disorder over 10 

years of follow-up.  However, both studies comprised relatively small samples (with fewer than 

55 bipolar outcomes in each) and relied on diagnostic interviews and survey data that may not be 

readily available outside research protocols. 

 

In recent years, the widespread availability of large-scale electronic health record (EHR) data has 

provided an important resource for prediction or detection of medical and psychiatric outcomes. 

Machine learning methods are well-suited to leverage these high dimensional data and have been 

used successfully in the prediction of a range of mental health outcomes including suicide-

related behavior, psychosis, and treatment response15–20. A recent study by the PsycheMERGE 

consortium validated EHR-based machine learning models to predict BD across three healthcare 

systems. The best-performing models achieved high discrimination (AUCs 0.82 – 0.87) and 

patients in the top 1% of predicted risk had up to a 19-fold increased rate of BD compared to 

base rates.  Importantly, however, this study was restricted to adult patients. Here, we develop 

and validate machine learning models with the aim of predicting early-onset BD among youth 

aged 10 – 25 years in a large healthcare system. This work represents to our knowledge the first 

such effort and extends prior work by 1) incorporating natural language processing (NLP) of 

narrative notes; 2) including deep learning (neural network) models; 3) using a landmark model 

framework that avoids temporal bias21; and 4) developing models for the full cohort as well as 

two sub-cohorts respectively defined by having a mental health visit or a diagnosis of mood 

disorder or ADHD prior to the onset of BD. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 21, 2024. ; https://doi.org/10.1101/2024.02.19.24302919doi: medRxiv preprint 

https://sciwheel.com/work/citation?ids=15815106&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=15200118&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=9269055,12819511,7743151,15847130&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=9916190,8068039,2657801,8068035,11497589&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=6205525&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=9649539&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=14872076&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=5347598,6375516,11554827,8656201,12521764,14912517&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=11047418&pre=&suf=&sa=0&dbf=0
https://doi.org/10.1101/2024.02.19.24302919
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 

2. Methods 

An overview of our data processing and modelling pipeline is illustrated in Figure 1. We show 

the comprehensive version of the data filtering and cohort building flow chart in Supplementary 

Figure 1, and the detailed description of feature extraction and model choices in Feature 

extraction and Model building. 

2.1 Data source and study population 

The data for this study were obtained from the Mass General Brigham (MGB) Research Patient 

Data Registry (RPDR)22, a centralized data registry of clinical information from the EHRs across 

the MGB health system. The RPDR database includes approximately 7 million patients from 8 

hospitals, including two major teaching hospitals, Massachusetts General Hospital and Brigham 

and Women's Hospital, encompassing a wide range of patient characteristics including structured 

data (demographics, diagnoses, medications, procedures, and lab tests) and unstructured 

narrative notes. We queried the RPDR for all visits (i.e., inpatient, outpatient and emergency 

department visits) occurring between Dec 1997 and June 2019 who met a data floor of having at 

least 1 clinical note, and at least 3 visits (each more than 30 days apart) since 2005. This queried 

dataset was deidentified for all modelling and analyses.  

2.2 Definition of Early Onset Bipolar Disorder 

Bipolar disorder (BD) was defined using an EHR-based phenotyping algorithm referred to as 

“ICCBD-coded-broad” developed by International Cohort Collection for Bipolar Disorder 

(ICCBD)23. In prior work, this algorithm has been validated against in-person semi-structured 

diagnostic interviews (SCID-IV) by doctoral level clinicians and achieved high positive 

predictive value for diagnosing BD (PPV = 0.80)23. Cases are defined by having 1) at least two 

