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Abstract 

Introduction: Individuals with Mild Cognitive Impairment (MCI), a transitional stage between 

cognitively healthy aging and dementia, are characterized by subtle neurocognitive changes. 

Clinically, they can be grouped into two main variants, namely into patients with amnestic MCI 

(aMCI) and non-amnestic MCI (naMCI). The distinction of the two variants is known to be 

clinically significant as they exhibit different progression rates to dementia. However, it has been 

particularly challenging to classify the two variants robustly. Recent research indicates that 

linguistic changes may manifest as one of the early indicators of pathology. Therefore, we 

focused on MCI’s discourse-level writing samples in this study. We hypothesized that a written 

picture description task can provide information that can be used as an ecological, cost-effective 

classification system between the two variants.  

Methods: We included one hundred sixty-nine individuals diagnosed with either aMCI or 

naMCI who received neurophysiological evaluations in addition to a short-written picture 

description task. Natural Language Processing (NLP) and BERT pre-trained Language Models 

were utilized to analyze the writing samples.  

Results: We showed that the written picture description task provided 90% overall classification 

accuracy for the best classification models, which performs better than cognitive measures. 

Discussion: Written discourses analyzed the AI models can automatically assess individuals with 

aMCI and naMCI and facilitate diagnosis, prognosis, therapy planning, and evaluation. 
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1 Background 

With the growth in the number of older adults, age-related neurodegenerative diseases 

such as Alzheimer’s disease (AD) have dramatically increased. These neurodegenerative 

diseases cause a great deal of financial and emotional burdens not only for patients and their 

caregivers but also for society. The global cost of dementia care was estimated to exceed $500 

billion in the United States [1]. It is expected to rise to $2 trillion by 2030 [2]. Research has 

suggested that the preclinical phase of dementia may start earlier than the diagnosis. Detecting 

the preclinical stage of dementia and providing an intervention will delay the onset of AD. This 

will significantly minimize the socio-economic burden, which is expected to reduce societal 

costs by 40% [3].  

Mild cognitive impairment (MCI) is an intermediate stage between cognitively healthy 

aging and dementia [4]. It represents a critical preclinical stage of the AD [5-7]. MCI includes 

four different clinical subtypes. Two main subtypes are amnestic MCI (aMCI) and non-amnestic 

MCI (naMCI); this subtyping is determined based on the impairment in memory. Individuals 

with aMCI are characterized by memory loss, while individuals with naMCI demonstrate 

impairment in domains such as executive functions, attention, and language [8, 9]. Also, 

depending on the number of cognitive domains impaired, individuals can be categorized into 

single-domain and multi-domain MCI. Although a higher risk of developing dementia 

characterizes individuals with MCI, not all individuals with MCI will progress to dementia; some 

may remain stable, and others even regress to a condition of healthy aging [10-12]. Therefore, it 

is essential to discriminate against those who are more likely to progress to dementia for early 

intervention since most treatment strategies are more effective in the presymptomatic stage of 

dementia [13]. 

Depending on the two main subtypes of MCI, differences in the progression from MCI to 

dementia have been reported. In general, it has been suggested that aMCI represents the earliest 

symptomatic manifestation of AD pathophysiology, while naMCI is likely to progress to non-

Alzheimer’s dementia [14-16]. A recent 20-year retrospective study supports this and adds more 

information with a large dataset (N = 1188). The authors demonstrated that aMCI represents a 

greater risk for progressing to dementia (not only for AD) compared to naMCI. The odd ratio of 

the progression to dementia between aMCI and naMCI was statistically different [17]. This 

highlights the clinical need of a robust, reliable system for classifying aMCI and naMCI [18].  
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There have been several approaches for MCI diagnosis. Behaviorally, a brief cognitive 

screening test can assist in identifying whether an individual has an apparent cognitive 

impairment [9]. Neuropsychological tests can be administered depending on the need for further 

assessments to determine the presence or degree of impairment in cognitive functions. The tests 

for MCI biomarkers require magnetic resonance imaging (MRI) or lumbar puncture for 

cerebrospinal fluid (CSF). Increased amyloid burden was found to be specific to aMCI, while 

naMCI does not exhibit a specific abnormality in neuroimaging (see review for Yeung, Chau 

[19]). Blood biomarkers, considered a comparatively more straightforward means of testing, 

have also been investigated [20]. Unfortunately, such tests for MCI biomarkers are not routine 

care in clinical settings [21-24]. Moreover, the cost and availability of the testing technique (e.g., 

MRI) may limit its impact on individuals’ care [25].  

