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Abstract
Compartmental models based on ordinary differential equations (ODE’s) quantifying the

interactions between susceptible, infectious, and recovered individuals within a population have
played an important role in infectious disease modeling. The aim of the present paper is to
explain the link between stochastic epidemic models based on the susceptible-infectious-recovered
(SIR) model, and methods from survival analysis. We illustrate how standard software for
survival analysis in the statistical language R can be used to estimate pivotal parameters in
the stochastic SIR model in the very much idealized situation where the epidemic is completely
observed. Extensions incorporating interventions, age structure and heterogeneity are explored
and illustrated.

1 Introduction
Mathematical modeling has played a pivotal role in understanding and managing the dynamics of
infectious diseases. In particular, models based on ordinary differential equations (ODE’s) quantifying
the interactions between susceptible, infectious, and recovered individuals within a population, the
SIR model (Kermack and McKendrick 1927) and its extensions have had enormous impact. These
models allow public health professionals to predict the course of an outbreak and assess the impact of
various interventions. Moreover, mathematical modeling provides a valuable tool for scenario planning,
allowing for the simulation of different outbreak scenarios and the evaluation of their respective
outcomes. We refer to Anderson and May (1991) and Diekmann, Heesterbeek, and Britton (2013) for
more background on the usefulness and the mathematical properties of ODE models for infectious
disease modeling.

Many researchers have pointed to the link with survival analysis (Becker 1989; Becker and Britton
1999; Kenah 2011, 2013, 2015; KhudaBuksh et al. 2019), however, an accessible overview with
standard software is lacking. The present paper has two purposes. The first is to explain the link
between infectious disease models, in particular the susceptible-infectious-recovered (SIR) model, and
methods from survival analysis in a concise and self-contained way. The second is to illustrate how
standard software for survival analysis in the statistical language R can be used to estimate pivotal
parameters in the infectious disease model.

We concentrate on the very much idealized situation where the epidemic is completely observed, i.e.,
at each time point we have complete and correct information on the number of susceptible, infected
and recovered individuals. The ideas in this manuscript are largely known; the purpose is to establish
further connections with standard models used in survival analysis, like Cox’s proportional hazards
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model, the additive hazard model, and Poisson generalized linear models (GLM’s), and to illustrate
using R code how standard software for survival analysis can be used for estimating pivotal quantities
in the SIR model, specifically the transmission parameter. We also show how methods from survival
analysis may be used to cover extensions incorporating interventions, age structure and heterogeneity.

2 SIR model
2.1 Deterministic SIR model
The SIR model is a system of differential equations, describing the evolution over time of an infectious
disease. Defining S(t), I(t) and R(t) to be the proportion of susceptibles, infectious and recovered
individuals in a closed population, the system of ordinary differential equations (ODE) is defined as
(Anderson and May 1991)

dS

dt
= −βS(t)I(t),

dI

dt
= βS(t)I(t) − γI(t),

dR

dt
= γI(t).

(1)

The idea behind Equation 1 is that interactions between susceptible and infectious individuals leading
to a new infection occur with a rate quantified by an transmission parameter β. In case of an infection
the proportion of susceptibles decreases and the proportion of infectious individuals increases by
the same amount. Infectious individuals recover with a rate quantified by the recovery parameter γ.
This class of models is often referred to as compartimental models, since it describes the interactions
of units from different compartments. Apart from describing the spread of an infection through
a population, compartimental models have been used in many other fields of application. Among
the many examples we mention models describing the interaction of HIV and CD4+ T-cells within
humans (Ho et al. 1995), predator-prey models in biology (Beddington, Free, and Lawton 1975) and
economics (Murdoch, Briggs, and Nisbet 2013), and pharmacodynamics (Donnet and Samson 2013).
Many extensions of this simple SIR model have been developed, with the aim of coming closer to a
description of reality, but the simple SIR model has proved to be remarkably robust, and we will
stick with the simple SIR model throughout.

We can numerically solve the ODE system using the {deSolve} package.

library(deSolve)
parameters <- c(beta = 2, gamma = 0.5) # parameter values
state <- c(S = 0.999, I = 0.001, R = 0) # starting values for the system
# Definition of the system of ODE's
SIR_ODE <- function(time, state, parameters) {

with(as.list(c(state, parameters)), {
# rate of change
dS <- -beta * S * I
dI <- beta * S * I - gamma * I
dR <- gamma * I
# return the rate of change
list(c(dS, dI, dR))
}) # end with(as.list ...
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}
# Now run the system for some time, using the ode() function of {deSolve}
times <- seq(0, 12, by = 0.01)
out <- ode(y = state, times = times, func = SIR_ODE, parms = parameters)

Figure 1 shows the development of the epidemic over time, in the form of a stacked plot. The lowest
curve shows the proportion of infected individuals. The distance between the lowest curve and the
one directly above that represents the proportion of recovered individuals. The sum of these two is
the proportion of individuals that have got infected over time (recovered or not). The remainder is
the proportion of susceptible individuals.

out <- as.data.frame(out)
plot(out$time, out$I, type="l", lwd=2, xlab="Time", ylab="", ylim=c(0, 1), col="red")
lines(out$time, out$I + out$R, type="l", lwd=2)
lines(out$time, out$I + out$R + out$S, type="l", lwd=2, col="blue")
legend(12, 0.8, c("I", "I + R", "I + R + S"), lwd=2,

col=c("red", "black", "blue"), bty="n", xjust=1)
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Figure 1: Stacked plot showing the proportion of susceptible, infected and recovered individuals over
time in the SIR model; β = 2, γ = 0.5.
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2.2 Stochastic SIR model
The deterministic SIR model can be thought of as a “law of large numbers” limit of a stochastic
system consisting of a large number of individuals, each of which has a rate of transitioning between
states. The epidemic starts at time t = 0 with I(0), S(0) and R(0) individuals that are infected,
susceptible and recovered, respectively, for a total of n = S(0) + I(0) + R(0) individuals. Because the
system is closed, we in fact have n = S(t) + I(t) + R(t) for all t. We again use bars for the proportions
S(t) = S(t)/n, I(t) = I(t)/n and R(t) = R(t)/n of susceptibles, infecteds and recovered individuals,
respectively.

Becker and Britton (1999) discuss maximum likelihood estimation under complete observation. Let
N(t) = S(0) − S(t) be the number of individuals infected in (0, t]. This is a counting process, as well
as R(t), which is the number of individuals that recovered in (0, t], if R(0) = 0. If Ht is the σ-algebra
generated by the history {S(u), I(u); 0 ≤ u < t}, then the epidemic can be expressed in terms of the
rates of the counting processes N(t) and R(t), by

P (dN(t) = 1, dR(t) = 0 | Ht) = βS(t)I(t)dt + o(dt),
P (dN(t) = 0, dR(t) = 1 | Ht) = γI(t)dt + o(dt),
P (dN(t) = 0, dR(t) = 0 | Ht) = 1 − {βS(t)I(t) − γI(t)}dt + o(dt).

At some finite (random) time τ all infectious individuals will have recovered and the epidemic is over.
Increasing β leads to higher infection rates, while lower γ leads to a longer time being infected and
thus more opportunity to infect others. The ratio β/γ is known as the basic reproduction number
R0, the average number of infections caused by one typical infectious individual in a completely
susceptible environment, which in our example equals 4.

Code can be written to generate an epidemic outbreak, as a function of β, γ and the initial numbers
of susceptible, infected and recovered (at t = 0).

#
# Function to generate data from an SIR model
#
gen_SIR <- function(beta, gamma, S0, I0, R0) {

# Start with S0 susceptible, I0 infected and R0 recovered, at time t=0
T <- 0
S <- S0; I <- I0; R <- R0
n <- S0 + I0 + R0
dfr <- matrix(0, 2 * n, 5) # time, S, I, R, ev (1 for infection, 0 for recovery)
dfr[1, ] <- c(T, S, I, R, 1)
i <- 1
while (I > 0) { # run until no more infecteds left

i <- i + 1
# currently I infected, S susceptibles, determin rates
rate_inf <- beta * I * S / n
rate_rem <- gamma * I
rate_tot <- rate_inf + rate_rem
# time point of new event
Tev <- rexp(1, rate_tot)
# determine type of event
ev <- sample(0:1, size = 1, prob = c(rate_rem, rate_inf))
T <- T + Tev
if (ev==1) { # new infection
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S <- S - 1
I <- I + 1

} else { # removal
I <- I - 1
R <- R + 1

}
dfr[i, ] <- c(T, S, I, R, ev)

}
dfr <- as.data.frame(dfr)
names(dfr) <- c("T", "S", "I", "R", "ev")
return(dfr)

}

n <- 1000
# Parameters
beta <- 2
gamma <- 0.5
# Generate
set.seed(2023)
dfr <- gen_SIR(beta, gamma, I0 = 1, S0 = n - 1, R0 = 0)
dfr <- subset(dfr, T > 0 | I > 0) # remove rows where I=0, except for T=0
dfr2023 <- dfr # save for later
head(dfr, n = 12)

T S I R ev
1 0.0000000 999 1 0 1
2 0.3226596 998 2 0 1
3 1.0337027 997 3 0 1
4 1.1401370 996 4 0 1
5 1.1500565 995 5 0 1
6 1.1706431 994 6 0 1
7 1.2411637 994 5 1 0
8 1.2754007 993 6 1 1
9 1.3084457 992 7 1 1
10 1.3536666 991 8 1 1
11 1.3796063 990 9 1 1
12 1.3997104 989 10 1 1

tail(dfr)

T S I R ev
1945 15.13639 25 5 970 0
1946 15.28356 25 4 971 0
1947 15.98904 25 3 972 0
1948 16.07295 25 2 973 0
1949 16.71328 25 1 974 0
1950 17.54286 25 0 975 0

The data shows one realization of the schochastic process, with the same parameters as before, a
population size of 1000, and a single infectious individual at t = 0, with (in column T) the time points
at which events (either infections or recoveries) occur (column ev denotes whether it is an infection
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(ev=1) or a recovery (ev=0)). The columns S, I and R denote the number of susceptibles, infected
and recovered in the population (total size = 1000). Note that 25 subjects have remained uninfected.
Figure 2 shows the randomly generated epidemic.

plot(dfr$T, dfr$I, type="s", lwd=2, xlab="Time", ylab="",
ylim=c(0, n), col="red")

lines(dfr$T, dfr$I + dfr$R, type="s", lwd=2)
lines(dfr$T, dfr$I + dfr$R + dfr$S, type="s", lwd=2, col="blue")
legend(5, 0.8, c("I", "I + R", "I + R + S"), lwd=2,

col=c("red", "black", "blue"), bty="n", xjust=1)
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Figure 2: Stacked plot showing the number of susceptible, infected and recovered individuals over
time from a stochastic SIR model.