International Classification of Disease (ICD) 9/10 codes for BD AND 2) a predominance of BD 

diagnoses AND 3) treatment with at least two medications (mood stabilizers or antipsychotics) 

commonly used for BD. We defined early-onset BD as having the first BD diagnosis code onset 

of BD between age 10 (inclusive) and 25 (non-inclusive). They also were required to meet the 

full ICCBD coded-broad criteria (details in Appendix A.1). To validate this definition of early-

onset BD, an experienced, board-certified psychiatrist performed chart reviews for a random 

sample of 99 patients determined to have early-onset BD by our definition. We adopted the 

ICCBD diagnostician review protocol23 for our chart review. The positive predictive value (PPV) 

of our ICCBD-coded-broad early-onset BD definition by chart review was high (89.9%) in this 

study population (i.e., patients between ages 10 and 25). We thus applied this definition of early-

onset BD in our cohort building. 

2.3 Cohort building 

2.3.1 Patient eligibility 

We defined three patient cohorts of interest who are at risk of early-onset BD within the RDPR 

by clinical settings: (1) a “general cohort”, which comprised the full study population; (2) a 

“mental healthcare cohort”, applying the same condition as the general cohort, but requiring at 

least one mental health visit (defined in Appendix A.2) before age 25 and (for those who meet 

our definition of early-onset BD) before their first BD diagnosis; and (3) a “mood 
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disorder/ADHD cohort”, applying the same condition as the general cohort, but requiring at least 

one non-bipolar mood disorder or ADHD diagnosis (defined in Appendix A.3) before age 25 and 

(for those who meet our definition of early-onset BD) before their first BD diagnosis. The mental 

healthcare and mood disorder/ADHD cohorts were designed to address common clinical 

scenarios in which a prediction algorithm might be especially useful.  

2.3.2 Landmark sampling 

Supervised learning prediction models are commonly trained using case-control sampling. 

However, this design does not mimic real-world practice, where a clinician would not have 

access to the (future) case vs. control status of a given individual. This mismatch has been shown 

to induce a “temporal bias” that can result in spurious inflation of effect sizes and render the 

model unsuitable for prospective prediction21. An alternative approach, used here, avoids this 

problem by designating a time point of interest (the “landmark time”) from which prospective 

prediction is made without pre-specifying subsequent case or control status24–27. Data used for 

prediction are then sampled prior to the landmark time and predictions of the outcome of interest 

are made for pre-defined prediction windows (e.g. over the next year).  

 

For each of the three cohorts defined above, we randomly sampled one visit per patient between 

ages 10 and 25, which we designated the “landmark visit” (i.e., the visit from which a prediction 

is made). We required at least 2 visits and a minimum of 365 days of EHR data prior to the 

landmark visit. For the patients who later developed early-onset BD, we sampled the “landmark 

visit” after the first two visits and before their first BD diagnosis. To avoid potential information 

leakage, we also required that the landmark visit occur before any visit containing BD-related 

mentions in narrative notes (by NLP). Figure 2 shows a patient timeline for the prediction task 

using the RPDR database.  

2.3.3 Observation period and prediction window 

After the landmark visit is sampled, each patient’s EHR timeline is divided into two segments: 

1), the historical data used as predictors for BD onset prediction (i.e., the observation period), 

comprising all data up to and including the landmark visit for each patient; 2), the “prediction 

window”: the time window looking forward from the landmark visit, during which onset of BD 

was assessed. We examined 4 different prediction windows following the landmark visit, namely 

6 months, 1 year, 2 years, and 3 years.  

2.4 Feature extraction 

The prediction features for each patient were derived using both structured EHR data and 

unstructured clinical notes prior to and including the landmark visit. Among the structured data, 

we extracted CPT-4 codes28 from the procedure data, RXNORM codes29 from the medication 

data, and converted ICD-9-CM and ICD-10-CM codes30,31 to PheWAS codes (“phecodes”) 

(https://phewascatalog.org/phecodes) that have been shown to capture clinically meaningful 

concepts32. We also used LOINC codes33 from the laboratory data and merged them with a 

variable representing the recorded outcome of a given lab value as a categorical variable (high, 

low, abnormal, normal and undetermined). In addition, using a rule-based NLP system 

previously developed for enhancing psychiatric research34,35 (described in Appendix B), we 

identified the presence of any mental health related concepts at each visit, and further tagged 
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concepts as negated (NEG), family history mention (FH), or negated family history (NFH). 