Linguistic changes are considered to manifest as one of the earlier indicators of pathology 

in cognitive impairment. It has been reported that they emerge years before deficits in other 

cognitive systems become apparent [26]. In particular, writing is a cognitively and linguistically 

complicated activity. Writing consists of distinct phases: planning, generating, and revising [27]. 

Writers initially set a goal for organizing their knowledge and executing the plan in response to 

the topic of the writing activity. Then, writers revisit and revise their output. All phases should 

be well orchestrated to accomplish successful writing within cognitive systems such as executive 

functions, attention, and working memory. A recent review article highlighted the diagnostic 

value of writing tests, especially at the discourse level (Kim et al., 2023). Discourse is any 

language beyond the sentence level [28, 29]. Kim and colleagues (2022) investigated the 

prognostic value of discourse-level writing tests. They conducted a chart review of individuals 

diagnosed with MCI and visited a neurology outpatient clinic more than once (N = 71). They 

classified the study participants into the stable MCI group and the converter group. The authors 

examined whether a written discourse task using the Cookie Theft picture [30] predicts clinical 

course in the MCI group. They found that the stable MCI group produced more core words than 

the converter group at their baseline assessment. This underscores the potential clinical utility of 

discourse-level writing tasks for early detection of those who are likely to progress to dementia 

from MCI.  

In recent years, computational methods such as Natural Language Processing (NLP) have 

been used to analyze written language samples in individuals with neurodegenerative disease [31-
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36]. Computational methods offer two advantages. First, they allow the elicitation and combination 

of measures from different linguistic domains. A decisive property of ML models is their ability 

to find patterns between features associated with a specific group of individuals, i.e., patients with 

aMCI and naMCI.  

Earlier studies successfully distinguished healthy adults from individuals with MCI from 

healthy adults [32], MCI from dementia [37-40], and the subtypes of primary progressive 

aphasia [41, 42]. These findings highlight the role of ML as an important method that can 

contribute to the existing approaches [35] and to inform clinical assessment and therapy.  

This is the first attempt to classify two subtypes of MCI (aMCI vs naMCI) using discourse-

level writing samples in NLP. Since writing involves several cognitive functions (especially 

language, vision, and motor control), we hypothesized that a written picture description task 

could distinguish individuals with aMCI and naMCI. This work could potentially provide a quick 

and easy tool to facilitate diagnosis from written language tasks.  

2 Methods 

2.1 Participants 

Our participants were comprised of 169 individuals diagnosed with either aMCI or naMCI. All 

individuals were recruited through the Johns Hopkins Hospital and were diagnosed by an 

experienced neurologist. The diagnosis was based on history, neuroimaging, neurological 

examination, and neuropsychological testing, and all individuals met the current criteria for MCI. 

The exclusion criteria for the study included individuals 1) who were younger than 18 years old, 

2) who had a lack of English competence, 3) who had significant psychiatric illness and alcohol 

and drug use, 4) who had significant neurological problems affecting the brain (e.g., stroke, 

multiple sclerosis, and Parkinson’s disease), and 5) who had uncorrected visual or hearing loss. 

All individuals with MCI fulfilled the recent criteria of the 2018 National Institute on Aging-

Alzheimer's Association (NIA-AA) research framework [43].  

Demographic information for individuals with MCI can be found in Table 1.  

 

Table 1 Participants’ Age and Education across variants (Amnestic and Non-Amnestic) and 

gender. 

