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Abstract 

Objective: To explore the role of selection bias adjustment by weighting electronic health 

record (EHR)-linked biobank data for commonly performed analyses. 

Materials and methods: We mapped diagnosis (ICD code) data to standardized 

phecodes from three EHR-linked biobanks with varying recruitment strategies: All of Us 

(AOU; n=244,071), Michigan Genomics Initiative (MGI; n=81,243), and UK Biobank 

(UKB; n=401,167). Using 2019 National Health Interview Survey data, we constructed 

selection weights for AOU and MGI to be more representative of the US adult population. 

We used weights previously developed for UKB to represent the UKB-eligible population. 

We conducted four common descriptive and analytic tasks comparing unweighted and 

weighted results. 

Results: For AOU and MGI, estimated phecode prevalences decreased after weighting 

(weighted-unweighted median phecode prevalence ratio [MPR]: 0.82 and 0.61), while 

UKB’s estimates increased (MPR: 1.06). Weighting minimally impacted latent phenome 

dimensionality estimation. Comparing weighted versus unweighted PheWAS for 

colorectal cancer, the strongest associations remained unaltered and there was large 

overlap in significant hits. Weighting affected the estimated log-odds ratio for sex and 

colorectal cancer to align more closely with national registry-based estimates. 

Discussion: Weighting had limited impact on dimensionality estimation and large-scale 

hypothesis testing but impacted prevalence and association estimation more. Results 

from untargeted association analyses should be followed by weighted analysis when 

effect size estimation is of interest for specific signals. 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 13, 2024. ; https://doi.org/10.1101/2024.02.12.24302710doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.12.24302710
http://creativecommons.org/licenses/by/4.0/


 3 

Conclusion: EHR-linked biobanks should report recruitment and selection mechanisms 

and provide selection weights with defined target populations. Researchers should 

consider their intended estimands, specify source and target populations, and weight 

EHR-linked biobank analyses accordingly. 
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BACKGROUND AND SIGNIFICANCE 

Electronic health record (EHR)-linked biobanks are repositories with biospecimen 

and/or related data that are linked to EHR and other forms of auxiliary data (e.g., medical 

and pharmacy claims, residential-level neighborhood characteristics).1–4 Many EHR-

linked biobanks are non-probability samples (i.e., unknown selection probabilities1,5–9) 

drawn from a poorly defined source population (i.e., the population from which individuals 

are sampled). Because of their large sample size, linked multimodal data, immediacy and 

accessibility,10–12 researchers have been using EHR data en masse for scientific research 

(from 3,212 PubMed citations in 2013 to 9,824 in 2023). EHR-linked biobanks are 

increasingly prevalent and efforts like the Global Biobank Meta-analysis Initiative 

(GBMI)13 are facilitating collaboration across the globe.14–18 

As the research community gets excited about amassing data, two fundamental 

questions must be asked: (a) who is in the study? and (b) what is the target population of 

interest? If biobanks are not representative of the target population, they are vulnerable 

to selection bias,3,19–22 a naïve analysis is not expected to align with the population 

truth.23–25 Handling selection bias is particularly challenging because the magnitude and 

direction of its impact on estimates are hard to determine,26 its effect cannot be mitigated 

by increasing sample size,27,28 and it can be coupled with other data imperfections.3,29–32 

Moreover, contrary to previous arguments,33,34 recent evidence suggests that even 

genetic association analyses with inherited germline susceptibility factors can also be 

prone to selection bias.35–38  

 There are three common analytic approaches for handling selection bias: 

stratification,24,25 quantitative bias analysis,24,39 and, by far the most common, inverse 
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probability (IP)-weighting.3,4,21,25,29,35,40–43 IP-weighting involves reweighting individuals in 

a given sample by the inverse of the estimated probability of their inclusion in the sample 

(relative to the target population) constructed as a function of variables that impact 

selection.3,4,43 The estimation of IP-weights relies on (a) access to representative 

individual-level data from the target population and (b) correct specification of the 

selection probability model. Representative data can be in the form of probability samples 

drawn from the target population like the National Health Interview Survey (NHIS; USA).44  

Theory for and application of IP weights to EHR-linked biobank cohorts exists. 

Beesley and Mukherjee developed a framework for handling misclassification and 

selection bias using weighting procedures and demonstrated how individual-level data 

from external probabilistic samples can be used to estimate weights.3,4 Recently, van 

Alten and colleagues estimated lasso-based IP weights using United Kingdom Census 

Microdata to reweight the UK Biobank (UKB) sample to be more representative of the 

UKB-eligible population.40 Poststratification (PS)-weighting is an alternative that relies on 

summary-level data from the target population instead of individual level data.45  

 In this paper we consider three EHR-linked biobanks that have three different 

recruitment strategies/selection mechanisms: the National Institutes of Health All of Us 

Research Program (AOU),7,46 our University of Michigan’s Michigan Genomics Initiative 

(MGI),8,47 and the UKB.48,49 We explore the impact of the use of a set of selection weights 

on common descriptive (prevalence estimation, principal components analysis) and 

inferential (agnostic large-scale association testing, estimation of targeted association 

parameters) tasks in EHR data (Figure S1). First, we estimate selection weights in both 

US-based cohorts using NHIS data. Second, we characterize demographic and 
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diagnostic (prevalences, latent dimensionality, partial correlation) data in AOU, MGI, and 

UKB, with and without selection weights. Third, we investigate how the use of weights 

impacts discovery in large-scale untargeted hypothesis testing by performing a phenome-

wide association study (PheWAS). Fourth, we characterize the influence of weights on a 

targeted effect estimate in a fitted logistic regression model, using colorectal cancer as a 

sample phenotype. Finally, we discuss recommendations regarding the use of selection 

weights for practitioners conducting analyses in and across biobanks. 

