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Abstract 

Background and Aims 

The aetiology of coronary artery disease (CAD) is different for men and women, yet insights into 

underlying sex-specific biological and pathophysiological mechanisms are limited. We investigated the 

sex-specific associations of the plasma-proteome with incident CAD. 

Methods 

In 40,829 participants from UK Biobank free-of-CAD from baseline to 365 days thereafter (55% 

women, mean 56.9±8.1 years), we analysed associations between 2,922 plasma-proteins and CAD 

incidence. Baseline plasma samples (2006-2010), were analysed in relation to incident CAD over a 

median follow-up of 13.7 (IQR: 13.1,14.4) years. Combined and sex-specific analyses were performed 

using Cox-proportional hazard models, adjusting for considered confounders, and causal inference 

using Mendelian Randomisation (MR). 

Results 

Multivariable-adjusted Cox-proportional hazard models identified 1,138 proteins associated with 

incident CAD (false-discovery-rate-corrected p-value<0.05), of which 219 showed evidence for 

potential causality using MR. Overrepresentation analyses identified involvement of cytokine-cytokine 

receptor interactions (p<0.0001), matrix remodelling (p<0.0001), regulation of innate and adaptive 

immune cells (p<0.0001), and angiogenesis (p<0.0001) pathways associated with incident CAD. Sex-

specific analyses revealed additional 412 female-exclusive and 37 male-exclusive proteins and distinct 

CAD-risk pathways were identified for women (e.g., innate immune response) and men (e.g., tube 

morphogenesis (angiogenesis)). Translation toward druggability on targets with causal evidence 

revealed sex-specific clinical drug candidates such as C1S (men) and FOXO1 (women). 

Conclusions 

Although the majority of proteins showed consistent associations with incident CAD in both sexes, 

multiple proteins and biological pathways were either more strongly associated with incident CAD in 

men or in women, potentially indicating sex-specific pathogenesis and opening new alleys for 

prevention and clinical strategies. 
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1. Introduction 

 Despite the growing recognition of disparities between men and women in the 

development, manifestation, and epidemiology of coronary artery disease (CAD),1-5 a critical 

gap persists in our understanding of its underlying sex-specific biological mechanisms. Both 

men and women are susceptible to develop ischaemic heart disease upon exposure to traditional 

risk factors.6,7 However, sex-specific aetiologies have been observed, with factors such as 

smoking, diabetes, and stress disproportionally affecting CAD incidence in women.8-11 

Clinically, females present significantly more frequently with myocardial ischaemia with 

nonobstructive coronary arteries (INOCA), whereas males present more commonly with 

classical obstructive CAD.12 Regarding the latter, differences are observed in plaque 

composition, vulnerability, and burden between men and women, pointing toward a 

respectively more atheromatous versus fibrous phenotype.13-15 

 The plasma proteome reflects the dynamic biological state, which, prior to disease, may 

provide insight into the mechanisms of (sex-specific) CAD onset. The UK Biobank is a large-

scale biomedical healthcare database comprising population-scale data of 2,922 unique plasma 

proteins in 54,219 individuals.16,17 Illustratively, using the UK Biobank data, a recent study 

demonstrated the significance of large-scale integration of plasma protein levels and 

genomics.16 

 Omics approaches, including genomics, transcriptomics, metabolomics, and proteomics, 

are powerful tools to unravel underlying biological mechanisms of disease, and may also 

provide insights into the sex-specific onset of CAD.17-19 A limited number of genomic studies 

has identified multiple sex-specific candidate genes as risk factors for CAD, within risk loci 

that encode for proteins that were primarily engaged in processes involved in lipid metabolism 

and vascular remodelling.20-22 Focusing on lesion development, human regulatory network 
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analyses using patient material have indicated the existence of sex-specific plaque sub-

phenotypes13,23 and cell signatures.24,25 

 Translating experimental findings into the identification of druggable targets is vital to 

enable clinical application. With the advent of increasingly complex datasets, advanced 

computational tools like interaction network analyses and artificial intelligence approaches 

facilitate the translation of novel targets to the clinic.26,27  

 We hypothesised that distinct proteomic patterns and pathways are associated with CAD 

onset in men and women. Therefore, in this study, by integrating both multivariable-adjusted 

regressions in combination with Mendelian Randomisation (MR) approaches,28 we aimed to 

investigate sex-specific plasma proteomic associations with incident CAD and identify 

potentially causal and druggable protein targets. 
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2. Methods 