 Variant Gender N Mean SD Median Mode 
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Age Amnestic F 71 67.4 12.99 70 53 
  

M 53 69.7 15.28 74 69 
 

Non Amnestic F 21 54.2 13.48 52 48 
  

M 25 65.6 12.04 66 65 

Education Amnestic F 70 16.1 3.19 16 16 
  

M 52 17.5 3.42 18 16 
 

Non Amnestic F 21 15.5 3.53 16 16 

    M 24 16 3.06 16.5 12 

 

Specifically, participants underwent a battery of standardized neuropsychological tests to 

assess their cognitive and linguistic abilities. These tests comprehensively evaluated various 

aspects of language and cognitive functioning, offering a detailed assessment of their cognitive 

strengths and weaknesses. The neurocognitive tests include the Mini-Mental State Examination 

(MMSE, Folstein, Folstein [44]), the Orientation and Information subset from Wechsler Memory 

Scale-Third Edition (WMS-III; Wechsler [45]), Digit span subtests of the WMS-III [45], Rey 

Auditory Verbal Learning Test (RAVLT; Rey, 1941), Rey Complex Figure (RCF; Rey [46]), 

Boston Naming Test [30], Verbal Fluency Task (FAS), the Free narrative writing section from 

BDAE [30], Trail Making tests (TMT; Reitan and Wolfson [47]), and Stroop test [48]. The tests 

were carefully selected to provide a sensitive measure of abnormalities compared to individuals 

with normal cognitive functioning. Table 2 includes neurocognitive test results for all individuals 

with MCI. The study protocol underwent rigorous review and received approval from the Johns 

Hopkins Institutional Review Board (IRB00266221). The data were collected between 

November 1st, 2020, and May 30th, 2022. They were subsequently accessed on August 1st 2023 

for the purposes of this study. The authors had no information to identify the participants. 

 

Table 2. Performance in Neurocognitive Testing in Individuals with MCI.  

 
Variant Mean Median Mode SD 

MMSE Amnestic 27.5081 28 28 1.746 

 
Non Amnestic 28.0476 29 29 1.821 

WMS Amnestic 13.25 14 14 0.942 

 
Non Amnestic 13.6804 14 14 0.592 
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Digit Forward Amnestic 6.7016 7 7 1.169 

 
Non Amnestic 6.7391 7 6 1.437 

Digit Backward Amnestic 4.2984 4 4 1.044 

 
Non Amnestic 4.4565 4 4 1.187 

RAVLT (total) Amnestic 29.2177 29 30 9.373 

 
Non Amnestic 37.8587 37 37 11.187 

RAVLT (Delayed) Amnestic 3.5081 3 3 2.95 

 
Non Amnestic 6.8333 7 7 3.151 

RCF (Immediate) Amnestic 7.8487 7 0 5.934 

 
Non Amnestic 14.5435 12 6 8.989 

RCF (delayed) Amnestic 6.2391 5 0 5.25 

 
Non Amnestic 13.1739 12.25 0 8.568 

BNT Amnestic 49.2033 52 56 10.265 

 
Non Amnestic 52.2826 54 56 7.12 

Verbal Fluency (FAS) Amnestic 35.5772 35 32 13.073 

 
Non Amnestic 34.3261 32.5 23 12.994 

BDAE writing Amnestic 4.1441 4 4 3.733 

 
Non Amnestic 3.7778 4 4 0.56 

TMT A Amnestic 55.2218 48.5 30 31.634 

 
Non Amnestic 45.5993 36.5 25 24.149 

TMT A error Amnestic 0.042 0 0 0.302 

 
Non Amnestic 0.087 0 0 0.354 

TMT B Amnestic 132.8319 113 110 99.71 

 
Non Amnestic 121.9254 96 57 75.288 

TMT B error Amnestic 0.5439 0 0 1.863 

 
Non Amnestic 0.3696 0 0 0.878 

Color Amnestic 111.7168 112 112 2.647 

 
Non Amnestic 110.55 112 112 8.852 

Color (Word) Amnestic 67.2 66 112 29.593 

 
Non Amnestic 68.8158 64.5 112 25.877 
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MMSE = Mini-Mental State Examination; WMS = Wechsler Memory Scale; RAVLT (total) = 