MATERIALS AND METHODS 

Cohorts 

AOU: All of Us 

 AOU started in 2018 with a goal of enrolling over one million adults via a 

combination of open invitations and a network of healthcare provider-based recruitment 

sites. Engagement efforts have focused on oversampling people from communities 

historically underrepresented in biomedical research based on 10 factors: age, sex, 

race/ethnicity, gender identity, sexual orientation, disability status, healthcare access, 

income, educational attainment, and geographic location.7 We considered these selection 

factors (except gender identity (not collected in NHIS) and disability status (significant 

missingness (~61%) in AOU)) in the estimation of IP- and PS-based selection weights. 

As of January 1, 2024, there were over 760,000 participants, providing access to over 

539,000 biosamples and 420,000 EHRs. The AOU subset used in these analyses 

consists of 244,071 participants with sociodemographic and ICD-9-CM/ICD-10-CM data 

as part of the curated data repository version 7 (Controlled Tier C2022Q4R9).  
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MGI: Michigan Genomics Initiative 

 The Michigan Medicine-based MGI (University of Michigan) began in 2012 

recruiting adults primarily through appointments for procedures requiring anesthesia.8 It 

evolved to include sub-cohorts through metabolism, endocrinology and diabetes (MEND) 

and mental health (MHB) clinics and a wearables cohort enriched with hypertensive 

individuals (MIPACT). Age, sex, and race/ethnicity were considered selection factors. 

Additionally, cancer, diabetes and body mass index (BMI), anxiety and depression, and 

hypertension were selection mechanisms into the original cohort and these sub-cohorts, 

respectively, and were also used in selection weight estimation. As of September 2023, 

there were ~100,000 consented participants in MGI with ongoing recruitment yielding 

~10,000 enrollments per year. The MGI subset used in these analyses consists of 81,243 

participants (August 22, 2022, data pull) with demographic and ICD-9-CM/ICD-10-CM 

data. 

UKB: UK Biobank 

The UKB recruited more than 500,000 adults aged 40-69 by mailing over 9 million 

invitations to homes within ~40 kilometers of 22 assessment centers across the UK. 

Following evidence of healthy volunteer bias,9 van Alten and colleagues developed a set 

of generic weights to reweight the UKB sample to the UKB-eligible population using UK 

Census Microdata.40 Using an array of sociodemographic characteristics – age, sex, 

race/ethnicity, educational attainment, employment status, location of residence, tenure 

of dwelling, number of cars in household, self-reported health, and one-person household 

status – they estimate lasso regression-based IP-weights.40 These weights were used in 
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this paper. The UKB subset used in these analyses consists of 401,167 participants with 

sociodemographic and ICD-10 code data remaining after phenome curation (Figure S2). 

Phenome curation 

 For all cohorts, ICD-9-CM and ICD-10(-CM) codes were recoded into up to 3,612 

phecodes across 18 phecode categories (i.e., phecodes, or “PheWAS codes”50), using 

the phecode X mapping tables (downloaded from GitHub51 on 6 September 2023) and 

the PheWAS R package (version 0.99.6-1).52 Cases were defined as individuals with a 

single occurrence of a corresponding phecode. There were 3,493, 3,354, and 2,660 

phecodes defined in AOU, MGI, and UKB, respectively; we restricted our analyses to the 

2,042 phecodes that had at least 20 cases in all three cohorts. Flowcharts depicting 

sample size changes following filtering and ICD-to-phecode mapping for all cohorts are 

shown in Figure S2. Phecode-derived trait mappings are shown in Table S1.  

Weight estimation 

Inverse probability weighting 

 We constructed IP-weights, which require individual-level data in the target 

population, in the US-based cohorts. To do this, we used the 2019 NHIS, a probabilistic 

sample of US adults with self-reported health information. We estimated selection 

probabilities, 𝜓, using a simplex regression framework based on the Beta regression 

approach to weight estimation described in Kundu and colleagues21: 

𝜓 = 𝑃(𝑆 = 1|𝑿) ≈ 𝑃(𝑆!"#!$%&' = 1|𝑿) ×
𝑃(𝑆 = 1|𝑿, 𝑆&'' = 1)

1 − 𝑃(𝑆 = 1|𝑿, 𝑆&'' = 1) Eq. (1) 

where, assuming there is no overlap between the internal and external data, 𝑆 is an 

inclusion indicator in the internal cohort (i.e., AOU or MGI), 𝑆!"#!$%&' is an indicator for 

inclusion in the external cohort (i.e., NHIS), 𝑆&'' is an indicator for inclusion in either cohort, 
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and 𝑿 are selection factors as listed in the Cohorts section (Figure 1). We estimated the 

first term, 𝑃(𝑆!"#!$%&' = 1|𝑿), by fitting a simplex regression model for the known design 

probabilities using NHIS data. We estimated the numerator of the second term, 

𝑃(𝑆 = 1|𝑿, 𝑆&'' = 1), using a logistic regression model using both internal and external 

data.  