2.1 Multivariable-adjusted regression 

Study setting (UK Biobank) 

 The UK Biobank is a general population cohort, in which approximately 500,000 

participants were prospectively followed after recruitment between 2006 and 2010 (more 

information available via: https://www.ukbiobank.ac.uk/).29 Participants were between 40 and 

70 years of age at enrolment and were recruited from the general population. Recruitment took 

place via invitation letters to eligible adults registered to the National Health Services (NHS) 

and living within 25 miles from one of the assessment centres. Written informed consent was 

retrieved from all participants and ethical approval of the study was given by the North-West 

Multicentre Ethics Committee. The present study was accepted and completed under project 

56340. 

 

Study population 

 The UK Biobank Pharma Plasma Proteome (UKB-PPP) project is a collaboration 

between thirteen biopharmaceutical companies and the UK Biobank, with the purpose of 

studying blood protein biomarkers in relation to disease onset. Baseline plasma samples from 

54,219 individuals were selected randomly (n=46,595), or by consortium member pre-selection 

(n=6,376) and COVID-19 repeat imaging study (n=1,268) protocols. A total of 20 participants 

were pre-selected by the consortium members and participated in the COVID-19 repeat study. 

For the current study, we restricted the analysis to participants of the UK Biobank from 

European ancestry to minimise population stratification bias. Moreover, individuals with a 

history of CAD or a CAD incident within 365 days after baseline were excluded for all analyses 

to minimise influences caused by reverse causation, resulting in a total cohort of 40,829 

participants. 
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Exposure 

 Proteomic profiling on the UKB-PPP samples was performed using the Olink Explore 

3072, which processes 2,941 protein analytes, corresponding to 2,923 unique proteins from the 

Cardiometabolic, Cardiometabolic_II, Inflammation, Inflammation_II, Neurology, 

Neurology_II, Oncology, and Oncology_II panels. Further details on the Olink explore 

platform and assays are available in the summary publication of the UKB-PPP.16 The current 

analyses have been performed in accordance with the quality consideration as described in Sun 

et al., excluding one protein (GLIPR1), due to >80% of data failing quality control (99.4%).16  

 

Cardiovascular disease outcomes 

 A UK Biobank algorithm was employed to collect participant data on incident CAD, 

using data from the general practitioner, linked hospital admissions, death registries, and self-

report. As coded according to the International Classification of Diseases (ICD) standards, the 

study outcome of CAD was defined as angina pectoris (I20), myocardial infarction (I21, I22), 

and acute and chronic ischaemic heart disease (I24, I25), whichever came first. Participants 

were followed until the occurrence of the CAD event, death, loss to follow-up or the end of 

follow-up, whichever came first. 

 

Other variables 

 Data on age, sex, body mass index (BMI), insulin use, smoking, menopausal status (for 

women only), and use of cholesterol lowering medication were collected at the assessment 

centre of the UK Biobank through touchscreen questionnaire and physical measures. For 

smoking status, we included previous and current smokers. The Towsend Deprivation Index 

(TDI) was included as a marker for socio-economic status, and reflects the neighbourhood of 
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the individual participant based on zip code. Non-insulin dependent type diabetes mellitus was 

obtained via linkage to health-related records. 

 

Multivariable-adjusted Cox-proportional hazard models 

 All the statistics were performed in R version 3.6.1 statistical software (The R Foundation 

for Statistical Computing, Vienna, Austria). Characteristics of the study population were 

studied at baseline as means (with standard deviations), medians (with interquartile ranges; for 

non-normally distributed continuous variables), or proportions (for categorical variables only). 

 Cox-proportional hazard models were performed to investigate the associations between 

standardised plasma protein levels (in standard deviation increase in level) and incident CAD 

in participants free-of-CAD at baseline or within 365 days thereafter (Survival package in R30). 

In these analyses, participants were observed until the conclusion of the follow-up period, loss 

to follow-up or mortality, whichever came first. Regression analyses were adjusted for baseline 

age, sex, BMI, TDI, baseline diagnosis of diabetes mellitus, insulin use, smoking, and use of 

cholesterol-lowering medication.  