Overall, we extracted and used 1488 mental health related concepts from all the clinical notes, 

which we refer to as NLP CUIs (i.e., concept unique identifiers36).  

 

We removed rare codes and NLP CUIs (occurring in fewer than 10 patients in each of the study 

cohorts) and encoded all aforementioned features using “bag-of-codes” representation37,38. 

Lastly, we included demographic (i.e., age, gender, race, ethnicity) and health utilization (i.e. 

visit counts, number of ICD codes, number of procedure codes and time since the first ICD code, 

all computed at the landmark visit) features. Apart from the attention-based neural network 

models, each feature is scaled by its maximum absolute value prior to model training.  

2.5 Model building and evaluation 

We benchmarked 7 machine learning models, covering a range of architecture and complexity, 

on the 3 study cohorts (i.e., “general cohort”, “mental healthcare cohort”, and “mood 

disorder/ADHD cohort”) each with 4 risk prediction windows (i.e., 6 months, 1 year, 2 years and 

3 years): 

• Regularized logistic regression (LR) and Naïve Bayes classifier (NBC) are commonly 

used as baseline models in EHR-based prediction studies18,39–42. 

• Random forests (RF) and LightGBM43 (LGBM) are two representative tree-based models 

that have consistently shown competitive performance across different tabular 

datasets44,45. As a result they are used for a wide range of clinical prediction 

tasks14,27,41,46–48. 

• Multilayer perceptron (MLP): also known as multilayer feedforward neural network. It 

has been used as a baseline neural network model in various existing clinical prediction 

studies38,40,49.  

• Wide & Deep Learning50 (W&D): jointly trains a wide linear model and deep neural 

network, to memorize interactions from high-dimensional sparse features (e.g. bag-of-

codes features from EHR) and generalize to unseen feature combinations. 

• TabNet51: a deep learning model that has performed well across different tabular datasets. 

It combines the idea of neural network and decision trees by employing a sequential 

attention mechanism to choose which features to process at each decision step.  

 

We randomly split each cohort data into a training set (75%) and a hold-out test set (25%) while 

keeping the prevalence of early-onset BD the same before and after the split. Among the training 

set, 5-fold cross validation was used to optimize LR, NBC and RF. For LGBM, MLP, W&D, and 

TabNet, we used 20% of the training data as a hold-out validation set. This setup was used for 

each clinical setting and prediction window. For evaluating model performances, we report area 

under the receiver operator characteristic curve (AUROC), as well as positive predictive value 

(PPV) and sensitivity with specificity set to 0.90, 0.95 and 0.99.  

 

In addition, we selected and combined the 20 most important (non-demographic) features (based 

on global SHAP52 values of the validation set, part of the training data) from the best performing 

models, and trained two “lightweight” models for each cohort. To evaluate the model simplicity 

vs. accuracy, we selected logistic regression (LR) and Random Forest (RF) for the lightweight 

models, which we refer to as “LR-S” and “RF-S”. We also repeated this procedure with the top-

10 (non-demographic) features and named the resulting models as “LR-XS” and “RF-XS”. The 
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rationale for training these lower-dimensional models was to determine whether simpler models, 

which might be less computationally burdensome and more portable to other health systems, 

might perform adequately in comparison to our higher-dimensional machine learning models. 

 

3. Results  

A total of 300,398, 105,461 and 35,213 patients were included in the general, mental healthcare 

and mood disorder/ADHD cohorts, respectively, before the landmark sampling. Table 1 shows 

the demographic breakdown of the three cohorts. In terms of gender distribution, all cohorts had 

slightly greater representation of females than males (e.g., 58.4% females in the general cohort). 