In AOU, we flexibly selected 𝑿 by splitting the data in half and fitting a lasso-

penalized logistic regression model on 𝑿 and all possible pairwise interactions using the 

glmnet R package (version 4.1-8). Using 10-fold cross-validation, we selected 𝜆 such that 

the error is within 1 standard error of the minimum to result in a parsimonious model. The 

selected terms were then used as the final set of 𝑿 to estimate IP weights in the other 

half of the data as described above.  

Poststratification 

 Using weighted NHIS data, the poststratification (PS)-weights were calculated 

using: 

𝜔 =
Pr(𝑿 = 𝒙)

Pr(𝑿 = 𝒙|𝑆 = 1) Eq. (2) 

where 𝑿 are the set of selection variables, and 𝑆 is an indicator for membership in the 

internal sample (i.e., AOU or MGI). IP- and PS-weights were winsorized at the 2.5th and 

97.5th percentile. Variable definitions are described in Table S2, and additional details of 

IP- and PS-weight estimation are described in Supplementary Methods. 

A schematic representing the cohorts and their source populations, sampling 

strategies, presumed target populations, external data for weighting, and selection factors 

is presented in Figure 1. 
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Statistical analyses 

 First, we obtained crude unweighted and IP-weighted estimates of prevalences. 

These are calculated as the number of cases over the number of individuals in the 

respective biobanks. For sex-specific phecodes, only individuals with the corresponding 

sex are considered. 

 Second, we estimated the latent dimensionality of the phenome by conducting 

unweighted and IP-weighted principal components analyses (PCA). We used the number 

of principal components explaining 95% and 99% of the cumulative variation in the data 

to represent its dimensionality. Additionally, we explored partial correlations, described in 

Supplementary Methods. 

 Third, we conducted a colorectal cancer (phecode CA_101.41) PheWAS to 

illustrate large-scale hypothesis testing. Here, the interest was in obtaining the test 

statistic and corresponding p-value. PheWAS were adjusted for age, sex, and length of 

EHR follow-up.  

Fourth, we estimated the association between biological sex and colorectal cancer, 

where the interest was in estimating the log-odds ratio. The female-colorectal cancer 

association was selected because it is known to be negative (recent log-odds ratio 

estimate approximations range from -0.414 to -0.271) in the US53 and the UK.54 For 

hypothesis testing and targeted association analyses, after performing a weighted or 

unweighted analysis within each cohort, we conducted a meta-analysis across three 

cohorts by using inverse variance weights and a fixed effect model using the meta R 

package (version 6.5-0) (Figure S3).55 Additional data preparation detail is described in 

Supplementary Methods. 
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Software 

 All data cleaning, manipulation, and analysis were conducted using R version 

4.2.2. Code is publicly available: https://github.com/maxsal/biobank_selection_weights. 

RESULTS 

Descriptive characteristics 

 Of 244,071 AOU participants, 62.2% were female, with a mean (standard deviation 

(SD)) age of 54.0 (17.3) years old (Table 1). Additionally, 55.4% were non-Hispanic 

White, and 27.1% had a qualifying cancer phecode in their EHR. Of 81,243 MGI 

participants, 53.8% were female with a mean age of 56.3 (17.0) years old. Most of MGI 

was non-Hispanic White (83.1%) and 49.2% had a cancer diagnosis on their EHR. MGI 

had substantially more EHR data points per person than AOU as measured by 

encounters per person (mean 103 in MGI vs. 32 in AOU), unique phecodes per person 

(77 vs. 72), and years of follow-up per person (9.9 vs. 9.3). Both IP- and PS-weighting 

brought AOU and MGI closer to NHIS-based estimates of the US population with respect 

to age (47.7 years old), sex (51.7% female), and race/ethnicity (63.2% non-Hispanic 

White). 

Of the 401,167 participants in UKB, 55.3% were female and their mean age was 

57.7 (8.0) years old. Additionally, they were 94.2% White, and 25.9% had a qualifying 

cancer phecode on their EHR. The application of the IP weights resulted in a cohort that 

was reflective of the UKB-eligible population with respect to age (54.9 weighted vs 54.8 

UKB-eligible), sex (50.8% female weighted vs 50.8% female UKB-eligible), and 

race/ethnicity (90.9% White weighted vs 87.0% White UKB-eligible). 
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Phecode prevalences 

Within cohort comparison   

In AOU, unweighted phecode prevalences ranged from <0.01% to 52.07% with a 

median of 0.40%, while weighted prevalences ranged from 0% to 46.86% with a median 

of 0.20%. Weighted-to-unweighted phecode prevalence ratios (PR; Figure 2A) were 

downweighted (i.e., below 1) phenome-wide with a median PR (MPR) is 0.82. In MGI, 

unweighted prevalences ranged from <0.01% to 50.69% with a median of 0.33%, while 

weighted prevalences ranged from 0% to 43.12% with a median of 0.21%. Weighting 

tended to downweight prevalences with an MPR of 0.61 (Figure 2B). In UKB, unweighted 

prevalences spanned <0.01% to 33.68%, with a median of 0.06%, while weighted 

prevalences spread from 0% to 32.12% with a median of 0.07%. Weighting tended to 

upweight prevalences with a MPR of 1.06 (Figure 2C).  