 Analyses were performed for the total study population, as well as stratified for men and 

women. Additional female analyses were performed to adjust and additionally restrict for post-

menopausal status. To provide evidence favouring heterogeneity by sex, we additionally 

included a multiplicative interaction term between the protein level and sex in the analyses on 

incident CAD, adjusted for the confounders. We corrected for multiple testing using the false-

discovery-rate (FDR).  

 For the analysis of enriched biological pathways in our data, we used the integrated 

biological database Metascape (web-based, more information available via: 

http://metascape.org).31 In short, Metascape facilitates the translation of large gene sets to 

involvement in biological processes via computed overrepresentation. More specifically, 
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Metascape incorporates multiple ontologies for enrichment analysis and eliminates 

redundancies following hierarchical clustering of terms based on enrichment. The platform 

leverages >40 independent knowledgebases, among which the ontology resources Molecular 

Signatures Database (MSigDB), Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene 

Ontology (GO) knowledgebase, Reactome Pathway Database, and WikiPathways.32-36 

 

2.2 Mendelian randomisation 

 To provide evidence favouring possible causal associations, we performed two-sample 

MR analyses. For the single-nucleotide polymorphisms (SNP)-exposure associations, we used 

the data from the SNPs associated with the protein levels from UK Biobank.16 From these, we 

selected all independent lead SNPs associated with protein levels (both cis and trans SNPs) 

with a SNP-exposure p-value <1.7e-11, considering multiple testing for the number of proteins 

in the genome-wide association study. As SNP-outcome datasets, we used summary-level 

genome-wide association data from the Coronary ARtery DIsease Genome wide Replication 

and Meta-analysis plus the Coronary Artery Disease Genetics consortium 

(CARDIoGramplusC4D) (60,801 cases and 123,504 controls),37 UK Biobank (122,733 cases 

and 424,528 controls), and freeze 9 from the Finngen biobank (https://www.finngen.fi/en) 

(43,518 cases and 333,759 controls), resulting in a total of 227,052 cases and 881,791 controls. 

In each dataset, CAD was defined as angina pectoris (I20), myocardial infarction (I21, I22), 

and acute and chronic ischaemic heart disease (I24, I25). With the exception of the 

CARDIoGRAMplusC4D dataset which comprised 23% of non-European ancestry 

participants, all other datasets only used participants from European ancestry. The studies 

contributing data to these (meta-)analyses have been approved by the necessary local medical 

ethics committees and all participants contributing to these efforts provided written informed 

consent. For the purpose of the present study, we only used the summary-level data and no 
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individual-level data. Data were only available for all participants combined and not stratified 

by sex. 

 

Mendelian Randomisation meta-analysis 

 The primary analysis for MR employed inverse-variance weighted (IVW) regression 

analysis, assuming the absence of invalid genetic instruments such as directional pleiotropy.38 

All MR analyses utilised the R-based package “TwoSample MR”. The mean effect estimate 

was derived separately from each outcome database through fixed-effect IVW meta-analysis 

of Wald ratios (gene-outcome [log odds ratio] divided by gene-exposure associations) 

estimated for each instrumental variable.39 Results were expressed as odds ratios (ORs) for 

CAD risk. Under the assumption of met MR criteria, this odds ratio served as an estimate of 

the causal effect of the exposure on the outcome. 

 To assess potential violations of main MR assumptions stemming from directional 

pleiotropy, MR-Egger regression analyses and weighted-median estimator analyses were 

performed.39-41 The MR-Egger's intercept estimated the average pleiotropic effect across 

genetic variants, with a (significant) non-zero value indicating bias in the IVW estimate.40 The 

weighted-median estimator yielded a consistent valid estimate if at least half of the instrumental 

variables were valid.41 All analyses were performed separately for the individual GWAS 

summary datasets, and subsequently meta-analysed using fixed-effects with the R-based 

“rmeta” package. 