total score of the Rey Auditory Verbal Learning Test ; RAVLT (delayed) = score for the delayed 

recall of the Rey Auditory Verbal Learning Test; (delayed recall); RCF (immediate) = score for 

the immediate recall of the Rey Complex Figure; RCF (delayed) = score for the delayed recall of 

the Rey Complex Figure; BNT =  Boston Naming Test; BDAE writing = free narrative writing 

from the Boston Diagnostic Aphasia Examination; TMT A = Trail Making Test Part A; TMT A 

error = Errors made in Trail Making Test Part A; TMT B = Trail Making Test Part B; TMT B 

error = Errors made in Trail Making Test Part B; Color = Color Stroop test; Color-Word = 

Stroop Color and Word Test; SD: Single-domain MCI; MD: Multiple-domain MCI.  

 

2.2 Written Picture Description Task 

Writing samples were collected using the Cookie Theft picture from the Boston Diagnostic 

Aphasia Examination-3 (BDAE-3; Goodglass, Kaplan [30]. Participants were seated with the 

picture stimulus and a piece of paper.  The clinicians used the prompt to encourage the 

participants to provide a written description, “Write as much as you can about what you see 

going on in this picture.” Once the participants completed the task, their writing samples were 

transcribed into a text document by experienced researchers.  

 

2.3 Machine Learning Process 

The analysis involved the preprocessing of the data, the extraction of significant features from 

the written picture description task, and the study of those measures.  
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Figure 1. The machine learning classification process and classification task. 

Analysis of narrative speech 

We analyzed the written transcripts from the text documents using two natural language 

processing tools, including the tokenization of the text, the tagging of morphological categories, 

and the parsing of the syntactic constituents. Specifically, each word in the text was labelled 

using Open Brain AI’s POS tagger and syntactic dependency parser, which uses a variety of 

linguistic information to determine the dependency structure of a sentence [49]. Open Brain AI 

provided automatic measures that included counts and the ratio of each word / total count of 

words that appears in the text for each participant. 

Specifically, the automatically elicited morphosyntactic measures shown in Table 3 

include Part of Speech (POS) categories (i.e., adjective, adposition, adverb, auxiliary verb, 

coordinating conjunction, determiner, interjection, noun, numeral, particle, pronoun, proper 

noun, subordinating conjunction, symbol, verb), the number of words and characters and their 

character/word ratio, and syntactic dependency measures indicating the grammatical 

relationships between words in a sentence and their count to total word ratio.  

 

Table 3. Means and Standard Deviations of features in individuals with Non-Amnestic and 

Amnestic MCI.  
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 Non-Amnestic Amnestic 