This looks very much like the deterministic system, but with, on average, a slight delay in the time
of peak prevalence. Note, however, that the system is now stochastic. With another seed we would
obtain a different epidemic. Occasionally the epidemic might just not start off, because by chance the
early infected individuals recover before they managed to infect new individuals. Figure 3 shows a
histogram of (a) the peaks and (b) the time at which they occurred in 1000 simulated epidemics, with
the same parameters as before, a population size of 1000 and one initial infected individual.
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M <- 1000; maxs <- times <- rep(NA, M)
for (seed in 1:M) {

set.seed(seed)
dfr <- gen_SIR(beta, gamma, I0=1, S0=999, R0=0)
maxI <- which.max(dfr$I)
maxs[seed] <- dfr$I[maxI]
times[seed] <- dfr$T[maxI]

}
hist(maxs, xlab="Peak of the number of infecteds", main="")
hist(times, xlab="Time of peak of the number of infecteds", main="")
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Figure 3: Results of 1000 simulated SIR epidemics

We see that in about 23% of the simulated epidemics, only a very limited number of individuals (here
at most five, including the index case) got infected. This coincides with mathematical theory saying
that with one initial infectious individual the probability of the epidemic not spreading to a large
part of the population equals 1/R0 (Diekmann, Heesterbeek, and Britton 2013).

Becker and Britton (1999) derived the likelihood under complete observation, as

ℓ(β, γ) =
∫ τ

0

[
log{βS(t)I(t)}dN(t) − βS(t)I(t)dt + log{γI(t)}dR(t) − γI(t)dt

]
.

The first thing to notice is that the log-likelihood can be written as a sum of terms only depending on
β and only on γ, respectively, implying that β and γ can be maximized separately. The maximum
likelihood estimator (MLE) of β can then be analytically derived by taking the derivative of the part
involving β, with respect to the parameter β, leading to (ignoring a β−1 term)

U(β) =
∫ τ

0

{
dN(t) − βS(t)I(t)dt

}
, (2)

and setting this to zero. This yields

β̂MLE = N(τ)/
{∫ τ

0
S(t)I(t)dt

}
(3)

as the maximum likelihood estimator of β. Similarly (assuming R(0) = 0), we arrive at

γ̂MLE = R(τ)/
{∫ τ

0
I(t)dt

}
.
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These estimates can be readily calculated from the current data.

dfr <- dfr2023 # reuse the first data with seed 2023
n <- dfr$S[1] + dfr$I[1] + dfr$R[1]
Ntau <- sum(dfr$ev[-1]) # total number of new infections
Ndfr <- nrow(dfr)
dfr$length_int <- c(dfr$T[-1] - dfr$T[-Ndfr], 0)
intSI <- sum(dfr$S * dfr$I * dfr$length_int)
betahat_MLE <- Ntau / (intSI / n)
betahat_MLE

[1] 1.987948

intI <- sum(dfr$I * dfr$length_int)
gammahat_MLE <- max(dfr$R) / intI
gammahat_MLE

[1] 0.508712

Estimates of the variances of β̂MLE and γ̂MLE are also provided in Becker and Britton (1999). From
now on we concentrate on the transmission parameter β. We see from Becker and Britton (1999) that
se(β̂MLE) = β̂MLE/

√
N(τ). This gives the following value for the standard error of β̂MLE:

sebetahat_MLE <- betahat_MLE / sqrt(Ntau)
sebetahat_MLE

[1] 0.06369797

3 The link with survival analysis
Counting processes and their associated rates play a pivotal role in survival analysis so it is not
surprising that methods from survival analysis can be used to estimate transmission parameters in
SIR models. From now on, we restrict to estimation of β and ignore γ. The rates of the counting
processes defined above are all aggregated over all susceptible and infected individuals. Restricting
our attention to N(t), which is counting the total number of new infections occurring in (0, t], the
link with survival analysis becomes clearer if we consider each of the individual counting processes
Ni(t) leading to N(t) =

∑n
i=1 Ni(t). Thus, Ni(t) counts the number of new infections of individual i

occurring in (0, t], and this will be 1 or 0, depending on whether individual i has been infected or not
before time t. Define Si(t), Ii(t), and Ri(t) to be random indicator variables taking the value 1 if
at time t individual i is susceptible, infected or recovered, respectively, and 0 otherwise. The total
number of susceptible, infected and recovered individuals is then S(t) =

∑n
i=1 Si(t), I(t) =

∑n
i=1 Ii(t),

and R(t) =
∑n

i=1 Ri(t), respectively. Individual i is only at risk of becoming infected while being
susceptible. The usual notation in survival to indicate whether or not individual i is at risk at time
t is Yi(t). Since the event of interest here is becoming infected, being at risk is the same as being
susceptible, for which we have already defined the notation Si(t), so we have Yi(t) = Si(t). In the
remainder of this paper we will be using Yi(t) when recalling general theory from survival analysis, and
Si(t) when applying this to the SIR model. The rate of Ni(t) is given by λi(t) = βI(t), while being
susceptible, which can then be written as λi(t) = βSi(t)I(t). In this way, adding over all individuals,
we see that the rate of N(t) equals

∑n
i=1 λi(t) =

∑n
i=1 βSi(t)I(t), leading to a total rate of βS(t)I(t),

the same as in Equation 2. Also, each infected individual has a constant rate γ of recovering.
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This perspective is called individual-based or agent-based modeling, see KhudaBuksh et al. (2019).
With the purpose of estimating β, we can exploit the link to survival analysis, again under complete
observation, by translating the original data, documenting the number of S, I, R individuals over
time, into a long format data set where each susceptible subject occurs individually, and where at the
same time the number of infected individuals is kept track of, using start-stop notation, also called
Andersen-Gill (Andersen and Gill 1982) or counting process notation. The following code establishes
this, starting from the original dfr data.

library(survival)
library(tidyverse)
SIR2surv <- function(SIRdata)
{

n <- SIRdata$S[1] + SIRdata$I[1] + SIRdata$R[1] # first extract the total size
wh <- which(SIRdata$ev == 1) # select the infection events
ninf <- length(wh) # number of observed infections in the time window
tinf <- SIRdata$T[wh]
d <- data.frame(id = 1:ninf, time = tinf, status = 1)
d$w <- 1 # give weight 1 to observed infections
# First is not really an observed event, so remove
d <- d[-1, ]
# Add the rest of the population to the data with number of never infecteds
d <- rbind(d, data.frame(id=ninf+1, time=max(SIRdata$T), status=0, w=n-ninf))
# Prepare long data format
tt <- SIRdata$T
dlong <- survSplit(Surv(time, status) ~ ., data=d, cut=tt[-1])
# Add proportion of infecteds as time-dependent covariate
dlong$pinf <- SIRdata$I[match(dlong$tstart, SIRdata$T)] / n
dlong$logpinf <- log(dlong$pinf)
dlong$fuptime <- dlong$time - dlong$tstart # length of follow-up interval
dlong$logfuptime <- log(dlong$fuptime)
dlong <- subset(dlong, w>0)
return(as_tibble(dlong))

}
dlong <- SIR2surv(dfr)

The head and tail of this expanded data set looks like this. The column fuptime has the length of
the time interval between tstart and time, and its logarithm, logfuptime, will prove to be useful
for Poisson regression later.

head(dlong, 12)

# A tibble: 12 x 9
id w tstart time status pinf logpinf fuptime logfuptime

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 2 1 0 0.323 1 0.001 -6.91 0.323 -1.13
2 3 1 0 0.323 0 0.001 -6.91 0.323 -1.13
3 3 1 0.323 1.03 1 0.002 -6.21 0.711 -0.341
4 4 1 0 0.323 0 0.001 -6.91 0.323 -1.13
5 4 1 0.323 1.03 0 0.002 -6.21 0.711 -0.341
6 4 1 1.03 1.14 1 0.003 -5.81 0.106 -2.24
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7 5 1 0 0.323 0 0.001 -6.91 0.323 -1.13
8 5 1 0.323 1.03 0 0.002 -6.21 0.711 -0.341
9 5 1 1.03 1.14 0 0.003 -5.81 0.106 -2.24

10 5 1 1.14 1.15 1 0.004 -5.52 0.00992 -4.61
11 6 1 0 0.323 0 0.001 -6.91 0.323 -1.13
12 6 1 0.323 1.03 0 0.002 -6.21 0.711 -0.341

tail(dlong, 12)

# A tibble: 12 x 9
id w tstart time status pinf logpinf fuptime logfuptime

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 976 25 14.4 14.4 0 0.008 -4.83 0.0275 -3.59
2 976 25 14.4 14.5 0 0.007 -4.96 0.0413 -3.19
3 976 25 14.5 14.6 0 0.006 -5.12 0.151 -1.89
4 976 25 14.6 14.8 0 0.005 -5.30 0.195 -1.64
5 976 25 14.8 14.9 0 0.006 -5.12 0.123 -2.10
6 976 25 14.9 15.1 0 0.005 -5.30 0.163 -1.81
7 976 25 15.1 15.1 0 0.006 -5.12 0.0243 -3.72
8 976 25 15.1 15.3 0 0.005 -5.30 0.147 -1.92
9 976 25 15.3 16.0 0 0.004 -5.52 0.705 -0.349

10 976 25 16.0 16.1 0 0.003 -5.81 0.0839 -2.48
11 976 25 16.1 16.7 0 0.002 -6.21 0.640 -0.446
12 976 25 16.7 17.5 0 0.001 -6.91 0.830 -0.187

A more concise version of this long format data can be obtained by combining all the rows with
the same time interval (tstart, time), and adding all the weights, separately for status=0 and
status=1.

dlong_short <- as_tibble(dlong) %>%
group_by(tstart, time, status) %>%
summarize(pinf = min(pinf), fuptime = min(fuptime),

w = sum(w)) %>%
mutate(logpinf = log(pinf), logfuptime = log(fuptime)) %>%
ungroup()

`summarise()` has grouped output by 'tstart', 'time'. You can override using
the `.groups` argument.

head(dlong_short, n=12)

# A tibble: 12 x 8
tstart time status pinf fuptime w logpinf logfuptime
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 0 0.323 0 0.001 0.323 998 -6.91 -1.13
2 0 0.323 1 0.001 0.323 1 -6.91 -1.13
3 0.323 1.03 0 0.002 0.711 997 -6.21 -0.341
4 0.323 1.03 1 0.002 0.711 1 -6.21 -0.341
5 1.03 1.14 0 0.003 0.106 996 -5.81 -2.24
6 1.03 1.14 1 0.003 0.106 1 -5.81 -2.24
7 1.14 1.15 0 0.004 0.00992 995 -5.52 -4.61
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8 1.14 1.15 1 0.004 0.00992 1 -5.52 -4.61
9 1.15 1.17 0 0.005 0.0206 994 -5.30 -3.88