 

2.3 Druggability analyses 

 To evaluate target druggability, we used the machine learning platform DrugnomeAI to 

calculate aggregated probability scores based on a combined clinically-approved (Tclin) and 

clinical-phase (Tier 1) drug candidate model.42 In short, DrugnomeAI is an adaptation of 
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mantis-ml, a machine-learning framework, based on a stochastic semi-supervised learning 

approach.42,43  

 Essentially, DrugnomeAI employs a process in which the machine learning algorithm 

learns from both labelled and unlabelled data in a probabilistic manner. Multiple resources 

have been integrated in the assessment of target druggability within DrugnomeAI, among 

which databases on protein-protein, drug-gene, and chemical-gene interactions such as Pharos, 

Drug Gene Interaction Database (DGIdb), and Comparative Toxicogenomics Database 

(CTDbase).44-46 
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3.  Results 

 3.1 Primary analysis UK Biobank  

3.1.1 Summary information cases and controls  

 From the UKB-PPP project cohort, a total of 40,829 individuals were included free-of-

CAD at baseline and in the first year after inclusion, with a mean age of 56.9 (standard 

deviation 8.10) years, 55.3% women, and a mean BMI of 27.0 kg/m2 (Table 1). Cholesterol-

lowering and insulin medication use at recruitment were 14.6% and 0.9% respectively, with 

7.3% of total participants being diagnosed with non-insulin dependent diabetes mellitus. 

Moreover, there was a mean TDI (socio-economic status score) of -1.52 (3.01) and 44.6% of 

the individuals were past and/or current smoker (Table 1). 

 

Table 1: Baseline characteristics of the study population 

 Baseline (n=40,829) 

Women  Men 

Sex    

Female (%) 22,590 (55.3%) 22,590 (100%)  

Male (%) 18,239 (44.7%)  18,239 (100%) 

Age at recruitment (years)    

Mean (SD) 56.9 (8.10) 56.8 (8.01) 57.0 (8.22) 

Body mass index    

Mean (SD) 27.3 (4.71) 27.0 (5.08) 27.7 (4.16) 

Cholesterol-lowering medication at recruitment    

Yes (%) 5,975 (14.6%) 2,512 (11.1%) 3,463 (19.0%) 

Insulin use at recruitment    

Yes (%) 374 (0.9%) 166 (0.7%) 208 (1.1%) 

Smoking    

Past & current (%) 18,202 (44.6%) 9,101 (40.3%) 9,101 (49.9%) 

Townsend deprivation index (socio-economic)    

Mean (SD) -1.52 (3.01) -1.54 (2.95) -1.56 (2.90) 

Non-insulin dependent diabetes mellitus    

Yes (%) 2,996 (7.3%) 1,249 (5.5%) 1,747 (9.6%) 
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3.1.2 Proteomic associations with CAD 

 After a median follow-up time of 13.7 (IQR: 13.1, 14.4) years, there were 3,155 incident 

CAD cases, of which 38.7% women. In combined sex multivariate analysis, 1,138 out of 2,922 

proteins were significantly associated with incident CAD after correction for multiple 

comparisons (FDR) and adjusting for considered confounding factors (Figure 1a, 

Supplementary Table 1). Separate sex-specific analyses revealed 412 female- and 37 

male-specific CAD proteins (Figure 1b, Supplementary Figure 1, Supplementary Table 2, 

Supplementary Table 3). Adjustment nor restriction of women for post-menopausal status did 

substantively change the results (Supplementary Figure 2, Supplementary Table 4). 

Figure 1. Proteomic associations for incident CAD. (a) Volcano plot representing the effect size of combined-

sex plasma-proteomic profiles for CAD (FDR<0.05, abs(β) ≥ 0.15). Orange dots denote positive significant 

associations with incident CAD. The proteins were part of the Cardiometabolic, Cardiometabolic_II, 

Inflammation, Inflammation_II, Neurology, Neurology_II, Oncology, and Oncology_II panels of the Olink 

Explore 3072 platform (b) Venn diagram of proteins associated with CAD for the sex-combined (green), female-

specific (red), and male-specific (blue) Cox-proportional hazard models. FDR: false discovery rate 

 

 For graphical reasons only, we filtered for effect sizes ≥0.15 across the combined, 

female-, and male-specific analyses, resulting in 158 proteins of interest associated with 

incident CAD. Considering this cut-off, this resulted in 57 combined, 67 female-specific, and 

37 male-specific proteins for visualisation (Figure 2). 
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Figure 2. Circular heatmap for proteins associated with increased hazard for incident CAD for men and 

women. Average effect sizes per protein are represented by the heatmap layer women (red; inner) and men (blue; 

outer) respectively. General clustering was plotted in a counter-clockwise fashion around the heatmap, based on 

increasing effect sizes and computed sex differences. 