All cohorts also had a predominance of self-reported White race (e.g., 66.5% in the general 

cohort).  

 

Table 2 shows the number of patients from the 3 cohorts and 4 different prediction windows after 

the landmark sampling. The mood disorder/ADHD cohort on average had slightly younger 

patients than the other two cohorts. Prevalence of early-onset BD was the lowest in the general 

cohort (ranging from 0.11% for the 6-month prediction to 0.28% for the 3-year prediction 

windows) and highest in the mood disorder/ADHD cohort (0.40% to 0.89%). The median visit 

count and CPT code count of the mental health visits and mood disorder/ADHD cohorts were 

roughly twice as high as those of the general cohort. The median ICD and CPT durations if the 

mood disorder/ADHD cohort were also twice as long as those in the general cohort. 

 

Overall, of the 7 models, the two tree-based models (RF and LGBM) consistently yielded the 

best performance. For example, the RF model had an AUROC ranging from 0.76 to 0.88 across 

different cohorts and prediction windows, compared to 0.64 – 0.77 for LR, 0.65 – 0.81 for NBC, 

and 0.64 – 0.81 for the TabNet model. At 95% specificity, the tree-based models also 

outperformed the other models in PPV across different settings, with the highest PPV (4.5%) 

observed in the mental healthcare cohort using a 3-year prediction window. Given this, we only 

show the performance comparison between the two tree-based models in Table 3, but results for 

all 7 models are shown in Supplementary Tables 1–3. The two models performed similarly in the 

general and mental healthcare cohorts, with RF outperforming LGBM for the mood 

disorder/ADHD cohort (AUROCs of 0.76 – 0.83 and PPVs of 2% - 4.3% at 95% specificity). 

Although the general cohort had the lowest PPVs (as expected given their lower base rate of 

incident BD), those classified as high risk were at least 7 times more likely to have early-onset 

BD compared to those classified as low risk. Because clinicians may be most concerned about 

patients with the highest predicted risk, we also evaluated the RF models’ performance in 

identifying such patients. For example, Supplementary Figure 2 (b) shows the cumulative gain 

charts for 1 year prediction window. For patients in the top quintile of predicted risk, the model 

identifies more than 80% of the early-onset BD cases in the general cohort, and more than 60% 

for the other two cohorts. Similar results were observed with other prediction windows.  

 

To illustrate feature importance, Figure 3 shows the SHAP summary plots from the RF models 

and the 2-year prediction window generated by taking the mean absolute SHAP value of the test 

data. (SHAP plots for the other prediction windows are shown in Supplementary Figures 7–9). 

Having higher numbers of phecode counts for depression and mood disorders (excluding BD), 

and fewer NLP instances of “disruptive, impulse control and conduct disorders” (DICD) 
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appeared to be the most important features across different cohorts for predicting early onset BD 

(using the 2-year prediction window). The importance of other features varied across cohorts 

(Figure 3).  

 

In exploratory analyses (Supplementary Figures 3–6), we examined model performance stratified 

by demographic variables for the RF model with a 2-year prediction window: age (10-17 years 

vs. 18-24 years), number of visits, gender, and self-reported race (White vs. non-White). With 

respect to age group, model performance (by AUC, PPV and sensitivity, RR) was greater for 

younger patients (age 10-18) across the three cohorts. Performance also tended to be greater for 

patients with more than 10 hospital visits, likely due to the greater availability of longitudinal 

features. Overall, despite some variations, model performance was generally consistent when 

stratified by gender and race groups, except for the mood disorder/ADHD cohort where 

performance point estimates were higher for female and non-White groups.  