 
Mean SD Mean SD 

Adjectival Clause  0.021 0.054 0.014 0.031 

Adjectival Complement  0.007 0.016 0.009 0.017 

Adjective  0.022 0.032 0.028 0.033 

Adposition  0.097 0.054 0.113 0.058 

Adverb  0.013 0.022 0.015 0.025 

Adverbial Clause  0.022 0.030 0.021 0.031 

Adverbial Modifier  0.012 0.021 0.014 0.024 

Agent  0.000 0.004 0.000 0.002 

Adjectival Modifier  0.021 0.031 0.017 0.033 

Apposition  0.004 0.016 0.003 0.013 

Attribute  0.003 0.007 0.002 0.007 

Auxiliary  0.080 0.060 0.075 0.065 

Auxiliary (Passive)  0.001 0.005 0.002 0.007 

Case Marking  0.002 0.008 0.002 0.007 

Coordinating Conjunction  0.019 0.026 0.018 0.026 

Clausal Complement  0.020 0.033 0.021 0.035 

Coordinating Conjunction  0.019 0.026 0.018 0.026 

Character-Word Ratio  5.244 0.410 5.256 0.517 

Compound  0.032 0.044 0.034 0.057 

Conjunction  0.020 0.028 0.020 0.028 

Dative Case  0.002 0.008 0.004 0.013 

Dependent  0.046 0.095 0.032 0.056 

Determiner  0.125 0.086 0.110 0.088 

Direct Object  0.086 0.045 0.084 0.067 

Expletive  0.003 0.007 0.001 0.006 

Interjection  0.001 0.008 0.001 0.006 

Marker  0.018 0.028 0.007 0.016 

Meta Data  0.000 0.004 0.010 0.056 

Negation Modifier  0.005 0.012 0.004 0.012 
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Noun  0.362 0.109 0.376 0.119 

Nominal Subject  0.137 0.055 0.142 0.057 

Nominal Subject (Passive)  0.001 0.005 0.002 0.007 

Numeral  0.004 0.012 0.004 0.013 

Numeric Modifier  0.003 0.011 0.004 0.012 

Object Predicate  0 0 0.001 0.009 

Parataxis  0 0 0.000 0.002 

Particle  0.026 0.026 0.025 0.029 

Prepositional Complement  0.000 0.002 0.002 0.008 

Prepositional Object  0.078 0.052 0.096 0.052 

Possessive Modifier  0.011 0.021 0.011 0.021 

Preposition  0.083 0.057 0.099 0.058 

Pronoun  0.037 0.041 0.027 0.033 

Proper Noun  0.003 0.014 0.003 0.012 

Particle  0.012 0.017 0.011 0.018 

Punctuation  0.111 0.073 0.104 0.081 

Relative Clause  0.004 0.010 0.004 0.010 

Root  0.105 0.056 0.099 0.061 

Subordinating Conjunction  0.018 0.028 0.008 0.017 

Symbol  0.000 0.003 0.001 0.007 

Verb  0.196 0.071 0.192 0.057 

Other  0.002 0.013 0.010 0.051 

Open Clausal Complement  0.015 0.021 0.018 0.024 

Words [count]1 31.943 15.318 29.650 14.205 

Characters [counts]1  170.927 78.647 158.829 70.947 

Note: All measures indicate the count / total word; features marked with the index (1) are counts. 

 

Semantic measures from BERT 

Semantic measures are crucial in individuals with aMCI and can differentiate individuals aMCI 

and naMCI. To depict semantic relationships, we included word and sentence embeddings from 

BERT-large-uncased, a BERT (Bidirectional Encoder Representations from Transformers) 
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pretrained language model [50]. Specifically, the BERT-large-uncased is a deep neural network 

trained on a large dataset of text corpora and can be used for various natural language processing 

(NLP) tasks, such as question answering, text summarization, and sentiment analysis. The 

BERT-large-uncased has been shown to achieve state-of-the-art performance on various NLP 

tasks. It consists of 12 encoder layers, each containing a self-attention mechanism and a feed-

forward network. The self-attention mechanism allows the model to learn long-range 

dependencies between words in a sentence, while the feed-forward network adds non-linearity.  

 

2.3.1 Addressing Imbalance and Cross-validation 

We employed Random Over-Sampling (ROS) to balance the class distribution and address the 

limitations of the relatively small dataset [51]. This technique alleviates the models’ tendency to 

favor the majority class, a common challenge in imbalanced datasets. Additionally, we 

implemented group 5-fold cross-validation. This approach minimized data leakage and provided 

a more reliable model performance evaluation. Furthermore, we standardized the non-BERT 

features to ensure uniformity in scale.  