Across cohorts comparison 

 Comparing unweighted phecode prevalences, MGI over AOU (Figure 3A), we 

calculated a median and mean PR of 1.15 and 1.70, respectively. On average, 13 of 17 

phecode categories had higher prevalences in MGI compared to AOU except for 

infections, dermatological, pregnancy, and mental categories (MPRs 0.97, 0.92, 0.88, and 

0.74, respectively). Neoplasms were substantially more common in MGI (MPR 2.69). 

After IP-weighting both cohorts (Figure 3D), median and mean PRs were 0.81 and 1.23, 

respectively. Only congenital and genetic (MPRs 1.70, 1.02, respectively) phecodes 

remained more common in MGI after weighting. 

 Using unweighted data (Figure 3B and C), phecodes in AOU and MGI were more 

common than in UKB (MPR: AOU/UKB 5.12; MGI/UKB: 6.37). After IP-weighting (Figure 
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3E and F), phecodes in AOU and MGI were still magnitudes more common than in UKB 

(M PR: AOU/UKB: 3.87; MGI/UKB 3.39).  

Phenome structure: PCA to estimate the effective number of phenotypes 

 The latent dimensionality of the diagnostic phenome (n = 2,042) was estimated 

using PCA in AOU, MGI, and UKB (Table 2; shown graphically in Figure S4). Within 

cohorts, weighting nominally decreased the number of PCs explaining 95% of cumulative 

variation (CV) in AOU and MGI (from 732 to 711 in AOU; from 752 to 729 in MGI) and 

nominally increased in UKB (from 553 to 569). This trend was the same at the 99% of CV 

threshold (from 1,262 to 1,236 in AOU; from 1,293 to 1,258 in MGI; from 1,065 to 1,080 

in UKB). Dimensionality of the UKB data was noticeably smaller than the US-based 

cohorts with higher phecode prevalences (e.g., at the 95% CV threshold, 569 PCs 

weighted UKB phenome vs. 711 and 729 PCs in AOU and MGI, respectively).  

As a supplemental exploration (Section S1), we calculated unweighted and 

weighted partial correlations. Partial correlations were visualized as network graphs for 

AOU, MGI, and UKB in Figures S5, S6, and S7, respectively, and did not show noticeable 

differences after weighting. Distributions of unweighted (Figure S8) and weighted (Figure 

S9) partial correlations showed that cohorts with higher phecode prevalences (e.g., MGI) 

had slightly stronger correlations than those with lower phecode prevalences (e.g., UKB). 

Large-scale hypothesis testing: an “untargeted” PheWAS for colorectal cancer 

In AOU, there were 25 phenome-wide significant hits in the unweighted PheWAS 

across 6 categories (Figure 4A). After IP-weighting, there were only 5 hits, all neoplasms 

(Figure 4D) – the same top 5 hits as in the unweighted PheWAS. In MGI, there were 9 

phenome-wide significant hits in the unweighted PheWAS across 2 categories (Figure 
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4B). After IP-weighting, there were 26 hits across 4 categories (Figure 4E). Of the 9 

unweighted hits, only 3 were identified in the IP-weighted PheWAS. The IP-weighted 

PheWAS identified 23 hits that were not identified in the unweighted PheWAS. In UKB, 

there were 60 phenome-wide-significant hits in the unweighted PheWAS across 11 

categories (Figure 4C). After IP-weighting, there were 34 hits across 8 categories (Figure 

4F). Of the 60 unweighted hits, 30 were also identified in the weighted PheWAS. There 

were 4 new gastrointestinal hits in the weighted PheWAS. Overlaps in phenome-wide 

significant hits across weighting strategies within cohort are shown as Venn diagrams in 

Figure S10A-C. 

 Of the 96 unique hits identified in any unweighted or IP-weighted PheWAS, 21.9% 

(n = 21) appeared only in IP-weighted PheWAS. Most of these hits found only in weighted 

PheWAS were neoplasms (11) with others belonging to the gastrointestinal (4), 

neurological (3), mental (1), and musculoskeletal (2) categories. The only hit identified in 

all three IP-weighted PheWAS (CA_101: Malignant neoplasm of the digestive organs) 

was also identified in all three unweighted PheWAS. Of the 21 hits only identified in IP-

weighted PheWAS, 71.4% (15) appeared only in MGI and 14.3% (3) appeared only in 

UKB. The overlaps in phenome-wide significant hits across cohorts within weighting 

strategy are show as Venn diagrams in Figure S10D-F. 

 The unweighted meta-PheWAS identified 37 hits across 9 categories. The IP-

weighted meta-PheWAS identified 22 hits across 5 categories. Of the 44 unique hits 

identified in both meta-PheWAS, 15.9% (7) appeared only in the IP-weighted meta-

PheWAS. Notably, the IP-weighted meta-PheWAS identified a hit (NS_356.2: Aphasia 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 13, 2024. ; https://doi.org/10.1101/2024.02.12.24302710doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.12.24302710
http://creativecommons.org/licenses/by/4.0/


 15 

and dysphasia) in a novel category (neurological). The overlaps in phenome-wide 

significant hits across weighting strategies are shown as Venn diagrams in Figure S11. 