10 1.15 1.17 1 0.005 0.0206 1 -5.30 -3.88
11 1.17 1.24 0 0.006 0.0705 994 -5.12 -2.65
12 1.24 1.28 0 0.005 0.0342 993 -5.30 -3.37

tail(dlong_short, n=12)

# A tibble: 12 x 8
tstart time status pinf fuptime w logpinf logfuptime
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 14.5 14.6 0 0.006 0.151 27 -5.12 -1.89
2 14.6 14.8 0 0.005 0.195 26 -5.30 -1.64
3 14.6 14.8 1 0.005 0.195 1 -5.30 -1.64
4 14.8 14.9 0 0.006 0.123 26 -5.12 -2.10
5 14.9 15.1 0 0.005 0.163 25 -5.30 -1.81
6 14.9 15.1 1 0.005 0.163 1 -5.30 -1.81
7 15.1 15.1 0 0.006 0.0243 25 -5.12 -3.72
8 15.1 15.3 0 0.005 0.147 25 -5.30 -1.92
9 15.3 16.0 0 0.004 0.705 25 -5.52 -0.349

10 16.0 16.1 0 0.003 0.0839 25 -5.81 -2.48
11 16.1 16.7 0 0.002 0.640 25 -6.21 -0.446
12 16.7 17.5 0 0.001 0.830 25 -6.91 -0.187

dim(dlong)

[1] 693611 9

dim(dlong_short)

[1] 2923 8

In the remainder of this section we will review a number of standard models in survival analysis, show
how they apply to the SIR model, and illustrate how standard software for survival analysis can be
used, in combination with the long format data, to fit these models.

3.1 Additive hazards models
The additive hazards model (Aalen 1980, 1989) specifies the rate of new infections as a sum of (typically
time-dependent) linear combinations of the covariates, which themselves may also be time-dependent:

λi(t) = Yi(t){β0(t) + β1(t)Xi1(t) + . . . + βp(t)Xip(t)}.

The first term within brackets, β0(t), is an intercept, comparable to the baseline hazard in the Cox
model, Xi1(t), . . . , Xip(t) is a set of possibly time-dependent covariates, and β1(t), . . . , βp(t) are the
regression coefficients. Typically these are taken to be time-dependent, but we will also consider the
case later where the β(t)’s are constant over time. Aalen’s ordinary least squares (OLS) estimates
focus on the cumulative regression functions Bj(t) =

∫ t

0 βj(s)ds.

Defining vectors N(t) = (N1(t), . . . , Nn(t))⊤, B(t) = (B0(t), B1(t), . . . , Bp(t))⊤, and the matrix X(t),
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with ith row (Yi(t), Yi(t)Xi1(t), . . . , Yi(t)Xip(t)), then Aalen, Borgan, and Gjessing (2008) derive

dB̂(t) =
(
X(t)⊤X(t)

)−1 X(t)⊤dN(t) (4)

as estimate of the increment of B(t), provided X(t) has full rank. In the absence of the intercept
term β0(t) in the model, the constant elements in the first column of X(t) are removed.

Applying this model to the SIR setting, since the rate of each susceptible individual equals βI(t), we
can view this as a term β/n being added to the hazard for each infectious individual. So we would
have no intercept, p = 1, and Xi1(t) = Xi(t) = I(t) for each individual, and X(t) would be a N × 1
vector with ith element Yi(t)Xi(t) = Si(t)I(t). Using Equation 4 leads to

β̂(t) =
{

n∑
i=1

(Si(t)I(t))2

}−1 n∑
i=1

Si(t)I(t)dNi(t) = I(t)dN(t)
S(t){I(t)}2

= dN(t)
S(t)I(t)

. (5)

Here we have used that S2
i (t) = Si(t) and Si(t)dNi(t) = dNi(t) (because an event can only happen

when someone is at risk). This β̂(t) can be estimated in the {timereg} package in R, by fitting an
additive hazards model with I(t) (in column pinf) as covariate, excluding an intercept (hence pinf
- 1 in the formula below). This idea has been used before in Wolkewitz et al. (2002). The plot in
Figure 4 shows an estimate of B̂(t) over time.

library(timereg)
# Fit additive hazards model without intercept
ahfit1 <- aalen(Surv(tstart, time, status) ~ pinf - 1,

data = dlong, weights = dlong$w)
summary(ahfit1)

Additive Aalen Model

Test for nonparametric terms

Test for non-significant effects
Supremum-test of significance p-value H_0: B(t)=0

pinf 3.55 0.002

Test for time invariant effects
Kolmogorov-Smirnov test p-value H_0:constant effect

pinf 6.99 0.712
Cramer von Mises test p-value H_0:constant effect

pinf 271 0.718

Call:
aalen(formula = Surv(tstart, time, status) ~ pinf - 1, data = dlong,

weights = dlong$w)

par(mfrow=c(1, 1))
plot(ahfit1, main = "")
lines(c(0, 15), c(0, 30), lty = 3, col = "blue")
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Figure 4: Estimate of B(t) over time; the dotted line represents the true B(t).

It is reassuring that the estimate of B(t) indeed seems to follow a straight line, indicating constant
β(t). The hypothesis of β(t) being constant is actually added in the “tests for time invariant effects”,
of which both the Kolmogorov - Smirnov and the Cramer - von Mises tests show no significant
departures from time invariant effects. For background on these tests we refer to Martinussen and
Scheike (2006). The slope is approximately equal to β = 2, as we would hope, see the dotted line in
Figure 4.

Inspired by least squares theory, a least squares estimator would be given by a variant of the displayed
equation between (2.6) and (2.7) of Lin and Ying (1994), the difference being the absence of the
baseline hazard term, given by

U(β) =
n∑

i=1

∫ τ

0
Xi(t) {dNi(t) − Yi(t)βXi(t)dt} ,

where we recall that the time-dependent covariate is given by Xi(t) = I(t), and Yi(t) is the at risk
indicator, which in our case was earlier denoted by Si(t). We will first elaborate on the general theory,
then replace Xi(t) by I(t) and Yi(t) by Si(t) to apply it to the SIR case. Setting U(β) to zero and
solving for β yields

β̂OLS =
∑n

i=1
∫ τ

0 Xi(t)dNi(t)∑n
i=1

∫ τ

0 Yi(t)X2
i (t)dt

.
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Following Lin and Ying (1994), define

A = n−1
n∑

i=1

∫ τ

0
Yi(t)X2

i (t)dt, B = n−1
n∑

i=1

∫ τ

0
X2

i (t)dNi(t).

Then the variance of β̂OLS can be consistently estimated by B/(nA2), which equals∑n
i=1

∫ τ

0 X2
i (t)dNi(t)(∑n

i=1
∫ τ

0 Yi(t)X2
i (t)dt

)2 .

We go back to the formulas for β̂OLS and its variance, and now replace Xi(t) by I(t) and Yi(t) by
Si(t), leading to

β̂OLS =
∫ τ

0 I(t)dN(t)∫ τ

0 {I(t)}2S(t)dt
. (6)

Note first that β̂OLS is of a similar form as the estimate β̂(t) = I(t)dN(t)
{I(t)}2S(t)

of Equation 5, but with both

the numerator and denominator being integrated over time. Note also that β̂OLS is similar to β̂MLE in
Equation 3, except that β̂OLS has an extra weighting term I(t) in both numerator and denominator.

The estimate of its variance is given by ∫ τ

0 {I(t)}2dN(t)(∫ τ

0 {I(t)}2S(t)dt
)2 .

Here is the result when implementing these formulas in our data, given the following estimate:

dfr$Ibar <- dfr$I / n
num <- sum(dfr$Ibar * dfr$ev)
denom <- sum((dfr$Ibar)ˆ2 * dfr$S * dfr$length_int)
betahat_OLS <- num / denom
betahat_OLS

[1] 1.970819

and its estimated variance:

A <- denom
B <- sum( (dfr$Ibar)ˆ2 * dfr$ev )
varbetahat_OLS <- B / Aˆ2
varbetahat_OLS

[1] 0.004879257

sebetahat_OLS <- sqrt(varbetahat_OLS)

The standard error equals 0.070, which is about 10% larger than the one obtained by Becker and
Britton (1999), which was 0.064. Summarizing, the estimate and its 95% confidence interval are given
by
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res_beta <- data.frame(betahat = betahat_OLS, SE = sebetahat_OLS,
lower = betahat_OLS - qnorm(0.975) * sebetahat_OLS,
upper = betahat_OLS + qnorm(0.975) * sebetahat_OLS)

res_beta

betahat SE lower upper
1 1.970819 0.06985168 1.833912 2.107726

The {timereg} package can in principle also estimate constant β(t), but somehow not without an
intercept, so as far as I have been able to see the above procedure can not be implemented in {timereg}.

3.2 Multiplicative models
3.2.1 Cox models

Recall that the rate of Ni(t) equals βI(t) while being at risk. The Cox model assumes that the rate
of the event equals Yi(t)h0(t) exp(β1Xi1(t) + . . . + βpXip(t)) = Yi(t)h0(t) exp(β⊤Xi(t)). Here Yi(t)
again is the at risk indicator, h0(t) is an unspecified baseline hazard, Xi1(t), . . . , Xip(t) are possibly
time-dependent covariates, and β1, . . . , βp are regression coefficients to be estimated. In the absence
of ties, the vector of regression coefficients is estimated by maximizing the partial likelihood, given by

n∏
i=1

∏
t≥0

{
Yi(t) exp(β⊤Xi(t))∑n

j=1 Yj(t) exp(β⊤Xj(t))

}dNi(t)

.

This partial likelihood is maximized with respect to β to obtain estimates β̂ of β. For given β, in the
absence of ties the estimate of the baseline hazard increment is given by Breslow’s estimate

ĥ0(t) = dN(t)∑n
i=1 Yi(t) exp(β⊤Xi(t))

. (7)

If we take p = 1, Xi1(t) = log(I(t)), and fix β1 = 1, we get a hazard rate of h0(t) exp(log(I(t))) =
h0(t)I(t). Using Equation 7 we get

ĥ0(t) = dN(t)∑n
i=1 Si(t) exp(log(I(t)))

= dN(t)
S(t)I(t)

,

which can be seen to equal the hazard increments β̂(t) from Equation 5 obtained from the additive
hazards model!