 

3.1.3 Sex-specific proteomic pathways 

 Based on the complete CAD-incidence-associated plasma-proteome in women and men, 

we performed pathway analyses. This revealed sex-specific differences associated with 

incident CAD (Figure 3, Supplementary Table 5, Supplementary Table 6). Notable distinctions 

were observed between both sexes, including angiogenic (tube morphogenesis) and hormonal 
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response (Insulin-like growth factor response) components in men, and the innate immune 

response and programmed cell death regulation in women (Figure 3a, 3b). Moreover, we also 

found multiple shared pathways between both sexes, among which those corresponding to the 

matrisome, cytokine-cytokine receptor interactions, regulation of cell migration, neutrophil 

degranulation, and enzyme-linked receptor protein signalling. 

Figure 3. Sex-specific proteome pathway analyses for CAD incidence. (a, b) Pathway analyses of respectively 

the female and male CAD-associated proteome. Multiple ontology sources were included to cluster all enriched 

terms into groups. 

(1)MSigDB: Molecular Signatures Database; (2)KEGG: Kyoto Encyclopedia of Genes and Genomes; (3)GO: 

Gene Ontology knowledgebase;(4)Reactome; (5)WP: WikiPathways. 
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3.1.4 Sex-different protein interaction analyses  

 Based on interaction analyses (male-versus-female),47 we found effect sizes of 711 

proteins to be significantly different between men and women (FDR<0.05; Figure 4a, 

Supplementary Table 7). Based on these significantly different effect sizes in men versus 

women, we performed pathway analyses and subsequent network auto-clustering, and 

identified fourteen independent pathway clusters (Figure 4b, Supplementary Table 8). In 

general, the fourteen clusters represented differences between the CAD-associated proteome 

of men and women pertaining to innate and adaptive immunity, matrix remodelling, growth 

factor responses, apoptosis modulation, and lipid management. The three largest clusters were 

“response innate immune”, ‘pathogenic infection virus”, and “cysteine endopeptidase 

regulation” (Figure 4b). 
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Figure 4. Sex-different protein interactions. (a) Sex-protein interaction heatmap of significantly different 

proteins associated with CAD onset between men and women (n=711) (b) Network auto-clustering based on 

significant interaction clusters for incident CAD. Nodes represent individual pathways corresponding to the higher 

order cluster. 

3.2 MR meta-analysis  

 We performed two-sample MR analyses on 2,346 proteins for which there were genetic 

instruments,28 and observed evidence for possible positive causal associations for 219 proteins 

in the meta-analysis of the three individual GWAS, of which 66 proteins had a logodds per s.d. 

higher level than 0.15 (Figure 5a, Supplementary Table 9). 

 To identify the sex-specific proteins with the highest hazard for CAD incidence, we 

analysed the 219 proteins for occurrence within our fourteen sex-protein interaction clusters 

(Supplementary Table 10). In total, we identified 59 hits that pertained to varying groups of 

clusters, of which the ten with the highest combined hazard ratio are shown in Figure 5b. 

 When considering the highest absolute differences between both sexes, Spondin 1 

(SPON1), Complement C1s (C1S) and Cathepsin H (CTSH) emerged as additional top hits for 

men, while PDZ And LIM Domain 7 (PDLIM7), Drebrin like (DBNL), and Ubiquitin specific 

peptidase (USP8) were prominent within the specific top hits for women. Further examination 

revealed sex-specific nuances of the data within the framework of the fourteen pathway clusters 

(Figure 4b, Supplementary Table 10). 
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Figure 5. Causal evidence for sex-specific target associations with CAD. (a) Volcano plot of genetic MR 

associations with CAD in the combined UK Biobank-FinnGen-CARDIoGRAMplusC4D cohort. Orange and 

purple dots denote significant positive and negative associations respectively (FDR<0.05, abs(β) ≥ 0.15). (b) 

Forest plot depicting the top 10 target protein hazard ratios resulting from the sex-protein interaction analyses, 

as causally validated by the MR meta-analysis data (black) and jointly sorted for women (red) and men (blue). 