Of the 101 unique hits identified in any unweighted or PS-weighted PheWAS, 

25.7% (n = 26) appeared only in PS-weighted PheWAS (Figure S12). PheWAS summary 

statistics are available in the Supplementary Data File. 

 “Targeted” estimation of the sex-colorectal cancer log-odds ratio 

 The unweighted age-adjusted log-odds ratio for female sex and colorectal cancer 

were -0.098 (-0.164, -0.033), -0.164 (-0.247, -0.082), and -0.389 (-0.431, 0.348) for AOU, 

MGI, and UKB, respectively. Only the unweighted UKB estimate overlapped with the 

benchmark range of -0.414 to -0.271 based on 2018-2020 US SEER and UK54 estimates. 

The unweighted meta-analytic estimate was -0.284 (-0.316, -0.252). IP- and PS-weighting 

did not improve estimation in AOU, resulting in null estimates of -0.047 (-0.198, 0.104) 

and -0.084 (-0.191, 0.024), respectively. However, in MGI, weighting improved estimation 

with the IP-weighted confidence interval overlapping with (-0.217 (-0.419, -0.014)) and 

the PS-weighted point estimate falling within (-0.342 (-0.629, -0.056)) the benchmark 

range. IP-weighting did not change the UKB estimate (-0.398 (-0.461, -0.334)). The IP- 

and PS-weighted meta-analytic estimates (-0.335 (-0.392, -0.279) and -0.318 (-0.371, -

0.264), respectively) remained stable, driven by the UKB estimates. Along with 

unadjusted estimates, these results are shown in Figure 5 and in Table S3. 
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DISCUSSION 

EHR-linked biobanks – such as AOU, MGI, and UKB analyzed here – are 

transforming the fields of epidemiology and health research. They offer valuable 

resources, comprising large longitudinal cohorts, with vast amounts of readily available 

structured and unstructured data and potential for data linkages at relatively low costs.1,5–

8,56 However, the varying sampling mechanisms across these cohorts requires 

researchers to understand and address the impact of selection bias on various descriptive 

and inferential tasks (Figure S1). 

We estimated IP- and PS-based selection weights for AOU and MGI and, along 

with previously described UKB IP-weights,40 evaluated their impact on common analyses 

currently undertaken in the field (impact on prediction is subject of forthcoming 

manuscript). Estimates of latent phenome dimensionality were marginally lower in cohorts 

with relatively higher phecode prevalences (e.g., AOU and MGI). The practical implication 

in terms of reduction in the denominator of a Bonferroni-corrected p-value from the 

number of total tests to the PCA-estimated number of independent tests would not have 

a meaningful impact.57 Further, p-value-identified results from untargeted hypothesis 

testing (as explored via a colorectal cancer PheWAS) for the strongest association signals 

remained largely unaltered following the introduction of selection weights. For example, 

the top 9 hits (and 12 total) from the unweighted meta-PheWAS were also identified in 

both weighted meta-PheWAS and the top 5 hits were the same in all meta-PheWAS 

(Figure S11). We also found that while weighting typically increases p-values, some p-

values in MGI decreased, likely due to the presence of significant selection bias. Because 

of these results, we believe it is not crucial to use selection weights for exploring phenome 
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structure and large-scale hypothesis testing tasks, particularly when such weights are not 

provided. If weights are readily available, the use of selection weights in this context is 

advisable. Significant hits from agnostic analyses should be followed by a targeted 

analysis where the importance of using weights is clearer. 

For estimation tasks, like prevalence and effect size estimation, we recommend 

the use of selection weights to reduce potential selection bias. Regarding phecode 

prevalence estimation, we saw large changes in prevalence estimates after weighting 

(e.g., prevalence of MB_286.2: Major depressive disorder dropped 24 percentage points 

after IP-weighting in MGI) and these changes were phenome-wide (e.g., IP-weighted over 

unweighted MPR in AOU: 0.82). Regarding association estimation, we saw that the use 

of generic selection weights moved sex log-odds ratio estimates for colorectal to within 

the benchmark interval in MGI. However, in AOU estimates remained outside the 

benchmark interval even after weighting likely because of strong heterogeneity in the OR 

by race/ethnicity (Figure S13). When there is expected or known heterogeneity, stratified 

analyses are preferable, especially when the data are powered to do so (e.g., 

race/ethnicity-specific analyses in AOU). In such cases rational definition of the target 

population should be specific to race/ethnicity. In the case of targeted association 

estimation, we also recommend that weights be curated based on the outcome of interest, 

a conclusion supported by recent literature.3,4,21 Finally, in all settings, the use of selection 

weights is more important in samples that are less like the target population as in smaller 

and non-population-based cohorts like the MGI. 
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Achievable goal is to reduce, not remove, bias 

Weighted analyses are, historically, attempts to remove the impact of selection 

bias (e.g., on an association estimate) with respect to a defined target population.25,41 We 

developed selection weights based on explicit selection factors that were either publicly 

reported to have influenced recruitment strategies (as in AOU) or known to impact 

eligibility (as in MGI). However, these selection mechanisms are complex, and the true 

mechanisms are unknown. Thus, the use of selection weights is aimed at reducing bias 

rather than removing bias. This is particularly important in the case of Big Data where, 

while confidence intervals are narrow, effects of selection bias are not mitigated by 

increasingly large sample sizes.58 Additionally, some associations may be more or less 

prone to selection biases, but which associations are affected and how are not known. 