If we fit a Cox model with log(I(t)) (logpinf) as an offset (meaning we are not estimating the
associated regression coefficient, but setting it to one), then the baseline hazard rate of the Cox model
becomes h0(t) exp(log(I(t))) = h0(t)I(t), the estimated baseline rate ĥ0(t) should equal β̂(t), and the
cumulative baseline hazard Ĥ0(t) =

∑
ti≤t ĥ0(ti) should resemble βt, in other words a straight line

with intercept 0 and slope β. Fitting the Cox regression seems to recover the constant rate, although
care is needed to extract the baseline hazard due to the offset term. When adding the estimated
cumulative hazard of Aalen’s additive hazard model to the resulting estimate, we indeed see that the
Cox and Aalen based baseline hazards are exactly the same.

dlong <- dlong_short
c0 <- coxph(Surv(tstart, time, status) ~ offset(logpinf), data=dlong, weights = w)
bh0 <- basehaz(c0, centered=FALSE)
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par(mfrow=c(1, 1))
bh0 <- rbind(data.frame(hazard=0, time=0), bh0) # add time 0
bh0 <- bh0[, c(2, 1)] # change column order of time and hazard
bh0 <- bh0[!duplicated(bh0$hazard), ]
# Divide by exponent of (weighted) mean of offset variable
scaling_factor <- exp(weighted.mean(dlong$logpinf, dlong$w))
bh0$hazard <- bh0$hazard / scaling_factor

bh0 <- cbind(bh0, ahfit1$cum[, 2]) # add cumulative hazard of Aalen model
names(bh0)[2:3] <- c("hazard_Cox", "hazard_Aalen")
head(bh0)

time hazard_Cox hazard_Aalen
1 0.0000000 0.000000 0.000000
2 0.3226596 1.001001 1.001001
3 1.0337027 1.502003 1.502003
4 1.1401370 1.836339 1.836339
5 1.1500565 2.087343 2.087343
6 1.1706431 2.288348 2.288348

tail(bh0)

time hazard_Cox hazard_Aalen
1873 10.18134 20.48141 20.48141
1879 10.44775 21.01904 21.01904
1883 10.55053 21.59376 21.59376
1888 10.83856 22.22032 22.22032
1942 14.82600 29.62773 29.62773
1944 15.11207 37.32004 37.32004

3.2.2 Poisson regression

The Cox model uses an unspecified baseline hazard and does not use the assumption that the infection
rate is constant. We could attempt to estimate the infection rate, assuming that it is constant, based
on the well established epidemiologic occurrence over exposure (O/E), see Clayton and Hills (1993).
The variance of the log rate is the inverse of the number of events, by which we could construct a
95% confidence interval of the estimated rate.

OE <- dlong %>%
summarise(O = sum(status * w),

E = sum(pinf * fuptime * w)) %>%
mutate(rate = O / E,

lograte = log(rate),
SElograte = 1 / sqrt(O),
lower = exp(lograte - qnorm(0.975) * SElograte),
upper = exp(lograte + qnorm(0.975) * SElograte))

OE

# A tibble: 1 x 7
O E rate lograte SElograte lower upper

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
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1 974 490. 1.99 0.687 0.0320 1.87 2.12

This quite nicely returns the true rate 2. It is also identical to the value of 1.9879483 for β obtained
by the direct formula of Becker and Britton (1999).

Alternatively, Poisson regression can be used. The expected number of infections in a short interval of
length ∆t around t equals βI(t)∆t, so with a log link this equals exp(log β + log I(t) + log ∆t). This
means that fitting a GLM Poisson model with log link, and with both log I(t) and log ∆t as offset
terms, we obtain an estimate of log β. Taking the exponent of the estimate of log β then provides an
estimate of β.

poisreg <- glm(status ~ offset(logpinf) + offset(logfuptime),
data=dlong, weights=w, family="poisson")

summary(poisreg)

Call:
glm(formula = status ~ offset(logpinf) + offset(logfuptime),

family = "poisson", data = dlong, weights = w)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.68710 0.03204 21.44 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 13835 on 2922 degrees of freedom
Residual deviance: 13835 on 2922 degrees of freedom
AIC: 15785

Number of Fisher Scoring iterations: 9

cipoisreg <- confint(poisreg)
cipoisreg

2.5 % 97.5 %
0.6236365 0.7492528

tmp <- c(poisreg$coef, cipoisreg)
exp(tmp)

(Intercept) 2.5 % 97.5 %
1.987948 1.865700 2.115419

This again gives exactly the same result for β̂ as Becker and Britton (1999). The 95% confidence
intervals given by the occurrence/exposure formulas and Poisson regression differ slightly, but this is
due to different ways of constructing these confidence intervals (Wald versus likelihood-based). The
standard errors from the Poisson regression and the occurrence / exposure formulas are exactly the
same.

The Poisson regression model also gives the opportunity to estimate β(t) as a smooth function of
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time using splines. We use the natural splines (cubic splines that are linear beyond the outermost
knots), as implemented in the Ns() function in the {Epi} package, but other splines can also be used.

library(Epi)
tinf <- sort(dfr$T[dfr$ev == 1])
t.kn <- summary(tinf)[-3] # excluding median
poisfit2 <- glm(status ~ Ns(time, knots=t.kn) + offset(logfuptime) + offset(logpinf),

family="poisson", data=dlong,
weights = w)

summary(poisfit2)

Call:
glm(formula = status ~ Ns(time, knots = t.kn) + offset(logfuptime) +

offset(logpinf), family = "poisson", data = dlong, weights = w)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.1825 0.4458 2.653 0.00799 **
Ns(time, knots = t.kn)1 -0.5073 0.4279 -1.185 0.23587
Ns(time, knots = t.kn)2 -0.2778 0.3373 -0.824 0.41022
Ns(time, knots = t.kn)3 -1.1291 0.9909 -1.140 0.25448
Ns(time, knots = t.kn)4 -0.5775 0.7076 -0.816 0.41445
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 13835 on 2922 degrees of freedom
Residual deviance: 13833 on 2918 degrees of freedom
AIC: 15791

Number of Fisher Scoring iterations: 9

Note that none of the effects of the spline coefficients is significant. This is consistent with a constant
infection rate. Otherwise the output is not very informative. It is more informative to make a plot of
the fitted time-dependent infection rate. The function matshade() from the Epi package makes a
nice plot, shown in Figure 5.

tt <- seq(0, 12, by=0.05)
nd <- data.frame(time=tt, logfuptime=0, logpinf=0)
lambda <- ci.pred(poisfit2, nd) # the rates from the spline model
par(mfrow=c(1, 1))
matshade(tt, lambda, plot=TRUE, col="blue", lwd=2,

xlab="Time", ylab="Infection rate",
xlim=c(0, 12), ylim=c(0, 8))
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Figure 5: Smooth estimate of β(t).

It can be seen that the curve is more or less constant, with wider confidence intervals in the beginning.

4 Modeling perspectives
4.1 Additive versus multiplicative (Aalen versus Cox)
In the previous section we saw that for estimating β, when not assuming β to be constant, the estimate
of β(t) obtained from the additive hazards model and the Cox model gave exactly the same result.
The perspective of the additive hazards model is that we can view the rate βI(t) of a susceptible
individual as additive in the number of infected individuals at time t; each infected individual adds
β/n to the hazard. In contrast, the multiplicative hazards model views log(I(t)) as a multiplicative
term, with regression coefficient fixed to one (an offset term).

Without any other covariates both perspectives are equally valuable and they give the same result
when β(t) is estimated non-parametrically as a time-dependent function, and slightly different but
comparable results when estimating a time-constant β. Different contexts will call for different
modeling strategies, and we argue that in many cases a hybrid form might be advantageous.
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4.2 Multiplicative models
Implementations of intervention measures are most naturally expressed in a multiplicative way. It
makes sense to assume that such measures will decrease the hazard of every individual by a certain
percentage. In ideal settings the effect of the intervention can be estimated together with the
transmission parameter, using Poisson regression.

We are now going to explore the use of Cox and Poisson regression models in a situation where
intervention measures are put into place, triggered here by the proportion of infected individuals
reaching a certain threshold. The function below incorporates a single intervention, which is suspended
by the time the proportion of infected individuals again reaches a lower threshold. The function is the
same as before, with three extra parameters, the first, effect, being the effect of the intervention as
a rate ratio, the second and third, pinf_start and pinf_stop, determining at what stage (in terms
of percentage of infected individuals) the intervention is started and stopped.

SIR2 <- function(beta, gamma, n, effect, pinf_start, pinf_stop) {
# Start with one susceptible and n-1 susceptibles, at time t=0
I <- 1; S <- n - 1; R <- 0; T <- 0
dfr <- matrix(0, 2 * n, 5) # time, S, I, R, ev
dfr[1, ] <- c(T, S, I, R, 1)
i <- 1
intervention <- 0 # intervention has not yet started
beta0 <- beta # reserve beta0 for baseline beta
while (I > 0) {

if (I >= pinf_start * n & I < pinf_start * n + 1 & intervention == 0) {
# the first time I crosses pinf_start * n
intervention <- 1 # intervention has started
beta <- beta0 * effect # effective beta is affected by intervention
t1 <- T # record time of intervention start

}
if (I <= pinf_stop * n & I > pinf_stop * n - 1 & intervention == 1) {

# the first time I crosses pinf_stop * n
intervention <- 0 # intervention has stopped
beta <- beta0 # effective beta is no longer affected by intervention
t2 <- T # record time of intervention stop

}
i <- i + 1
# currently I infected, S susceptibles
rate_inf <- beta * I * S / n
rate_rem <- gamma * I
rate_tot <- rate_inf + rate_rem
Tev <- rexp(1, rate_tot) # time point of new event
ev <- sample(0:1, size = 1, prob = c(rate_rem, rate_inf)) # 1 = new infection
T <- T + Tev
if (ev==1) { # new infection

S <- S - 1
I <- I + 1

} else { # removal
I <- I - 1
R <- R + 1

}
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dfr[i, ] <- c(T, S, I, R, ev)
}
dfr <- as.data.frame(dfr)
names(dfr) <- c("T", "S", "I", "R", "ev")
dfr <- subset(dfr, S + I + R > 0)
attr(dfr, "tpinf_start") <- t1
attr(dfr, "tpinf_stop") <- t2
return(dfr)

}

We now generate data according to this SIR model with intervention. The intervention is started as
soon as 25% of the population is infected, and suspended as soon as that percentage has dropped to
10%. The effect of the intervention is 80%, in that the original transmission parameter β is 2, and
after intervention it is 2 · 0.2 = 0.4.

set.seed(2023)
# Parameters
beta <- 2
gamma <- 0.5
# Total population
n <- 1000
# Effect of intervention
effect <- 0.2
# First and second intervention when 5 and 10% have been infected
pinf_start <- 0.25
pinf_stop <- 0.1

Figure 6 shows what the outbreak looks like. The time points where the intervention is implemented
(when 25% of the population is infected) and stopped (when 10% of the population is infected) are
indicated at the bottom.

dfr <- SIR2(beta = beta, gamma = gamma, n = n,
effect = effect,
pinf_start = pinf_start, pinf_stop = pinf_stop)

t1 <- attr(dfr, "tpinf_start")
t2 <- attr(dfr, "tpinf_stop")
plot(dfr$T, dfr$I, type="s", lwd=2, ylim=c(0, n), col="red",

xlab="Time", ylab="Cumulative number of infecteds")
lines(dfr$T, dfr$I + dfr$R, type="s", lwd=2)
lines(dfr$T, dfr$I + dfr$R + dfr$S, type="s", lwd=2, col="blue")
legend(5, 0.8, c("I", "I + R", "I + R + S"), lwd=2,

col=c("red", "black", "blue"), bty="n", xjust=1)
lines(c(t1, t1), c(0, pinf_start * n), lty=3)
lines(c(t2, t2), c(0, pinf_stop * n), lty=3)
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Figure 6: Stacked plot showing the number of susceptible, infected and recovered individuals over
time, with intervention start and end indicated.