 

2.3.2 Model Evaluation and Selection 

We selected ML models that do not require massive amounts of training data. To choose the best 

model for our data, we have trained ML models that roughly belong to four main categories of 

models, namely ensemble learning models (Random Forest (RF), Gradient Boosting (GB), 

XGBoost (XGB), and LightGBM (LGBM)). RF is a ML method combining several decision 

trees to enhance prediction accuracy. This approach can manage high-dimensional data and is 

resilient to overfitting. GB sequentially combines weak ML learners, each correcting the 

predecessor's errors. GB is used in classification and regression tasks for large, complex datasets. 

XGB and LGBM implement gradient boosting with speed and accuracy. They are employed in 

scenarios requiring rapid processing of large datasets. Hist Gradient Boosting (HGB), a gradient 

boosting variant, uses histograms for feature representation, enhancing efficiency with large-

scale, high-dimensional data structures. Each ML algorithm has unique strengths, making these 

models suitable for specific data types and prediction tasks. Only comparing and selecting ML 

models provides versatility, adaptability, and improved performance in the ML process, enabling 

the model to tackle the various underlying characteristics of the data.  
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2.3.3 Hyperparameter Tuning and Model Comparison 

A grid search with cross-validation was employed to evaluate and compare the 

performance of the different machine-learning models. The hyperparameter tuning involved 

finding the optimal hyperparameters for each model using grid search and calculating the 

evaluation metrics. 

Grid search is a method for hyperparameter tuning evaluates different combinations of 

predefined hyperparameter values to determine the combination that produces the best 

performance for a given model. In this case, a grid search was performed for each of the machine 

learning models included in the study. 

We evaluated each model using five-fold cross-validation, which involves evaluating the 

performance of a model by splitting the data into multiple folds. Each fold is used as a validation 

set, while the remaining folds are used as the training set. The model is trained on the training set 

and evaluated on the validation set. This process is repeated for each fold, and the average 

performance across all folds is used as the final performance estimate. 

Various evaluation metrics were used to assess the performance of the different machine 

learning models. These metrics included accuracy, F1 score, precision, recall, ROC AUC, and 

Cohen's kappa score: i. Accuracy is the proportion of correct predictions; ii. F1 score measures a 

model's ability to correctly classify positive and negative cases; iii. Precision is the proportion of 

positive predictions that are positive; iv. Recall is the proportion of positive cases correctly 

classified as positive, and v. ROC AUC (Receiver Operating Characteristic Area Under the 

Curve) measures a model's ability to distinguish between positive and negative cases. 

3 Results 

Written picture description tasks were processed using combined NLP analysis and Bidirectional 

Encoder Representations from Transformers (BERT) models to elicit measures representing the 

embeddings. We have implemented two machine learning-supervised classification tasks. 

A classification model was designed to distinguish individuals with aMCI and naMCI. 

The model included only information from the Cookie-Theft picture description task. The model 

distinguished individuals with aMCI and naMCI. These results suggest that the written discourse 
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from a picture description task provides sufficient information to identify the individuals with the 

two variants of MCI.  

In the ML models, the ROC curves were nearly 98% for classifying individuals with 

aMCI and naMCI (Figure 2). This suggests that written discourse productions, as manifested in a 

picture description task, can distinguish the two groups of individuals from language measures. 

Regarding accuracy, the ensemble models with boosting had the best performance (Table 3). 

Gradient Boosting, Hist Gradient Boosting, XGBoost, and LightGBM. The consistency in the 

output of those models further demonstrates their effectiveness for real-world applications. 

 
Figure 2. MLs performance on the classification task: individuals with aMCI vs. individuals with 

naMCI from language measures. 

 

Table. 4. Model performance in the classification task: individuals with aMCI vs. individuals with 

naMCI from language measures.  

 
RF   GB   HGB   XGB   LGBM  

 Accuracy  0.90  0.90  0.89  0.89  0.89  

 F1  0.71  0.72  0.70  0.71  0.70  

 Precision  0.74  0.75  0.75  0.75  0.75  

 Recall  0.68  0.70  0.67  0.68  0.66  

ROC/AUC  0.98  0.97  0.98  0.97  0.98  

Note. RF: Random Forests, GB: Gradient Boosting, HGB: Hist Gradient Boosting; XGB: 

XGBoost, LGBM: LightGBM. 
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As indicated by the outcomes, the utilization of machine learning models shows the potential 

of MLs in diagnosing and differentiating the two MCI subtypes. The reported standardized 

metrics – Accuracy, F1 Score, Precision, Recall, and ROC/AUC – indicate the effectiveness of 

these models, with one (1) being the best value. 