 

For the S/XS models, we selected and combined the top-20/10 non-demographic features from 

the two best performing models, i.e., RF and LGBM, resulting in 58 S/48 XS features for the 

general cohort, 62/47 features for the mental healthcare cohort, and 70/51 features for the mood 

disorder/ADHD cohort, respectively, for the 2-year prediction task. Figure 4 shows the model 

performance for the lightweight models, LR-XS, LR-S, RF-XS and RF-S, as well as their full 

model (LR-full and RF-full) counterparts. The RF-XS model performed very similarly to the full 

model by different metrics. Of note, the LR-XS and LR-S models outperformed the full LR 

model, possibly due to a large number of irrelevant or redundant features in the LR-full model. 

Results for the other prediction windows are shown in Supplementary Figures 10–12. 

 

4. Discussion 

Earlier age of onset of BD has been associated with a more severe course, heightened suicidal 

risk, and poorer functional outcomes53, and early intervention has been reported to improve 

prognosis54,55. However, there are currently no well-established tools to stratify risk of BD onset. 

Moreover, when BD symptoms do emerge, they might initially present as depressive episodes. 

Particularly in younger patients, ADHD can complicate differential diagnosis due to clinical 

features (e.g. distractibility, hyperactivity) that might overlap with prodromal bipolar symptoms. 

Given these complexities, early detection and intervention for early-onset BD remain clinical 

challenges. 

 

Prior attempts to identify youth at risk for BD have typically relied on structured assessments or 

deep phenotyping that may not be commonly used in clinical practice or may be difficult to 

scale13,14. The availability of large-scale, real-world healthcare data and progress in machine 

learning has provided an opportunity to develop accurate, scalable tools for risk stratification and 

screening. A recent study used such methods to develop EHR-based algorithms for the prediction 

of BD but those analyses were restricted to adult patients56. In this study, we developed various 

machine learning models to identify youth at risk of BD for three clinical use cases: a general 

cohort of all youth in a health system, youth with a history of mental healthcare, and youth with 

prior diagnosis of a (non-BD) mood disorder or ADHD. We utilized large-scale EHR data 

including features extracted from unstructured clinical notes, and systematically examined their 

performance for the prediction of early-onset BD (documented diagnosis before age 25). We 
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adopted a “landmark model” framework24–27 that addresses temporal bias in case-control 

sampling21, enabling us to conduct predictive modeling in a manner closely aligned with real-

world scenarios where a clinician would want to assess prospective risk. Both Random Forest 

(RF) and LightGBM (LGBM) models achieved good discrimination performance across the 3 

patient cohorts and 4 prediction windows ranging from 6 months to 3 years. In addition, 

“lightweight” RF-S/-XS models with a greatly reduced set of features also achieved comparable 

performance, demonstrating that computational efficiency can be attained without significant 

compromise on model accuracy.  

 

Notably, the two tree-based models, RF and LGBM, achieving the best model discrimination 

(e.g., AUC=0.74-0.89) across all cohorts compared to other benchmarked models including three 

neural network-based models. However, we also observed trade-offs of discrimination and 

precision (PPV) based on cohort differences in the base-rate of BD. As shown in Table 3, the 

highest AUCs (0.79-0.89) and sensitivity (0.41-0.51 at 95% specificity) were observed for the 

general cohort, in which patients classified as high-risk had a 7- to 9-fold increased risk (at 95% 

specificity) of early-onset BD across different prediction windows. On the other hand, the 

general cohort had the lowest PPVs, ranging from 1% to 2.2%. In contrast, higher PPVs but 

lower sensitivity and AUCs were observed for the mental health (AUC: 0.75-0.81, sensitivity: 

0.23-0.33, PPV: 1.4%-4.5%) and mood disorder/ADHD (AUC: 0.74-0.83, sensitivity: 0.15-0.35, 

PPV: 2.0%-4.3%). This trade-off in performance metrics is due to the variable incidence of 

early-onset BD in the three cohorts. Notably, we found that “lightweight” versions of the original 

RF models (based on substantially reduced feature sets) performed as well or even better than the 

full feature models. In settings where model training efficiency and portability are prioritized, the 

lightweight models offer feasibility advantages and may also facilitate more frequent updating of 

model weights.  