We see that after the intervention has been suspended the number of infections rises again, almost to
25%, but it decreases again just after that. We can again use the SIR2surv function to convert to
data for use with Cox and Poisson modelling.

dlong <- SIR2surv(dfr)
head(dlong)

# A tibble: 6 x 9
id w tstart time status pinf logpinf fuptime logfuptime

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 2 1 0 0.323 1 0.001 -6.91 0.323 -1.13
2 3 1 0 0.323 0 0.001 -6.91 0.323 -1.13
3 3 1 0.323 1.03 1 0.002 -6.21 0.711 -0.341
4 4 1 0 0.323 0 0.001 -6.91 0.323 -1.13
5 4 1 0.323 1.03 0 0.002 -6.21 0.711 -0.341
6 4 1 1.03 1.14 1 0.003 -5.81 0.106 -2.24

tail(dlong)
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# A tibble: 6 x 9
id w tstart time status pinf logpinf fuptime logfuptime

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 942 59 21.0 21.6 0 0.004 -5.52 0.627 -0.467
2 942 59 21.6 22.5 0 0.003 -5.81 0.879 -0.129
3 942 59 22.5 24.5 0 0.002 -6.21 2.02 0.701
4 942 59 24.5 25.5 0 0.003 -5.81 0.910 -0.0939
5 942 59 25.5 25.7 0 0.002 -6.21 0.220 -1.51
6 942 59 25.7 28.2 0 0.001 -6.91 2.54 0.933

dim(dlong)

[1] 746220 9

# Make concise version
dlong <- as_tibble(dlong) %>%

group_by(tstart, time, status) %>%
summarize(pinf = min(pinf), fuptime = min(fuptime),

w = sum(w)) %>%
mutate(logpinf = log(pinf), logfuptime = log(fuptime)) %>%
ungroup()

`summarise()` has grouped output by 'tstart', 'time'. You can override using
the `.groups` argument.

head(dlong)

# A tibble: 6 x 8
tstart time status pinf fuptime w logpinf logfuptime
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 0 0.323 0 0.001 0.323 998 -6.91 -1.13
2 0 0.323 1 0.001 0.323 1 -6.91 -1.13
3 0.323 1.03 0 0.002 0.711 997 -6.21 -0.341
4 0.323 1.03 1 0.002 0.711 1 -6.21 -0.341
5 1.03 1.14 0 0.003 0.106 996 -5.81 -2.24
6 1.03 1.14 1 0.003 0.106 1 -5.81 -2.24

tail(dlong)

# A tibble: 6 x 8
tstart time status pinf fuptime w logpinf logfuptime
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 21.6 22.5 0 0.003 0.879 60 -5.81 -0.129
2 22.5 24.5 0 0.002 2.02 59 -6.21 0.701
3 22.5 24.5 1 0.002 2.02 1 -6.21 0.701
4 24.5 25.5 0 0.003 0.910 59 -5.81 -0.0939
5 25.5 25.7 0 0.002 0.220 59 -6.21 -1.51
6 25.7 28.2 0 0.001 2.54 59 -6.91 0.933
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dim(dlong)

[1] 2821 8

Note that we have included 59 subjects that were at risk for infection and never got infected during
the epidemic. In the data it occurs as one subject with weight w = 59.

Let’s see whether we can pick up the changes in infection rates without knowing the times at which
the interventions were in effect. Our first attempt is with a non-parametric estimate of the cumulative
rate, using coxph(), shown in Figure 7.

c0 <- coxph(Surv(tstart, time, status) ~
offset(logpinf),

data=dlong, weights=w)
bh0 <- basehaz(c0, centered=FALSE)
bh0 <- bh0[!duplicated(bh0$hazard), ]
# Divide by weighted average of offset variable
scaling_factor <- exp(weighted.mean(dlong$logpinf, dlong$w))
bh0$hazard <- bh0$hazard / scaling_factor
plot(c(0, bh0$time), c(0, bh0$hazard), type="s",

xlab="Time", ylab="Cumulative hazard")
lines(c(t1, t1), c(0, 11), lty=3)
lines(c(t2, t2), c(0, 12), lty=3)
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Figure 7: Baseline hazard of the Cox model under intervention.

Knowing the time of the intervention, a decreasing rate of infection can be seen, including an increase
to the rate before intervention after the intervention has been suspended. We can also use Poisson
regression again, with natural splines (same choice of knots as before, based on quartiles), to obtain a
smooth estimate of β(t) (note, however, that the true β(t) is piecewise constant, not smooth).

tinf <- sort(dfr$T[dfr$ev == 1])
t.kn <- summary(tinf)[-3] # excluding median
poisfit2 <- glm(status ~ Ns(time, knots=t.kn) +

offset(logfuptime) + offset(logpinf),
family="poisson", data=dlong,
weights = w)

summary(poisfit2)

Call:
glm(formula = status ~ Ns(time, knots = t.kn) + offset(logfuptime) +

offset(logpinf), family = "poisson", data = dlong, weights = w)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.4397 0.2722 8.961 < 2e-16 ***
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Ns(time, knots = t.kn)1 -3.0403 0.2567 -11.843 < 2e-16 ***
Ns(time, knots = t.kn)2 1.3552 0.3225 4.202 2.64e-05 ***
Ns(time, knots = t.kn)3 -5.7026 0.7405 -7.701 1.35e-14 ***
Ns(time, knots = t.kn)4 -5.7078 1.2121 -4.709 2.49e-06 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 14045 on 2820 degrees of freedom
Residual deviance: 13828 on 2816 degrees of freedom
AIC: 15718

Number of Fisher Scoring iterations: 9

This time some of the non-constant effects of the splines are significant, pointing towards a non-
constant infection rate. Let us make a plot of the infection rate β(t). The true β(t) is shown as dotted
lines, in Figure 8.

tt <- seq(0, 25, by=0.05)
nd <- data.frame(time=tt, logfuptime=0, logpinf=0)
lambda <- ci.pred(poisfit2, nd) # the rates from the spline model
par(mfrow=c(1, 1))
matshade(tt, lambda, plot=TRUE, col="blue", lwd=2, ylim = c(0, 12),

xlab="Time", ylab="Infection rate")
lines(c(0, t1), rep(beta, 2), lty=3)
lines(c(t1, t2), rep(beta * effect, 2), lty=3)
lines(c(t2, max(tt)), rep(beta, 2), lty=3)
lines(c(t1, t1), c(0, 0.0002), lty=3)
lines(c(t2, t2), c(0, 0.0002), lty=3)
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Figure 8: Time course of infection rate.

Because the natural splines try to impose a smooth line through a time-dependent rate that is
inherently piecewise constant, the fitted curve is smoothly decreasing from above β = 2 to about βη
= 2 * 0.2 = 0.4, and back to β = 2.

To be able to study the effect of the interventions, knowing when they were put in place and later
suspended, we have to add information about the interventions to the data.

dlong$intervention <- 0
dlong$intervention[dlong$tstart > t1] <- 1
dlong$intervention[dlong$tstart > t2] <- 2
dlong$interventioncat <- factor(dlong$intervention,

levels = 0:2,
labels = c("No", "Intervention", "End"))

We start again with the epidemiological occurrence to exposure, this time by intervention period.

OE <- dlong %>%
group_by(interventioncat) %>%
summarise(O = sum(status * w),

E = sum(pinf * fuptime * w)) %>%
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mutate(rate = O / E,
lograte = log(rate),
SElograte = 1 / sqrt(O),
lower = exp(lograte - qnorm(0.975) * SElograte),
upper = exp(lograte + qnorm(0.975) * SElograte))

OE

# A tibble: 3 x 8
interventioncat O E rate lograte SElograte lower upper
<fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 No 349 166. 2.10 0.743 0.0535 1.89 2.33
2 Intervention 115 329. 0.349 -1.05 0.0933 0.291 0.419
3 End 476 235. 2.02 0.705 0.0458 1.85 2.21

We nicely see that the estimated rates correspond reasonably to the infection rates of 2, 0.4, and 2 in
the three periods.

A weighted Cox regression with intervention as categorical covariate (and logarithm of number of
infected individual as offset), gives NA’s for estimates and standard errors (not shown). This is because
the intervention is applied for all subjects in the same period, and hence the intervention effect is
confounded with the baseline hazard. The intervention effect would be identifiable if different subjects
would experience the interventions at different points in time.

The intervention effect is also identifiable with parametric restrictions on the baseline hazard, like a
piecewise constant assumption. We now use weighted Poisson regression, again with log of interval
time and log of proportion of infected individuals as intercept, and intervention as categorical covariate.

poisfit <- glm(status ~ interventioncat + offset(logfuptime) + offset(logpinf),
family="poisson", data=dlong,
weights = w)

summary(poisfit)

Call:
glm(formula = status ~ interventioncat + offset(logfuptime) +

offset(logpinf), family = "poisson", data = dlong, weights = w)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.74272 0.05353 13.875 <2e-16 ***
interventioncatIntervention -1.79436 0.10752 -16.688 <2e-16 ***
interventioncatEnd -0.03771 0.07047 -0.535 0.593
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 14045 on 2820 degrees of freedom
Residual deviance: 13571 on 2818 degrees of freedom
AIC: 15457

Number of Fisher Scoring iterations: 10
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ci.exp(poisfit)

exp(Est.) 2.5% 97.5%
(Intercept) 2.1016431 1.8923226 2.334118
interventioncatIntervention 0.1662333 0.1346466 0.205230
interventioncatEnd 0.9629888 0.8387570 1.105621

This retrieves the occurrence/exposure estimates, albeit with a different parametrization. The β
in the pre-intervention period is the exponent of the intercept; the estimated regression parameter
-1.794 is the contrast between the log β of the intervention period and the log β of the pre-intervention
period (the intercept). The β in the intervention period, given by 0.349, can therefore be retrieved as
the exponent of 0.743 + -1.794, which indeed equals 0.349. The β in the post-intervention period can
be determined similarly.