• Accuracy (0.90 for most models) reflects the ML model's overall correctness in 

classifying the MCI type. 

• F1 Score balances precision and recall, with values around 0.70-0.72, indicating a good 

balance between false positives and false negatives. 

• Precision (0.74-0.75) measures the proportion of correctly identified positive cases 

among all positive calls made by the model. 

• Recall (ranging from 0.66 to 0.70) indicates the model's ability to identify all actual 

positive cases. 

• ROC/AUC (between 0.97 and 0.98) reflects the model's ability to distinguish between the 

two classes across various thresholds, with values close to 1 indicating excellent 

performance. 

We have evaluated feature importance. BERT features dominate the rankings of the 15 

contributing factors for the RF classification. The following features contribute to RF 

classification, from more important to less important: prepositional object, adposition, 

dependent, particle, auxiliary, root (verb), adjective, and subordinating conjunction.  

These results suggest a reliable performance in distinguishing patients with naMCI vs. aMCI 

highlight the potential of advanced machine-learning techniques in medical diagnostics, 

especially for complex conditions like MCI. The high performance of these models suggests that 

they could be valuable tools in clinical practice for early and accurate identification of MCI 

types, thereby enabling more tailored and effective treatment strategies. 

4 Discussion 

MCI is an early stage of cognitive decline due to pathology reasons [4]. Individuals with 

aMCI are characterized primarily by memory deficits, while individuals with naMCI are 

impaired in other cognitive functions, such as language, attention, and executive functions. 

Identifying the type of MCI is important for predicting the progression of the condition, as 

individuals with aMCI are more prone to progress into Alzheimer's disease [52, 53] or all types 

of dementia (Glynn et al., 2021). This study aimed to determine the potential diagnostic utility of 
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computational methods in classifying two subtypes of MCI. We found that a written picture 

description task can distinguish individuals with aMCI and naMCI at approximately 90% 

accuracy. This finding confirms that written discourse analysis, which is infrequently done in 

clinical settings, provides clinically essential information (Kim et al., 2023) and can be a 

powerful approach for better characterizing the subtypes of MCI. 

Importantly, our study shows that a single behavioral task (i.e., a picture description task) 

can provide substantial information about domains that require multiple separate tasks. As 

mentioned earlier, either multiple pen-and-pencil tasks or neuroimaging techniques need to be 

conducted clinically to classify MCI. Previous studies using machine learning algorithms and 

neuroimaging data demonstrated an accurate classification of MCI subtypes [54, 55]. However, 

data can be obtained only with advanced techniques. They are not often feasible for individual 

patients [56]. Behaviorally, multiple tasks that evaluate different cognitive components, such as 

memory and executive functions, need to be administered, which is considered a time-intensive 

process. From a clinical perspective, computational assessment of language with machine 

learning and natural language processing opens the door for exciting opportunities to expand the 

analysis to both longer and more complex tests productions.  

 Besides the cost-effective assessment, it is also significant to note that the current study 

used written discourse samples, which received little attention in research (Kim et al., 2023) and 

are not often collected and evaluated in clinical settings [57].  He, Chapin [58] used a spoken 

discourse task to investigate the classification among healthy adults, subtypes of MCI, and 

dementia. In the study, the researchers used both linguistic and acoustic features, but the 

classification accuracy (aMCI vs naMCI) was 88%. Our findings shed light on the clinical value 

of written discourse as the linguistic features in writing lead to higher classification accuracy. 

This also indicates that linguistic features in writing can be potential markers of memory deficits 

and may provide enough information for the classification.  