 

Several caveats are worth noting regarding the interpretation of the results presented here. First, 

while feature importance (by mean SHAP values) was largely consistent across prediction 

windows within the cohorts, it varied by cohort in some respects. This is likely due to variation 

in the network of feature correlations that distinguish the general pediatric population from 

patients with prior psychiatric care or illness. It is also important to note that our prediction 

models are not causal models, and feature importance does not necessarily reflect causal effects 

of specific features.  Thus, intervening on highly predictive features may or may not reduce risk. 

Second, the relatively modest PPVs observed with even our best performing (RF) models reflect 

the relatively low base rate of incident diagnosis of BD (11/1000 – 89/1000).  Given this, we 

view the use case for our models as a screening tool to alert clinicians to the need for further 

evaluation and monitoring for undiagnosed or incipient BD. It would be inappropriate to base 

clinical decisions solely on model readouts. Third, because our predictions target was a 

documented diagnosis of BD, a positive modeled outcome can convey two potential meanings: 

the emergence of BD at a future time point (predicted incident BD) or the detection of  

undiagnosed BD. Distinguishing these two scenarios for a given patient may not be possible, 

although a high predicted probability in a child or adolescent patient with no mental health 

symptoms would more likely represent a future risk of disorder.  

 

There are several other limitations of the presented study: (1) because patients may receive care 

outside the healthcare system, it is possible that an initial BD diagnosis could be missed. If this 
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were common, it would presumably limit the performance of our models; (2) our models were 

trained and validated in a single healthcare system, and performance in other systems may vary 

depending on variation in patient characteristics and documentation practices. Nevertheless, we 

note that the MGB system comprises more than 8 hospitals and multiple community health 

centers with heterogeneous catchment areas and clinical practices, supporting some degree of 

generalizability; (3) some seemingly irrelevant NLP features were selected as important features 

by SHAP, e.g., NLP CUIs for Hawaii|NEG (negated mention of Hawaii) and International 

System of Units|NEG (negated mention of international system of units), as seen in 

Supplementary Figures 7–9. Presumably, these features are not themselves risk factors for BD 

but rather are “tagging” true but unknown causal factors.  

 

Future work will be needed to evaluate the portability of our approach to other healthcare 

systems. In addition, there may be opportunities to improve model performance by incorporating 

additional data types. For example, a recent study14 suggests that features derived from parent-

reported questionnaires (e.g. the Child behavior checklist (CBCL)) can be used to predict the 

future development of BD in children and adolescents with emergent psychopathology. Another 

recent study of 1091 Brazilian youth57 applied machine learning to a range sociodemographic 

and questionnaire data to predict incident BD (n = 49 cases) at 5-year follow-up. It will also be 

important to explore considerations regarding the possible implementation of our risk models.  

For example, the net benefit of our such models may vary by setting and whether the goal is to 

minimize false positives (which might favor our mental healthcare or mood/ADHD models) or 

false negatives (in which case the greater sensitivity of our general cohort model might be 

preferred).  

 

In conclusion, we developed and validated risk prediction models using large-scale, real-world 

EHR data including clinical notes, for predicting bipolar disorder risk among three youth 

cohorts. Using a prospective landmark modeling approach that mirrors the clinical situation in 

which future outcomes are not known, we found that tree-based models achieved good predictive 

performance across different clinical settings. Our approach offers a scalable, accurate method 

for identifying youth at risk for BD that could inform clinical decision making and facilitate 

early intervention. 