The baseline infection rate, as well as the intervention effect, effect = 0.2 is nicely recovered.

4.3 Additive hazards models
An interesting application where additive hazards occur very naturally is one where the population
can be sub-divided into groups, such as age groups, occupation, households, schools, for instance, and
where infections can occur between susceptibles and infected individuals within the same group or
across groups.

The figure below shows the number of transmissions across different age groups in the Netherlands
in March 2022. It nicely shows the number of transmissions are highest across similar age groups
and after that across age groups differing by one generation (most probably transmissions within the
same household). But they are numbers, some of which could be higher or lower simply because the
groups sizes are different. The objective would be to estimate the infection rates across age groups.

We thus consider multiple groups (for instance age groups) that can infect each other. For group
j = 1, . . . , J define Sj(t), Ij(t), Rj(t) to be the total number of susceptible, infected and recovered
individuals in group j at time t, and denote the total number of subjects in group j by nj =
Sj(t) + Ij(t) + Rj(t). We again assume that the groups are closed.

Within group j, new infections happen with rate Sj(t)
∑J

k=1 βkj(t)Ik(t), with Ik(t) = Ik(t)/nj . The
idea is that each of the susceptibles in group j at time t, of which there are Sj(t) can be infected
by an infected individual from within group j itself or from within one of the other group. The
(potentially time-varying) infection rate parameter βkj(t) describes the intensity at which contacts are
made between an infected individual from group k and a susceptible individual from group j leading
to a new infection. Finally we define the counting processes Nj(t), j = 1, . . . , J , counting the total
number of susceptibles in group j becoming infected within (0, t].

Interest is in estimating the (possibly time-varying) transmission parameters βkj(t). To illustrate
methods for estimating βkj , we are choosing a setup with two groups (think of it as young and old),
where the transmission parameter for susceptibles and infectious from the same group are higher
(β11 = 3, β22 = 2) than across groups (β12 = 0.25, β21 = 0.5). The following code generates data from
this model, with total population sizes of n1 = 1000 in group 1 and n2 = 750 in group 2. The choice
for γ is 0.5 in each of the groups. The model starts with one susceptible in each group and nj − 1
susceptibles in group j, at time t = 0, and then generates new events (infection in group 1, infection
in group 2, recovery in group 1, recovery in group 2, denoted with ev = 1, 2, 3, 4, respectively)
according to a Poisson process. The first 12 lines of the resulting data are shown.
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Figure 9: Transmissions across age groups in March 2022 in the Netherlands (leeftijd = age, bron =
infector, geinfecteerde = infectee, aantal = number)
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#
# Function to generate data from an SIR model with two groups
#
gen_SIR_twogroups <- function(beta, gamma, S0, I0, R0) {

# Start with S0 susceptible, I0 infected and R0 recovered, at time 0
T <- 0
I <- I0
S <- S0
R <- R0
dfr <- matrix(0, 2*sum(n), 8) # time, S, I, R (group 1), S, I, R (group 2), ev
dfr[1, ] <- c(T, S[1], I[1], R[1], S[2], I[2], R[2], 1)
i <- 1
while (sum(I) > 0) {

i <- i + 1
# currently I infected, S susceptibles
rate_inf1 <- (beta[1, 1] * I[1] + beta[2, 1] * I[2]) * S[1] / n[1]
rate_rem1 <- gamma[1] * I[1]
rate_inf2 <- (beta[1, 2] * I[1] + beta[2, 2] * I[2]) * S[2] / n[2]
rate_rem2 <- gamma[2] * I[2]
rate_tot <- rate_inf1 + rate_inf2 + rate_rem1 + rate_rem2
# time point of new event
Tev <- rexp(1, rate_tot)
ev <- sample(1:4, size=1, prob=c(rate_inf1, rate_inf2, rate_rem1, rate_rem2))
T <- T + Tev
if (ev==1) { # new infection in group 1

S[1] <- S[1] - 1
I[1] <- I[1] + 1

}
if (ev==2) { # new infection in group 2

S[2] <- S[2] - 1
I[2] <- I[2] + 1

}
if (ev==3) { # removal from group 1

I[1] <- I[1] - 1
R[1] <- R[1] + 1

}
if (ev==4) { # removal from group 2

I[2] <- I[2] - 1
R[2] <- R[2] + 1

}
dfr[i, ] <- c(T, S[1], I[1], R[1], S[2], I[2], R[2], ev)

}
dfr <- as.data.frame(dfr)
names(dfr) <- c("T", "S1", "I1", "R1", "S2", "I2", "R2", "ev")
dfr <- subset(dfr, I1+I2+ev>0)
return(dfr)

}

# Parameters
beta <- matrix(c(3, 0.25, 0.5, 2), 2, 2)
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beta

[,1] [,2]
[1,] 3.00 0.5
[2,] 0.25 2.0

gamma <- c(0.5, 0.5)
# Total population (possibly different sample sizes)
n <- c(1000, 750)
# Starting values
I0 <- c(1, 1) # one susceptible each
S0 <- c(n[1]-1, n[2]-1) # all but one in each group are susceptible
R0 <- c(0, 0) # no one removed/recovered (yet)
# Generate
set.seed(2023)
dfr <- gen_SIR_twogroups(beta, gamma, S0, I0, R0)
head(dfr, n=12)

T S1 I1 R1 S2 I2 R2 ev
1 0.0000000 999 1 0 749 1 0 1
2 0.1195245 998 2 0 749 1 0 1
3 0.4502207 997 3 0 749 1 0 1
4 0.5043289 996 4 0 749 1 0 1
5 0.5096176 996 4 0 748 2 0 2
6 0.5215754 995 5 0 748 2 0 1
7 0.5630131 995 4 1 748 2 0 3
8 0.5828954 995 4 1 747 3 0 2
9 0.6033017 994 5 1 747 3 0 1
10 0.6312626 993 6 1 747 3 0 1
11 0.6473166 993 6 1 746 4 0 2
12 0.6602079 992 7 1 746 4 0 1

Figure 10 shows a plot (shown until t = 2) of the number of infected (solid line) and recovered
(difference between dashed and solid lines) for group 1 (black) and group 2 (red) separately.

plot(dfr$T, dfr$I1, type="s", lwd=2, ylim=c(0, 2000),
xlab="Time", ylab="Cumulative number of infecteds",
xlim=c(0, 10), col = "blue")

lines(dfr$T, dfr$I1 + dfr$R1, type="s", lwd=2, lty=2,
col = "blue")

lines(dfr$T, dfr$I2, type="s", lwd=2, col="red")
lines(dfr$T, dfr$I2 + dfr$R2, type="s", lwd=2, lty=2, col="red")
lines(dfr$T, dfr$I1 + dfr$I2, type="s", lwd=2)
lines(dfr$T, dfr$I1 + dfr$I2 + dfr$R1 + dfr$R2,

type="s", lwd=2, lty=2)
legend("topleft", c("Group 1", "Group 2", "Total"), lwd = 2,

col = c("blue", "red", "black"), bty = "n")
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Figure 10: Number of infected and recovered individuals over time within group 1 (blue) and group 2
(red); total numbers in black.

We can adapt the SIR2surv() function to the situation of two groups.

SIR2surv_groups <- function(SIRdata, group)
{

if (group == 1)
n <- SIRdata$S1[1] + SIRdata$I1[1] + SIRdata$R1[1] # first extract the total size

else if (group == 2)
n <- SIRdata$S2[1] + SIRdata$I2[1] + SIRdata$R2[1] # first extract the total size

if (group == 1)
wh <- which(SIRdata$ev == 1) # select the infection events

else if (group == 2)
wh <- which(SIRdata$ev == 2) # select the infection events

ninf <- length(wh) # number of observed infections in the time window
tinf <- SIRdata$T[wh]
d <- data.frame(id = 1:ninf, time = tinf, status = 1)
d$w <- 1 # give weight 1 to observed infections
# First is not really an observed event, so remove
d <- d[-1, ]
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# Add the rest of the population to the data with number of never infecteds
d <- rbind(d, data.frame(id=ninf+1, time=max(SIRdata$T), status=0, w=n-ninf))
# Prepare long data format
tt <- SIRdata$T
tt <- tt[tt <= max(tinf)]
dlong <- survSplit(Surv(time, status) ~ ., data=d, cut=tt[-1])
# Add proportions of infecteds as time-dependent covariate
dlong$pinf1 <- SIRdata$I1[match(dlong$tstart, SIRdata$T)] / n
dlong$logpinf1 <- log(dlong$pinf1)
dlong$pinf2 <- SIRdata$I2[match(dlong$tstart, SIRdata$T)] / n
dlong$logpinf2 <- log(dlong$pinf2)
dlong$fuptime <- dlong$time - dlong$tstart # length of follow-up interval
dlong$logfuptime <- log(dlong$fuptime)
dlong <- subset(dlong, w>0)
return(dlong)

}
dlong1 <- SIR2surv_groups(dfr, group = 1)
dlong2 <- SIR2surv_groups(dfr, group = 2)

Again we can look from the individual perspective, define a counting process for each individual i
from each group j, Nji(t), having rate Yji(t)

∑J
k=1 βkj(t)Ik(t), where Ik(t) = Ik(t)/nj , with nj the

size of group j. This is an additive hazards model without intercept, and J time-dependent covariates
Ik(t), where Yji(t) is the at risk indicator of subject i in group j for being susceptible to infection.

To simplify notation, consider one group j of susceptibles. We will fix that group, suppress j in the
notation everywhere, and let n be the size of that group. Within this group, individual i has rate

λi(t) = Yi(t)
J∑

k=1
βk(t)Ik(t). (8)

This rate conforms to the additive hazards model with rate Yi(t){β0(t) +
∑J

k=1 βk(t)Xik(t)}, with
two non-standard aspects. The first is that in Equation 8 there is no intercept β0(t), the second is
that in Equation 8 for each time point t the time-dependent covariates Xik(t) are the same for all
susceptible individuals. This has the important implication that the kth column of the matrix X(t)
used in Equation 4 is of the form Y(t)Ik(t), Y(t) = (Y1(t), . . . , Yn(t))⊤. As a result X(t) is of rank 1,
which implies that the βk(t)’s are not identifiable from the data when the βk(t)’s are allowed to vary
freely. To be able to estimate the βk(t)’s one would need some kind of smoothing or restricting the
βk(t)’s to be constant or piecewise constant on time intervals where for instance interventions are put
into place and/or suspended.

In the more restricted model where βk(t)’s are assumed to be constant, the βk’s are identifiable.
Two approaches are possible to estimate the βk coefficients. The first is maximum likelihood, as an
extension of Section 2.2. Define β = (β1, . . . , βJ )⊤, Xi(t) = (Xi1(t), . . . , XiJ (t)), which here simplifies
to Xi(t) = I(t) = (I1(t), . . . , IJ(t)). The log-likelihood of β is given by

ℓ(β) =
∫ τ

0

[
log{S(t)β⊤I(t)}dN(t) − S(t)β⊤I(t)dt

]
.