Written discourse offers a plethora of information about individuals' linguistic 

functioning, including textual macrostructure and microstructure. However, it is not clear which 

components of written discourse in this population are more influenced by cognitive impairment 

in MCI. This is evidenced by 102 different measures used to quantify writing behaviors in 

research with little repetition of the same measure (Kim et al., 2023). In the current study, using 

written discourse samples, we calculated the POS of each word and syntactic relationships [59] 
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that appears in the written picture description task [60]. Together, this can be an optimal 

approach for analyzing such language samples in that it adds to the efficiency of written picture 

description analysis. This also provides a comprehensive and detailed grammar analysis in a 

standardized and less subjective manner. 

Moreover, we found that the BERT semantic features dominated the hierarchy of 

analytical constructs that we have used. This finding is consistent with the consensus that 

impairments in semantic domains of language are a key manifestation of disease progress in 

neurodegenerative disorders [61-63]. These features can be seen in the literature to be associated 

with one or more elements of the writing skills of individuals with MCI, as they interface 

linguistic and semantic memory domains.  

Specifically, context-sensitive embeddings from BERT [50] played a critical role in the 

high accuracy of the classification. These result from averaging the token-level embeddings from 

the last layer of a BERT model for each input text, which creates a single, comprehensive vector 

representation for the entire text, capturing its overall contextual meaning. Traditional word 

embedding techniques, such as Word2Vec [64] and GloVe [65], generate a single word 

embedding for each word in the vocabulary. The embeddings are decontextualized, which fails 

to capture the meanings of polysemous words. For instance, the word bank can mean a financial 

institution that accepts deposits and makes loans or the sloping edge of a river or other body of 

water. On the other hand, BERT uses a technique known as contextual embedding. This means 

that the representation of a word is based on sentence context. So, the word bank would have 

different representations in the sentences “I went to the bank to retrieve money” and “the little 

house next to the river bank,” which offers a better representation of ambiguous meanings, 

improving the accuracy of text classification. Again, these contextual embeddings utilized in this 

study demonstrate a better understanding of the syntactic and semantic relationships between 

words in a sentence. This is crucial for quantifying the overall thematic content of the written 

picture descriptions. Additionally, since individuals with amnestic and non-amnestic MCI differ 

in their semantic memory [66, 67], the contextual sensitivity of BERT’s embeddings helps the 

model to adapt to differences in vocabulary and jargon. 

Although it is well-known that picture description tasks are valuable for eliciting 

connected language samples in individuals with MCI [68], the Cookie-Theft picture offers a less 

ecological way of personal expression through writing. Such productions are constrained 
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substantially in their context and effectively identifying differences in pragmatic language usage 

and speech and voice parameters. Also, the task does not allow the assessment of non-epistemic 

domains, such as deontic modality expressions of wish and hope and non-present tense verb-

tense semantics, as it does not provide opportunities to discuss past or future events. 

Additionally, picture description tasks do not offer opportunities for expressing emotional and 

other affective content, which might be necessary for assessing the interface of language, 

emotion, and pragmatics. An open-ended essay writing could have offered the potential to assess 

more stylistic, linguistic, and communicative speech characteristics. Nevertheless, written picture 

descriptions demonstrate the potential to detect speech and language characteristics in 

neurodegenerative diseases such as MCI and dementia, as suggested by a recent review (Kim et 

al., 2023). Considering the brief time to elicit writing samples, NLP combined with discourse-

level writing samples will enable more efficient methods for analyzing these linguistic and 

communicative features, further enhancing the diagnostic accuracy and the clinical utility of 

written discourse analysis. 

The results of the current study suggest that written discourse samples can offer a quick and 

efficient means of gaining valuable insights into linguistic abilities while minimizing the burden 

placed on individuals with MCI. Future research is necessary to verify this finding with a 

balanced sample size between aMCI and naMCI. For a better diagnostic tool, future studies, 

including MCI-dementia conversion, are needed to test the predictive value of the automatic 

classification of MCI.   
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