(c, d) Forest plot depicting the top three protein hazard ratios for CAD, as sorted for male- (c) and female-

specific (d) differential top hits. *Clusters according to the interaction-analyses: 

1: response innate immune, 2: actin based organisation, 3: cysteine endopeptidase regulation, 4: negative 

regulation kinase, 5: pathogenic infection virus, 6: erk1 positive regulation, 7: apoptosis modulation signalling, 

8: lymphocyte proliferation activation, 9: membrane trafficking vesicle, 10: tyrosine growth factor, 11: cargo 

clathrin endocytosis, 12: fatty acids lipoprotein, 13: chaperone maturation folding, 14: vegfa vegfr2 signalling. 
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3.3 Top target druggability 

 Based on the 219 significant targets found through the MR analyses, we identified the 

top 20 hits associated with CAD across both sexes for the combined average of female and 

male hazard ratios as shown in Table 2. To assess druggability of these targets, we used 

aggregated probability scores of our top 20 hits based on a clinically-approved and clinical-

phase drug candidate model (Table 2, Supplementary Table 11).  

 From this integrated data model, five targets emerged with high druggability probability 

scores surpassing the threshold of 0.5. Notably, TNFRSF4, CSF1, FURIN, CD74, TNFSF13 

demonstrated potential for therapeutic intervention. (Table 2). Further analyses were performed 

using the sex-specific targets as identified for men and women. Within the previously identified 

male-specific top hits, the complement system activation component C1S had the highest 

druggability score (0.8578), followed by CTSH (0.5118) (Table 3). In the context of the female 

top hits, the first target with high druggability was Forkhead box protein 1 (FOXO1, 0.6286) 

(Supplementary Table 11). 
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Table 2: Druggability of top 20 combined targets  

Target Gene group 
HR (95% CI) 

Women 

HR (95% CI) 

Men 

Druggability 

probability score 

(0-1) 

EDA2R Ectodysplasin A2 receptor 

 

Tumour necrosis 

factor receptor 

superfamily 

1.22 (1.16-1.28) 1.33 (1.26-1.4) 0.0779 

COL6A3 Collagen type VI alpha 3 chain Collagens 1.19 (1.13-1.25) 1.22 (1.17-1.27) 0.4555 

CD74 
HLA class II histocompatibility 

antigen gamma chain 
CD molecules 1.24 (1.17-1.3) 1.19 (1.14-1.25) 0.9073 

TNFRSF4 
Tumour Necrosis Factor receptor 

superfamily member 4 

Tumour necrosis 

factor receptor 

superfamily; 

 

CD molecules 

1.21 (1.14-1.28) 1.19 (1.14-1.24) 0.9962 

EFNA4 Ephrin A4 Ephrins 1.17 (1.11-1.24) 1.21 (1.16-1.26) 0.3482 

TNFRSF14 
Tumour Necrosis Factor receptor 

superfamily member 14 

Tumour necrosis 

factor receptor 

superfamily; 

 

CD molecules 

1.18 (1.12-1.25) 1.14 (1.09-1.19) 0.3397 

CSF1 Colony stimulating factor 1 n.a. 1.19 (1.13-1.25) 1.15 (1.1-1.21) 0.9891 

RSPO3 R-Spondin 3 R-spondin family 1.14 (1.07-1.22) 1.18 (1.13-1.23) 0.0234 

CXCL9 C-X-C motif chemokine ligand 9 Chemokine ligands 1.17 (1.12-1.23) 1.14 (1.09-1.19) 0.495 

SEPTIN8 Septin 8 Septins 1.17 (1.11-1.24) 1.11 (1.06-1.17) 0.0139 

FURIN Furin 

Proprotein 

convertase 

subtilisin/kexin 

family 

1.13 (1.06-1.2) 1.14 (1.08-1.2) 0.9354 

BST2 
Bone marrow stromal cell antigen 

2 
CD molecules 1.13 (1.08-1.19) 1.11 (1.06-1.15) 0.108 

LGALS3 Galectin 3 

Receptor ligands; 

 

Galectins 

1.12 (1.06-1.19) 1.10 (1.05-1.15) 0.4985 

MSR1 Macrophage scavenger receptor 1 

Scavenger 

receptors; 

 

Scavenger receptor 

cysteine rich 

domain containing; 

 