Taking derivatives with respect to the elements of β and setting to zero gives∫ τ

0

Ik(t)
β⊤I(t)

dN(t) =
∫ τ

0
S(t)Ik(t)dt,
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for k = 1, . . . , J , which can be solved numerically. The second is an extension of the approach of Lin
and Ying (1994). The latter allows to use

U(β) =
n∑

i=1

∫ τ

0
Xi(t)

{
dNi(t) − Yi(t)β⊤Xi(t)dt

}
as estimating equations, with β = (β1, . . . , βJ)⊤, and Xi(t) = (Xi1(t), . . . , XiJ(t)), which here
simplifies to Xi(t) = I(t) = (I1(t), . . . , IJ(t)), independent of i.

This leads to
β̂ = A−1C,

with A a J × J matrix and C a J-vector given by

A = n−1
n∑

i=1

∫ τ

0
Yi(t)Xi(t)Xi(t)⊤dt,

and

C = n−1
n∑

i=1

∫ τ

0
Xi(t)dNi(t).

Furthermore the variance-covariance matrix of β̂ can be consistently estimated by n−1A−1BA−1,
with B a J × J matrix given by

B = n−1
n∑

i=1

∫ τ

0
Xi(t)Xi(t)⊤dNi(t).

Replacing Xi(t) by I(t), Yi(t) by Si(t), and summing over i, we get simpler versions of the matrices
A and B and of the vector C, namely

A = n−1
∫ τ

0
S(t)I(t)I(t)⊤dt, B = n−1

∫ τ

0
I(t)I(t)⊤dN(t), C = n−1

∫ τ

0
I(t)dN(t).

The code below implements these estimators and their standard errors, first in group 1, then in group
2.

# In group 1
C1 <- sum(dlong1$pinf1 * dlong1$status) / n[1]
C2 <- sum(dlong1$pinf2 * dlong1$status) / n[1]
B11 <- sum(dlong1$pinf1 * dlong1$pinf1 * dlong1$status) / n[1]
B12 <- sum(dlong1$pinf1 * dlong1$pinf2 * dlong1$status) / n[1]
B22 <- sum(dlong1$pinf2 * dlong1$pinf2 * dlong1$status) / n[1]

tmp <- dlong1 %>%
group_by(time) %>%
summarise(S11 = sum(pinf1 * pinf1),

S12 = sum(pinf1 * pinf2),
S22 = sum(pinf2 * pinf2)) %>%

mutate(dtime = time - lag(time, default=0))

A11 <- sum(tmp$dtime * tmp$S11) / n[1]
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A12 <- sum(tmp$dtime * tmp$S12) / n[1]
A22 <- sum(tmp$dtime * tmp$S22) / n[1]

A <- matrix(c(A11, A12, A12, A22), 2, 2)
B <- matrix(c(B11, B12, B12, B22), 2, 2)
C <- c(C1, C2)
betahat <- solve(A) %*% C
Sig <- solve(A) %*% B %*% solve(A) / n[1]
se <- sqrt(diag(Sig))
# Gather results
res1 <- data.frame(truebeta = beta[, 1], betahat = betahat, se = se,

lower = betahat - qnorm(0.975) * se,
upper = betahat + qnorm(0.975) * se)

# And in group 2
C1 <- sum(dlong2$pinf1 * dlong2$status) / n[2]
C2 <- sum(dlong2$pinf2 * dlong2$status) / n[2]
B11 <- sum(dlong2$pinf1 * dlong2$pinf1 * dlong2$status) / n[2]
B12 <- sum(dlong2$pinf1 * dlong2$pinf2 * dlong2$status) / n[2]
B22 <- sum(dlong2$pinf2 * dlong2$pinf2 * dlong2$status) / n[2]

tmp <- dlong2 %>%
group_by(time) %>%
summarise(S11 = sum(pinf1 * pinf1),

S12 = sum(pinf1 * pinf2),
S22 = sum(pinf2 * pinf2)) %>%

mutate(dtime = time - lag(time, default=0))

A11 <- sum(tmp$dtime * tmp$S11) / n[2]
A12 <- sum(tmp$dtime * tmp$S12) / n[2]
A22 <- sum(tmp$dtime * tmp$S22) / n[2]

A <- matrix(c(A11, A12, A12, A22), 2, 2)
B <- matrix(c(B11, B12, B12, B22), 2, 2)
C <- c(C1, C2)
betahat <- solve(A) %*% C
Sig <- solve(A) %*% B %*% solve(A) / n[1]
se <- sqrt(diag(Sig))
# Gather results
res2 <- data.frame(truebeta = beta[, 2], betahat = betahat, se = se,

lower = betahat - qnorm(0.975) * se,
upper = betahat + qnorm(0.975) * se)

# Show results
# Group 1
res1

truebeta betahat se lower upper
1 3.00 4.232807 0.641617 2.975261 5.4903531
2 0.25 -1.697600 1.009298 -3.675788 0.2805871
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# Group 2
res2

truebeta betahat se lower upper
1 0.5 0.5154944 0.3645516 -0.1990135 1.230002
2 2.0 2.0512047 0.5777674 0.9188014 3.183608

Two things are worth noting. The first is that the estimates are reasonably close to the true values,
and well within the 95% confidence intervals. The second is that one of the coefficients is estimated
to be negative, which of course is not desirable. It would be of interest to estimate the β coefficients
under a non-negativity constraint, as pursued in Lu, Goeman, and Putter (2023).

4.4 Hybrid (Cox-Aalen) models
As we have seen, the effect of an intervention is most naturally incorporated as a multiplicative effect.
The same goes for the effect of measured characteristics of the susceptible individuals, like gender,
or perhaps known risk factors for infection. If we want to incorporate such effects multiplicatively
and additionally have a structured population that would call for an additive hazards structure, then
hybrid models would be of interest where the hazard of subject i in group j takes the form

λji(t) = exp(γ⊤Xji)
J∑

k=1
βkjIk(t),

with Xji a vector of baseline covariates of subject i in group j would be of interest. This type of
model is known as a Cox-Aalen model, and has been studied by Scheike and Zhang (2002). We will
not pursue this method in this paper.

4.5 Heterogeneity in susceptibility to infection
It is a huge simplification to assume that each susceptible individual is equally susceptible to becoming
infected, or that each infected individual is equally likely to infect others. With individual knowledge
of covariates, these could be incorporated into the survival analysis models, be they additive hazards,
Cox or Poisson models. In the absence of such information, a natural extension to the models
considered is to add individual random effects expressing such heterogeneity. In survival analysis,
models incorporating such random effects are known under the term frailty models, see for instance
Balan and Putter (2020). It is possible to fit such frailty models also for SIR models.

The function below generates completely observed data from an SIR model where the transmission
parameter associated with a susceptible individual equals βZ, with Z a gamma random variable
with mean one and variance fvar. Thus, the mean transmission parameter over the population of
susceptibles equals β, but susceptible individuals differ in their degree of susceptibility to infection.

#
# Function to generate data from an SIR model with heterogeneity
#
gen_SIR_Z <- function(beta, gamma, S0, I0, R0, fvar=1) {

# Start with S0 susceptible, I0 infected and R0 recovered, at time t=0
T <- 0
S <- S0; I <- I0; R <- R0
n <- S0 + I0 + R0
dfr <- matrix(0, 2 * n, 5) # time, S, I, R, ev (1 for infection, 0 for recovery)
# Now generate frailty terms
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Z <- rgamma(S0, shape = 1/fvar, rate = 1/fvar) # mean one, variance fvar
# Initialize
dfr[1, ] <- c(T, S, I, R, 1)
i <- 1
while (I > 0) { # run until no more infecteds left

i <- i + 1
# currently I infected, S susceptibles, determine rates
rate_inf <- beta * I * sum(Z) / n
rate_rem <- gamma * I
rate_tot <- rate_inf + rate_rem
# time point of new event
Tev <- rexp(1, rate_tot)
# determine type of event
ev <- sample(0:1, size = 1, prob = c(rate_rem, rate_inf))
# if infection (ev=1) then
T <- T + Tev
if (ev==1) { # new infection

# select (at random) which susceptible got infected and remove
idx <- sample(1:S, size = 1, prob = Z)
Z <- Z[-idx] # remove the infected individual from Z
S <- S - 1
I <- I + 1

} else { # removal
I <- I - 1
R <- R + 1

}
dfr[i, ] <- c(T, S, I, R, ev)

}
dfr <- as.data.frame(dfr)
names(dfr) <- c("T", "S", "I", "R", "ev")
dfr <- subset(dfr, !(T == 0 & ev == 0))
return(dfr)

}

# Generate
n <- 1000
beta <- 2
gamma <- 0.5
set.seed(2023)
dfr <- gen_SIR_Z(beta, gamma, I0 = 1, S0 = n-1, R0 = 0)

This heterogeneity in susceptibility leads to an epidemic with considerably fewer infections compared
to one with the same β and γ and no such heterogeneity, as can be seen from Figure 11.

plot(dfr$T, dfr$I, type="s", lwd=2, xlab="Time", ylab="",
ylim=c(0, n), col="red")

lines(dfr$T, dfr$I + dfr$R, type="s", lwd=2)
lines(dfr$T, dfr$I + dfr$R + dfr$S, type="s", lwd=2, col="blue")
legend(5, 0.8, c("I", "I + R", "I + R + S"), lwd=2,
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col=c("red", "black", "blue"), bty="n", xjust=1)
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Figure 11: Stacked plot showing the number of susceptible, infected and recovered individuals over
time from a stochastic SIR model with heterogeneity in susceptibility.

It can be shown by Jensen’s inequality that the assumption that all individuals are equally susceptible
leads to an upper bound for the final proportion infected, see for instance Katriel (2012) and Miller
(2012).