See Section S2 for discussion on other weighting and EHR-related methodological 

concerns. 

Strengths and limitations 

 This study has multiple strengths. First, we utilized AOU and UKB data, which are 

large scale, public, and frequently used EHR-linked biobanks. Second, we utilized a range 

of methods to visualize and characterize EHR-linked biobanks. Third, we demonstrated 

estimation of IP- and PS-weights in AOU and provided code for recreating them. Fourth, 

the weights are based on NHIS data, a public resource with individual-level data 

representing a probabilistic sample of health conditions in the US population. Fifth, we 

used the new phecode X mapping table, which defines more phecodes compared to its 

predecessor (version 1.2), is built on ICD-10 data, and appears to have more accurate 
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phecode definitions (an earlier version of this manuscript used phecode 1.2 mapping and 

found unexpected consequences of its phecode definitions; see Section S3).  

 However, our study also has several limitations. First, we cannot fully account for 

selection bias because the selection mechanisms are not fully known. Thus, our selection 

weights attempt to reduce – rather than remove – selection bias. Second, we do not know 

whether associations in weighted NHIS data can reliably replicate known associations in 

the US adult population. Third, while these cohorts are widely used, they vary noticeably 

in factors such as their geographical location, recruitment mechanisms, and access to 

EHR data (e.g., single medical system vs. primary care EHR). Future studies could 

examine more comparable cohorts to derive nuanced insights. Fourth, we conducted 

commonly performed meta-analyses, though the phenome has important sociobehavioral 

and environmental contributors that researchers need to consider when selecting cohorts 

for and interpreting meta-analyses. Finally, while our focus was on ways to lessen the 

impact of selection bias, there are multiple biases59–61 one needs to consider when 

conducting research and making causal inference. Future studies should investigate how 

these different biases affect data tasks and the role of method complexity in decision-

making processes. 
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CONCLUSION 

 We have introduced methods for assessing and comparing the effect of selection 

bias in EHR-linked biobanks and computed IP- and PS-weights for two US-based 

biobanks. These weights have the potential to reduce – not remove – selection bias as 

the selection mechanisms are not fully known. Our findings suggest that it is not crucial 

to use generic selection weights for exploring phenome structure (i.e., latent 

dimensionality, partial correlation across phecodes) and large-scale hypothesis testing. 

EHR-linked biobanks should provide detailed guidance on observation and recruitment 

processes and, where possible, make selection weights publicly available. Researchers 

should also clearly state their intended target population, the estimand of interest and 

describe recruitment and selection mechanisms from the source population. Systematic 

and rigorous exploration and comparisons of cohorts should be standard in analyses 

using multi-center EHR-linked biobank data.  
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FIGURES 
 

 
Figure 1. Schematic representation of the All of Us, the Michigan Genomics Initiative, 
and the UK Biobank cohorts, their sampling strategies, potential target populations, and 
selection factors. All three cohorts are non-probability samples of their source populations 
for different reasons: oversampling, procedures requiring anesthesia, and healthy 
volunteers, respectively. External data like NHIS or UK Census Microdata can be used in 
selection weight construction to make inferences regarding presumed target populations. 
Factors known to influence recruitment strategy or eligibility criteria are listed.  
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Figure 2. Side-by-side boxplots of the inverse probability (IP)-weighted over unweighted 
phecode prevalence ratios within cohorts by 17 defined phecode categories. Panel A 
shows the ratio of IP-weighted/unweighted prevalences in AOU, panel B shows the ratio 
of IP-weight/unweighted prevalences in MGI, and panel C shows the ratio of IP-
weighted/unweighted prevalances in UKB. IP-weights were used in AOU and MGI and 
IP-weights described in van Alten et al.40 were used in UKB. 
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Figure 3. Side-by-side boxplots of the unweighted and inverse probability (IP)-weighted 
phecode prevalence ratios across cohorts by 17 defined phecode categories. Panel A 
shows the ratio of unweighted prevalences in MGI over AOU, panel B shows the ratio of 
unweighted prevalences in AOU / UKB, and panel C shows the ratio of unweighted 
prevalances in MGI / UKB. Panel D shows the ratio of IP-weighted prevalences in MGI 
over AOU, panel E shows the ratio of IP-weighted prevalences in AOU / UKB, and panel 
F shows the ratio of IP-weighted prevalances in MGI / UKB. The horizontal red line 
indicates the median phenome-wide prevalence ratio value. IP-weights were used in AOU 
and MGI and IP-weights described in van Alten et al.40 were used in UKB. 
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Figure 4. Manhattan plots summarizing unweighted (panels A-C) and inverse probability 
(IP)-weighted (panels E-G) phenome-wide association studies (PheWAS) for colorectal 
cancer in All of Us, the Michigan Genomics Initiative, and UK Biobank using 1:2 case:non-
case matched data restricted to one year prior to initial diagnosis. Panels D and H show 
the unweighted and IP-weighted meta-analysis PheWAS, respectively. The dashed red 
line represents the Bonferroni-corrected p-value threshold (-log10(0.05/number of traits)). 
The five traits with the smallest p-values are labeled. The upward (downward) orientation 
of the triangle indicates a positive (negative) association. Plots corresponding to 
poststratification-weighted PheWAS are presented in supplementary Figure S12. 
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Figure 5. Within cohort and meta-analysis unadjusted and age-adjusted female log-odds 
ratio estimates (95% confidence interval) for colorectal cancer (phecode CA_101.41). 
Point estimate shapes and fill colors correspond to the weighting method (white circle, 
unweighted; dark blue square, inverse probability (IP)-weighted; pink triangle, 
poststratification (PS)-weighted). Line colors correspond to the cohort (orange, AOU; 
blue, MGI; green, UKB; black, meta-analysis). Shaded region represents range of age-
adjusted log(incidence rate ratio [IRR]) estimates from 2018-2020 US SEER data and an 
age-standardized log(IRR) estimate from White et al. 2018 from the UK.54 
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TABLES 
 