CD molecules 

1.14 (1.07-1.2) 1.14 (1.09-1.2) 0.5351 

MDK Midkine n.a. 1.11 (1.06-1.16) 1.13 (1.08-1.18) 0.4048 

IL18BP Interleukin 18 binding protein 

Immunoglobulin 

like domain 

containing 

1.15 (1.09-1.21) 1.14 (1.09-1.19) 0.4106 

TNFSF13 
Tumour Necrosis Factor 

superfamily member 13 

Tumour necrosis 

factor superfamily; 

 

1.12 (1.06-1.18) 1.13 (1.08-1.18) 0.6179 
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Table 2: Druggability of top 20 combined targets  

Target Gene group 
HR (95% CI) 

Women 

HR (95% CI) 

Men 

Druggability 

probability score 

(0-1) 

CD molecules 

CCL21 C-C motif chemokine ligand 21 Chemokine ligands 1.22 (1.16-1.28) 1.15 (1.11-1.19) 0.0995 

BTN3A2 
Butyrophilin subfamily 3 member 

A2 

Butyrophilins 

V-set domain 

containing 

1.19 (1.13-1.25) 1.11 (1.06-1.16) 0.0132 

LTBP3 
Latent transforming growth factor 

beta binding protein 3 

Latent transforming 

growth factor beta 

binding proteins 

1.24 (1.17-1.3) 1.14 (1.09-1.18) 0.1165 

Table 3: Druggability of top three female- and male-specific proteins   

Target Gene group 
HR (95% CI) 

Women 

HR (95% CI) 

Men 

Druggability 

probability 

score (0-1) 

      

Women      

PDLIM7 
PDZ and LIM 

domain 7 

PDZ domain 

containing 

 

LIM domain 

containing 

1.01 (0.96-1.05) 1.15 (1.09-1.22) 0.05630 

DBNL Drebrin like 
MicroRNA protein 

coding host genes 
0.96 (0.94-1.03) 1.13 (1.06-1.19) 0.1764 

USP8 

 

Ubiquitin specific 

peptidase 8 

Ubiquitin specific 

peptidases 
0.96 (0.93-1.02) 1.11 (1.05-1.18) 0.04340 

      

Men      

SPON1 Spondin 1 n.a. 1.17 (1.12-1.22) 1.07 (1.01-1.13) 0.09470 

C1S Complement C1S 

Sushi domain 

containing 

 

Complement system 

activation components 

1.12 (1.07-1.18) 1.02 (0.95-1.08) 0.8578 

CTSH Cathepsin H 

Cathepsins 

 

Minor 

histocompatibility 

antigens 

1.11 (1.06-1.16) 0.99 (0.94-1.05) 0.5118 
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4. Discussion 

 This study observed the presence of sex-specific differences in the plasma proteome 

associated with incident CAD. Through integrated genomic and proteomic approaches, we 

observed differences between men and women in pathways related to matrix organisation, 

cytokine interactions, regulation of innate and adaptive immune cells, angiogenesis, and 

growth factor signalling related to incident CAD. Furthermore, we provided evidence 

favouring causal relations in a sex-combined study sample. These findings granted new insights 

into sex-specific pathophysiological mechanisms and implications for incident CAD, and 

allowed for the identification of druggable targets unique to men and women.  

 Despite apparent differences in top target findings of previous plasma proteomic 

approaches,16,17,48-50 we found evidence for the contribution of shared biological pathways 

leading to CAD. Notably, from our protein-sex interaction analyses it appeared that specific 

pathways, such as vascular endothelial growth factor (VEGF) signalling, are associated with 

sex differences in CAD development. Previously, our group and others have shown that 

dysfunctional VEGF signalling is involved in leaky plaque neovessels and can subsequently 

contribute to lesion destabilisation.51-53 Non-mature neovessels promote plaque development 

as the endothelium functions as a significant entrance route for immune cells via NF-κB 

promotion and subsequent TNF signalling.54,55 Endothelial dysfunction has been described in 

both sexes within the context of atherosclerotic disease. Men are more likely to suffer from 

intraplaque haemorrhage secondary to neovessel-rupture, whereas women more often present 

with coronary microvascular dysfunction (CMD) and subsequent angina with non-obstructive 

coronary arteries.56-58 This is noteworthy, considering that female hormone signalling has been 

associated with CMD,59 while oestrogen replacement therapy has not been found effective to 

halt classical obstructive atherosclerotic plaque progression in post-menopausal women with 

ischaemic heart disease.60,61 The findings of our present study further substantiate the concept 
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that in the development of CAD, both sexes exhibit numerous common risk factors in addition 

to sex-specific mechanisms. Specifically, our results highlight the involvement of various 

conventional protein risk factors such as the well-described targets LDLR and PCSK9, which 

are shared between women and men. 