Let us now estimate β from this generated data, first assuming it is time constant.

dlong <- SIR2surv(dfr)
poisfit0 <- glm(status ~ offset(logfuptime) + offset(logpinf),

family="poisson", data=dlong,
weights = w)

summary(poisfit0)

Call:
glm(formula = status ~ offset(logfuptime) + offset(logpinf),

family = "poisson", data = dlong, weights = w)

Coefficients:
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Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.07530 0.03576 2.106 0.0352 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 11915 on 464706 degrees of freedom
Residual deviance: 11915 on 464706 degrees of freedom
AIC: 13481

Number of Fisher Scoring iterations: 9

cipoisfit0 <- confint(poisfit0)
tmp <- c(poisfit0$coef, cipoisfit0)
exp(tmp)

(Intercept) 2.5 % 97.5 %
1.078203 1.004388 1.155547

The result, 1.08, is considerably lower than the true value 2, caused by the fact that the most
susceptible individuals get infected first, resulting in less susceptible individuals remaining in the
susceptible pool over time. As in standard survival analysis, the presence of the frailty terms induces
time-varying behaviour of β. This is indeed picked up using Poisson regression with splines.

tinf <- sort(dfr$T[dfr$ev == 1])
t.kn <- summary(tinf)[-3] # excluding median
poisfit1 <- glm(status ~ Ns(time, knots=t.kn) + offset(logfuptime) + offset(logpinf),

family="poisson", data=dlong,
weights = w)

summary(poisfit1)

Call:
glm(formula = status ~ Ns(time, knots = t.kn) + offset(logfuptime) +

offset(logpinf), family = "poisson", data = dlong, weights = w)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.06701 0.92263 0.073 0.9421
Ns(time, knots = t.kn)1 0.01332 0.89069 0.015 0.9881
Ns(time, knots = t.kn)2 -1.28876 0.53126 -2.426 0.0153 *
Ns(time, knots = t.kn)3 0.12176 1.92596 0.063 0.9496
Ns(time, knots = t.kn)4 -1.15869 0.53328 -2.173 0.0298 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 11915 on 464706 degrees of freedom
Residual deviance: 11792 on 464702 degrees of freedom
AIC: 13366
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Number of Fisher Scoring iterations: 9

We indeed see non-constant β(t) in Figure 12.

tt <- seq(0, 15, by=0.05)
nd <- data.frame(time=tt, logfuptime=0, logpinf=0)
lambda <- ci.pred(poisfit1, nd) # the rates from the spline model
matshade(tt, lambda, plot=TRUE, col="blue", lwd=2,

xlab="Time", ylab="Infection rate")
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Figure 12: Estimate of β(t) obtained using Poisson regression with cubic splines from an SIR model
with heterogeneity in susceptibility.

Fitting a Cox model with individual frailty terms will not work, because the individual model with
individual frailty is not identifiable in the absence of time-fixed covariates. A Poisson model with
individual frailty terms seems like a viable option, but all the methods in https://rpubs.com/kaz_yo
s/glmm1 throw errors. It should be feasible though to write a dedicated EM-algorithm for this, but
this is not pursued here.
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5 Challenges
The type of data that we considered in this paper is too idealized in the sense that we typically do
not know the time of infections exactly and we do not know the number of infectious and susceptible
individuals exactly. Numbers of infections are usually aggregated over days or weeks. Moreover they
are typically reported with some delay and they are incomplete. Methodology needs to be extended
to deal with these more realistic data settings. We will not cover all of these aspects here, but we
will show how the methods in this paper can still be used to estimate the transmission parameter β
in case the (correct) probability distribution of the time to recovery after infection is known, and
aggregate data on the daily number of newly infected individuals is reported, as was the case for the
COVID-19 infection. For now we assume there is no reporting delay or incompleteness.

We start from the fully observed data used before. To make it roughly in line with the recent
COVID-19 epidemic, based on Figure 2 it seems reasonable to say that the time unit there is months,
and that we have daily updates of the number of new infections. Let us say that after 10 infections
the outbreak is “detected” (at day 41), and that we set this to day 0 and start reporting daily new
infections after that.

dfr <- dfr2023
# Time is now in months, convert time to days and then aggregate in days
dfr$T <- dfr$T * 30
head(dfr, n = 15)

T S I R ev
1 0.000000 999 1 0 1
2 9.679788 998 2 0 1
3 31.011080 997 3 0 1
4 34.204111 996 4 0 1
5 34.501694 995 5 0 1
6 35.119292 994 6 0 1
7 37.234910 994 5 1 0
8 38.262021 993 6 1 1
9 39.253371 992 7 1 1
10 40.609998 991 8 1 1
11 41.388189 990 9 1 1
12 41.991311 989 10 1 1
13 42.413583 988 11 1 1
14 43.107677 987 12 1 1
15 43.545050 987 11 2 0

dfr <- subset(dfr, I > 10)
dfr$T <- ceiling(dfr$T)
dfr$T <- dfr$T - min(dfr$T) + 1
dfr <- subset(dfr, ev == 1)
tau <- max(dfr$T)
aggr <- as_tibble(dfr) %>%

group_by(T) %>%
summarize(newinf = n()) %>%
rename(day = T)

This is what these aggregate data look like, with newinf the number of new infections reported each
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day.

aggr

# A tibble: 193 x 2
day newinf

<dbl> <int>
1 1 1
2 2 1
3 3 1
4 4 1
5 9 1
6 10 1
7 12 1
8 13 2
9 14 1

10 15 3
# i 183 more rows

Using the information on time to recovery, each newly infected individual on day d will be counted
as an infected individual on day d + j with probability pj = P (time to recovery ≥ j). The expected
number of infected individuals on day d̃ then is a sum of the number of newly infected individuals on
day d̃−j, weighted by pj . We can then create a daily analysis data set where each day is represented by
a number of individuals becoming infected with status = 1 (the number of newly infected individuals
on that day), and a number of individuals that are susceptible and did not get infected on that day
with status = 0 (the population size n minus the cumulative number of infected individuals until
and including that day).

# Vector p, with p[j] containing probability of still being infectious
# j-1 days after infection
p <- 1 - pexp(0:tau, rate = gamma / 30)
# Structure for analysis data, "empty" rows will be deleted later
ana <- matrix(0, 2 * tau, 5) # columns are start, stop, ninf, status, weight
# Initialize
I0 <- 10
vnewinf <- cuminf <- I0
for(i in 1:tau) {

# Number of infected at start of bin (day)
ninf <- c(crossprod(vnewinf, rev(p[1:i])))
# Number of newly infected
idxi <- match(i, aggr$day)
newinf <- ifelse(is.na(idxi), 0, aggr$newinf[idxi]) # current newly infected
cuminf <- cuminf + newinf # cumulative number of infected
vnewinf <- c(vnewinf, newinf) # add newinf to vector vnewinf
# Construct two rows for analysis data
ana[2 * (i-1) + 1, ] <- c(i-1, i, ninf, 1, newinf)
ana[2 * (i-1) + 2, ] <- c(i-1, i, ninf, 0, n - cuminf)

}
# Make into data frame
ana <- as.data.frame(ana)
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names(ana) <- c("Tstart", "Tstop", "ninf", "status", "weight")
# Remove "empty" rows, days without new infections, weight will be zero
ana <- subset(ana, weight > 0)
ana <- as_tibble(ana)

This is what the data look like for the first seven days.

print(ana, n=11)

# A tibble: 477 x 5
Tstart Tstop ninf status weight
<dbl> <dbl> <dbl> <dbl> <dbl>

1 0 1 10 1 1
2 0 1 10 0 989
3 1 2 10.8 1 1
4 1 2 10.8 0 988
5 2 3 11.7 1 1
6 2 3 11.7 0 987
7 3 4 12.5 1 1
8 3 4 12.5 0 986
9 4 5 13.3 0 986

10 5 6 13.0 0 986
11 6 7 12.8 0 986
# i 466 more rows

Note that on days 5 through 7 no new infections occurred, we therefore see no rows on these days
with status = 1.

Figure 13 shows the expected number of infected individuals over time (in days since the outbreak
was detected).

ana$mid <- (ana$Tstart + ana$Tstop) / 2
plot(ana$mid, ana$ninf, type = "l", lwd = 2,

xlab = "Days since outbreak detection",
ylab = "Number of infecteds")
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Figure 13: Expected number of infecteds over time.

After calculating pinf, the proportion of infected individuals, and fuptime, the time between the
start and end of the reporting time period, which was one day, 1/30 of a month, we can then use
Poisson regression with log link and logpinf and logfuptime as offsets, to obtain an estimate of β.

ana <- as_tibble(ana) %>%
mutate(pinf = ninf / n,

logpinf = log(pinf),
fuptime = 1 / 30,
logfuptime = log(fuptime))

poisreg <- glm(status ~ offset(logpinf) + offset(logfuptime),
data = ana, weights = weight, family = "poisson")

summary(poisreg)

Call:
glm(formula = status ~ offset(logpinf) + offset(logfuptime),

family = "poisson", data = ana, weights = weight)

Coefficients:
Estimate Std. Error z value Pr(>|z|)
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(Intercept) 0.67850 0.03224 21.05 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 8141.5 on 476 degrees of freedom
Residual deviance: 8141.5 on 476 degrees of freedom
AIC: 10067

Number of Fisher Scoring iterations: 7

cipoisreg <- confint(poisreg)

Waiting for profiling to be done...

cipoisreg

2.5 % 97.5 %
0.6146334 0.7410310

tmp <- c(poisreg$coef, cipoisreg)
exp(tmp)

(Intercept) 2.5 % 97.5 %
1.970917 1.848979 2.098098

The result again is very close to the true value of β = 2. The Poisson regression also gives a confidence
interval. Note, however, that the estimate of the standard error of β̂ is too optimistic, for two reasons.
First, assuming known time-to-recovery distribution, the randomness in the actual time-to-recovery
is ignored and replaced by their expectations. Second, the time-to-recovery distribution is typically
estimated with considerable uncertainty in itself. These sources of randomness need to be taken into
account to obtain correct standard errors and confidence intervals. This is outside the scope of this
manuscript.

6 Discussion
In this manuscript we have shown how standard methods from survival analysis can be used to
estimate pivotal quantities in SIR models. In particular we have focused on estimating the transmission
parameter in the SIR model. We have illustrated the use of multiplicative models like the Cox model
and Poisson regression, and of the additive hazards model, and we have argued for the usefulness
of the Cox-Aalen model, which is a hybrid of multiplicative and additive models. The possibility of
using these standard models with the wide availability of software to elucidate underlying pivotal
parameters opens possibilities in many situations, for instance in structured and/or clustered data.

Interestingly, in contrast to what seems to be implicit in the literature (Kenah 2011, 2013, 2015), we
do not need information on who infected whom, but correct knowledge of the number of susceptible
and infectious individuals over time is needed. In most realistic situations this knowledge is not
readily available and needs to be further estimated from the available data and assumptions.

Clearly, more work is needed. First and most importantly, the data challenges need to be addressed.
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Issues like incompleteness of reporting of infections, reporting delay will severely complicate reliable
knowledge of the number of infected and infectious individuals over time. Second, the issue of
heterogeneity in susceptibility is of major interest. Using frailty models seems a very promising way
of estimating the extent of variability in susceptibility in the population. Third, while multiplicative
models have already been used to estimate the effect of interventions in slowing down the spread of
an infection, additive hazards models have to the best of our knowledge not been used in infectious
disease models. Finally, the use of hybrid multiplicative - additive models such as the Cox-Aalen
model seems particularly attractive.
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