Table 1. Descriptive characteristics of the Michigan Genomics Initiative, the UK Biobank, and All of Us. For unweighted metrics, mean (standard deviation) and percent (n) are provided for continuous and categorical/binary variables, 
respectively. For weighted metrics, mean (standard error) and percent (standard error) are provided for continuous and categorical/binary variables, respectively. 
    All of Us (AOU)b Michigan Genomics Inititative (MGI) 

 
UK Biobank (UKB)c 

  NHISa (weighted) Unweighted IP-weighted PS-weighted Unweighted IP-Weighted PS-weighted  Eligible population Unweighted IP-weighted 
N  244,071 - - 81,243 - -  - 401,167 - 

              
Demographics              
Age (continuous)d 47.7 (0.2) 54.01 (17.27) 49.8 (0.1) 51.1 (0.1) 56.34 (16.99) 45.5 (0.1) 45.6 (0.1)   54.78 (0.01) 57.67 (8.02) 54.9 (0.0) 
Aged              

0-9  0.0 (0.0)  0.0 (56)  0.0 (0.0)  0.0 (0.0)  0.0 (1)  0.0 (0.0)  0.0 (0.0)  -  0.0 (0)  0.0 (0.0) 
10-19  3.4 (0.2)  0.8 (2,007)  1.1 (0.1)  0.8 (0.0)  0.6 (472)  2.2 (0.1)  2.2 (0.1)  -  0.0 (0)  0.0 (0.0) 
20-29 17.6 (0.3) 10.2 (24,907) 13.0 (0.2) 11.1 (0.1)  8.7 (7,067) 21.9 (0.3) 21.6 (0.3)  -  0.0 (0)  0.0 (0.0) 
30-39 17.1 (0.3) 14.2 (34,719) 19.7 (0.2) 19.1 (0.1) 10.6 (8,636) 18.4 (0.3) 18.7 (0.3)  -  0.0 (3)  0.0 (0.0) 
40-49 16.0 (0.3) 14.0 (34,080) 16.6 (0.2) 20.0 (0.1) 13.5 (10,928) 19.7 (0.3) 20.0 (0.3)  - 21.0 (84,174) 34.1 (0.1) 
50-59 16.4 (0.3) 19.2 (46,937) 18.4 (0.2) 14.8 (0.1) 19.9 (16,127) 14.1 (0.2) 13.9 (0.2)  - 32.0 (128,374) 31.5 (0.1) 
60-69 15.4 (0.2) 21.4 (52,112) 17.5 (0.2) 17.1 (0.1) 23.1 (18,801) 13.1 (0.2) 12.9 (0.2)  - 46.3 (185,741) 33.8 (0.1) 
70-79  9.4 (0.2) 15.4 (37,532) 10.8 (0.1) 13.2 (0.1) 17.4 (14,108)  8.0 (0.1)  8.0 (0.2)  -  0.7 (2,874)  0.6 (0.0) 
80+  4.9 (0.1)  4.8 (11,721)  2.8 (0.1)  3.9 (0.1)  6.3 (5,103)  2.6 (0.1)  2.8 (0.1)  -  0.0 (0)  0.0 (0.0) 

Sex                       
Male 48.3 (0.4) 37.8 (92,315) 45.5 (0.2) 46.8 (0.2) 46.2 (37,541) 48.6 (0.3) 49.9 (0.3)   49.2 (0.1) 44.7 (179,135) 47.2 (0.1) 
Female 51.7 (0.4) 62.2 (151,756) 54.5 (0.2) 53.2 (0.2) 53.8 (43,702) 51.4 (0.3) 50.1 (0.3)   50.8 (0.1) 55.3 (222,032) 52.8 (0.1) 