 After integration of large-scale plasma proteomics with MR analyses, we found evidence 

of high druggability for 5/20 of our strongest CAD-associated hits (TNFRSF4, TNFSF13, 

CSF1, FURIN, CD74). Indeed, tumour necrosis factor levels have previously been associated 

with higher risk of coronary artery disease and specific drugs targeting TNFRSF4 and 

TNFSF13 have been employed in clinical trials in patients with respectively T- and B-cell 

related auto-immune diseases such as IGA nephropathy (Sibeprenlimab) and atopic dermatitis 

(telazorlimab).62-66 CSF1 is a known driver of atherosclerosis through monocyte/macrophage 

activation, proliferation, and differentiation.67 High levels of CSF1 expression in the tumour 

micro-environment have been related to poor prognosis in solid tumours, in which context 

numerous monoclonal antibody therapies have reached clinical trials with mixed results.68 

Recently, FURIN, a member of the proprotein convertases, was found by Mazidi et al. as their 

most strongly associated protein with ischaemic heart disease17 and was previously linked to 

atherogenesis via upregulation of TNFSF13.69-71 Another hit, CD74, is expressed on 

monocytes, macrophages, and B-cells and is involved in antigen presentation. Direct inhibition 

of CD74 through the monoclonal antibody milatuzumab has been described in haematologic 

malignancies.72,73 Another interesting approach is to induce CD74 degradation through 

inhibition of the cysteine protease Cathepsin S. Elevated serum cathepsin S levels are 

associated with plaque instability and vulnerability and a small molecule inhibitor has been 

described for patients with Sjögren’s syndrome (petesicatib) (clinicaltrials.gov: nct02701985). 

 Taking sex-specificity into consideration, we identified 59 sex-specific associations with 

evidence for possible causality, of which C1S (complement factor) and FOXO1 (transcription 
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factor) were the top druggable hits in men and women respectively. From the literature, it is 

known that general C1 inhibition diminishes early intimal hyperplasia. Conversely, 

deficiencies in C1 inhibitory protein function are associated with hereditary angioedema and 

subsequent microvascular endothelial dysfunction within the atherosclerotic plaque, drawing 

parallels with the tube morphogenesis pathway in our male-specific analyses.74-76 Although we 

have found many more proteins to be specifically associated with incident CAD in women 

compared to men, despite the lower number of cases in women, the strongest protein-CAD 

associations in women did not seem to yield strong evidence as druggable targets using 

currently available databases. The first druggable target in women was FOXO1, a transcription 

factor which has also been described to be involved in the pathogenesis of polycystic ovary 

syndrome and glucose metabolism.77,78 Altogether, our findings point toward sex-different 

pathways and factors in CAD development, and suggest sex-specific drug candidates among 

our identified hits. 

 

Strengths & limitations 

 The primary strength of our study is the large sample size and in particular the proportion 

of included women, enabling the analysis of a comprehensive pool of plasma proteins in 

association with CAD while correcting for multiple testing and confounders. The integration 

of genomics and proteomics provided evidence for causality. Limitations include the focus on 

individuals of European ancestry, and therefore these results apply to only that part of the 

population. We did not have access to sex-stratified summary-level datasets of GWAS on 

CAD. For this reason, we were not able to perform MR analyses in men and women separately. 

Alternatively, we performed MR analyses in a large sample of men and women combined. 

Furthermore, in the multivariable-regression analyses, we excluded participants who 

developed CAD within the first year of follow-up to limit the potential influence of reverse 
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causation. Nevertheless, this approach does not limit the potential presence of sex-specific 

residual confounding, although adjustment nor restriction of women for postmenopausal status 

did materially differ the results, suggesting such confounding might be limited. 

 

Conclusion 

 In summary, by linking the sex-specific plasma-proteome to CAD incidence and 

providing evidence for causal relations, we were able to identify strongly-associated female- 

and male-specific proteins along with their biological pathways. These findings offer potential 

directions for developing targeted preventive and interventional strategies against CAD. 
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