 

Data availability 

Protected Health Information restrictions apply to the availability of the clinical data here, which 
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Table 1. Demographic breakdown of the three study cohorts before landmark sampling with different prediction 

windows.  
Setting General  Mental healthcare Mood Disorder / ADHD 

Total N 300,398 105,461 35,213 

Gender: N (%) 
 

Female 175,427 (58.4) 59,608 (56.5) 16,452 (46.7) 

Male 124,963 (41.6) 45,851 (43.5) 18,760 (53.3) 

Unknown 8 (0.00) 2 (0.00) 1 (0.00) 

Self-reported 

Race: N (%) 

 

Asian 12,982 (4.3) 3,364 (3.2) 1,095 (3.1) 

Black/African American 26,086 (8.7) 9,371 (8.9) 2,376 (6.8) 

White 199,777 (66.5) 68,912 (65.3) 25,143 (71.4) 

Other 28,704 (9.6) 9,928 (9.4) 3,119 (8.9) 

Unknown 32,849 (10.9) 13,886 (13.2) 3,480 (9.9) 

Ethnicity: N (%) 
 

Hispanic 40,317 (13.4) 16,520 (15.7) 4,257 (12.1) 

Non-Hispanic 260,081 (86.6) 88,941 (84.3) 30,956 (87.9) 
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Table 2. Number of patients of the three cohorts after landmark sampling, with four different prediction windows.  

 

Setting 

Pred. 

win.* 

(year) 

No. of 

patients 

Age,  
Mean 

(SD) 

Incident 

BD** 

Hospital usage, Median (IQR) 

Visit 

count 

CPT 

count 

ICD 

duration# 

CPT 

duration# 

 

General 

0.5 288,914 18.6 (4.5) 307 (0.11) 8 (21) 21 (44) 

21 (45) 

20 (44) 

19 (45) 

3.44 (6.8) 3.28 (6.5) 

1 276,810 18.3 (4.4) 432 (0.16) 8 (15) 3.48 (7.0) 3.31 (6.7) 

2 253,120 17.6 (4.1) 577 (0.23) 8 (15) 3.56 (7.4) 3.38 (7.1) 

3 232,099 17.0 (3.8) 653 (0.28) 7 (16) 3.65 (7.8) 3.44 (7.5) 

 

Mental 

Healthca

re 

0.5 101,798 18.8 (4.5) 306 (0.30) 16 (30) 42 (86) 

41 (86) 

41 (86) 

40 (88) 

5.01 (8.3) 4.83 (8.2) 

1 97,415 18.4 (4.3) 441 (0.45) 16 (31) 5.06 (8.3) 4.88 (8.2) 

2 88,114 17.7 (4.1) 519 (0.59) 16 (31) 5.27 (8.4) 5.07 (8.4) 

3 79,507 17.0 (3.8) 575 (0.72) 17 (33) 5.55 (8.6) 5.32 (8.5) 

 

Mood 

Disorder 

/ADHD 

0.5 34,364 17.6 (4.5) 137 (0.40) 18 (35) 36 (87) 

36 (87) 

35 (87) 

34 (87) 

6.58 (9.1) 6.31 (9.0) 

1 33,326 17.3 (4.3) 193 (0.58) 18 (36) 6.61 (9.1) 6.34 (9.0) 

2 30,983 16.8 (4.0) 225 (0.73) 18 (37) 6.83 (9.0) 6.56 (8.9) 

3 28,849 16.2 (3.7) 258 (0.89) 18 (38) 6.93 (9.0) 6.67 (8.9) 
 *Pred. win.:  prediction windows used in each experiment, ranging from 6 months to 3 years. 

 **Incident BD: the number (%) of patients who had a first documented diagnosis of BD within the prediction 

window.  

#ICD and CPT duration are calculated by subtracting the recorded dates of the patients’ first ICD and CPT codes 

from their sampled landmark visit dates. 
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Table 3. Model performance comparison between Random Forest (RF) and LightGBM (LGBM), for four prediction 

windows (Pred. win.) and three cohorts: (a) general patients; (b) mental healthcare; (c) mood disorder/ADHD. 

Sensitivity, positive predictive value (PPV) and relative risk (RR) are reported with 95% specificity. 