Race/Ethnicity              
Asian  5.9 (0.3)  2.7 (6,535)  2.9 (0.1)  3.0 (0.1)  3.7 (2,983) 11.4 (0.3) 11.4 (0.3)  -  2.2 (8,898)  4.6 (0.1) 
Black or African American 11.8 (0.4) 18.5 (45,243) 14.6 (0.2) 15.3 (0.1)  6.1 (4,959) 11.1 (0.2) 11.6 (0.3)  -  1.6 (6,385)  2.8 (0.1) 
Hispanic 16.5 (0.6) 18.9 (46,032) 13.5 (0.1) 13.4 (0.1)  2.7 (2,179)  6.4 (0.2)  6.5 (0.2)  - - - 
Other/Unknown  2.6 (0.3)  4.5 (11,096)  3.2 (0.1)  3.6 (0.1)  4.4 (3,578)  5.9 (0.2)  6.1 (0.2)  -  2.0 (8,094)  1.7 (0.0) 
White 63.2 (0.8) 55.4 (135,165) 65.9 (0.2) 64.7 (0.1) 83.1 (67,544) 65.1 (0.4) 64.4 (0.4)  87.0 (0.05) 94.2 (377,790) 90.9 (0.1) 

BMI (continuous) 27.8 (0.0) 30.02 (7.67) 29.9 (0.0) 30.0 (0.0) 29.94 (7.26) 28.0 (0.1) 28.1 (0.1)     27.64 (4.90) 27.9 (0.0) 
BMI              

Underweight (<18.5)  1.6 (0.1)  1.3 (2,977)  1.3 (0.1)  1.1 (0.0)  1.1 (865)  1.9 (0.1)  1.7 (0.1)  -  0.5 (2,052)  0.6 (0.0) 
Healthy [18.5, 25) 31.4 (0.3) 25.6 (59,653) 26.7 (0.2) 26.1 (0.1) 24.7 (20,025) 35.9 (0.3) 34.8 (0.3)  - 31.0 (123,485) 30.1 (0.1) 
Overweight [25, 30) 33.0 (0.3) 30.6 (71,174) 30.5 (0.2) 30.9 (0.1) 32.0 (25,954) 33.9 (0.3) 33.8 (0.3)  - 42.5 (169,172) 41.4 (0.1) 
Obese [30+) 31.2 (0.4) 42.5 (99,024) 41.5 (0.2) 41.9 (0.2) 42.3 (34,285) 28.4 (0.3) 29.7 (0.3)  - 26.0 (103,779) 27.9 (0.1) 

Anxiety 6.1 32.0 (78,018) 30.5 23.7 35.3 (28,690) 8.5 8.0   -  5.5 (22,047) 6.3 
Cancere 9.5 27.1 (66,124) 22.9 24.5 49.2 (39,984) 8.3 9.8  - 25.9 (103,996) 23.7 
Depression 7.0 25.7 (62,689) 23.8 19.2 31.6 (25,634) 7.5 7.3   -  0.2 (712) 0.2 
Diabetes 8.0 23.0 (56,210) 18.7 42.6 23.1 (18,790) 8.0 7.4  - 10.1 (40,353) 11.4 
Hypertension 31.7 47.6 (116,156) 40.8 30.4 50.7 (41,182) 29.9 29.9   - 33.7 (135,113) 32.1 

              
EHR characteristics              
Encounters per person (unique)f                       

Minimum - 1 - - 1 - -   - 1 - 
Median - 19 - - 54 - -   - 3 - 
Mean - 32 - - 103 - -   - 4 - 
Maximum - 487 - - 1833 - -   - 92 - 

Unique phecodes per personf -   - -   - -  -  - 
Minimum - 1 - - 1 - -  - 1 - 
Median - 52 - - 55 - -  - 12 - 
Mean - 72 - - 77 - -  - 17 - 
Maximum - 573 - - 591 - -  - 212 - 

Length of follow-up (years)f -   - -   - -   -   - 
Minimum - 0.0 - - 0.0 - -   - 0.0 - 
Median - 7.4 - - 8.1 - -   - 7.0 - 
Mean - 9.3 - - 9.9 - -   - 7.5 - 
Maximum - 41.5 - - 43.5 - -   - 22.0 - 

Abbreviations: -, data unavailable in cohort; AOU, All of Us; IP, inverse probability; MGI, Michigan Genomics Initiative; NHIS, National Health Interview Survey; PS, poststratification; UKB, UK Biobank 
a 2019 NHIS data 
b All of Us data restricted to those who are present in the phenome. 
c The UKB weighting procedure and definitions of the UKB-eligible population are described in van Alten and colleagues (doi: 10.1101/2022.05.16.22275048). Further, estimates presentated here of the UKB-eligible population are taken from 
van Alten and colleagues. 
d Age defined as age at last EHR encounter in AOU and MGI, age at consent in UKB 
e Presence of any qualifying cancer phecode in phenome 
f UK Biobank data only provided first occurrence of each unique phecode. This means that individuals could have encounters that were not reported or extend beyond their last encounter if no unique diagnoses were recorded at that visit. 
Notes: Descriptions of how cancer, diabetes, coronary heart disease, and depression can be found in Tables S1 and S2. 
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Table 2. Number of principal components by proportion of cumulative variation 
(CV) in diagnostic phenome (n = 2,042) explained by cohort. 

 95% CV explained  99% CV explained 
  Unweighted Weighted   Unweighted Weighted 
All of Us 732 711  1,262 1,236 
Michigan Genomics 
Initiative 

752 729 
 

1,293 1,258 

UK Biobank 553 569   1,065 1,080 
Weighted results were conducted using inverse probability (IP)-weights. Out of 
2,042 phecodes with at least 20 cases in all three cohorts. 

 
 
 