(a) General cohort 

Model Pred. win. AUROC Sensitivity PPV RR Prevalence 

RF 6 months 0.873 0.532 1.0% 9.80 0.11% 

LGBM 6 months 0.845 0.506 1.0% 9.71 0.11% 

RF 1 year 0.880 0.481 1.5% 9.48 0.16% 

LGBM 1 year 0.886 0.509 1.4% 9.28 0.16% 

RF 2 years 0.833 0.472 2.1% 9.14 0.23% 

LGBM 2 years 0.802 0.417 1.8% 7.98 0.23% 

RF 3 years 0.801 0.411 2.2% 7.95 0.28% 

LGBM 3 years 0.793 0.411 2.2% 7.99 0.28% 

(b) Mental healthcare cohort 

Model Pred. win. AUROC Sensitivity PPV RR Prevalence 

RF 6 months 0.778 0.247 1.4% 4.65 0.30% 

LGBM 6 months 0.758 0.273 1.6% 5.35 0.30% 

RF 1 year 0.796 0.255 2.2% 4.79 0.45% 

LGBM 1 year 0.785 0.309 2.7% 5.93 0.45% 

RF 2 years 0.762 0.231 2.6% 4.33 0.59% 

LGBM 2 years 0.750 0.231 2.5% 4.21 0.59% 

RF 3 years 0.808 0.333 4.5% 6.16 0.72% 

LGBM 3 years 0.790 0.319 4.3% 5.99 0.72% 

(c) Mood disorder/ADHD cohort 

Model Pred. win. AUROC Sensitivity PPV RR Prevalence 

RF 6 months 0.791 0.324 2.0% 5.13 0.40% 

LGBM 6 months 0.774 0.294 2.3% 5.69 0.40% 

RF 1 year 0.827 0.354 3.8% 6.61 0.58% 

LGBM 1 year 0.763 0.333 3.4% 5.90 0.58% 

RF 2 years 0.800 0.321 4.3% 5.89 0.73% 

LGBM 2 years 0.741 0.286 3.7% 5.03 0.73% 

RF 3 years 0.757 0.215 3.6% 4.00 0.89% 

LGBM 3 years 0.747 0.154 2.6% 2.95 0.89% 
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Figure Legends 

 

Figure 1: Data processing and model building flowchart, describing the major steps taken to 

arrive at the final datasets used for training and evaluating different models for predicting early-

onset BD. 

 

Figure 2:  Patient EHR timeline including the sampled landmark visit, the observation period 

and prediction window used for the prediction tasks. 

 

Figure 3: SHAP summary plots of the top-10 features for the General cohort (a), mental 

healthcare (b), and mood disorder/ADHD cohort (c) for the 2-year prediction window. The 

global importance of each feature is determined by the mean absolute Shapley value for that 

feature over all the test samples. The beeswarm plot on the right shows the relationship between 

the value of a feature and the impact on the prediction. NEG indicates that the NLP feature was 

negated.  

 

Figure 4: Model performance comparison between the original RF model using the full list of 

features and the light-weight models, with 2-year prediction window. 
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Figure 1. Data processing and model building flowchart, describing the major steps taken to arrive at the final 

datasets used for training and evaluating different models for predicting early-onset BD. 
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Figure 2. Patient EHR timeline including the sampled landmark visit, the observation period and prediction window 

used for the prediction tasks. 
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Figure 3. SHAP summary plots of the top-10 features for the General cohort (a), mental healthcare (b), and mood 

disorder/ADHD cohort (c) for the 2-year prediction window. The global importance of each feature is determined by 

the mean absolute Shapley value for that feature over all the test samples. The beeswarm plot on the right shows the 

relationship between the value of a feature and the impact on the prediction. NEG indicates that the NLP feature was 

negated.  
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Figure 4. Model performance comparison between the original RF model using the full list of features and the light-

weight models, with 2-year prediction window. 
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