Protocol for a prospective, multi-centric, cross-sectional cohort study to assess personal light exposure

Carolina Guidolin¹, ² [0009-0007-4959-2667]
Ljiljana Udovicic³, [0000-0002-6035-8309]
Kai Broszio³, [0000-0002-8269-8654]
David Baeza Moyano⁴, [0000-0001-8395-9994]
Sofía Melero-Tur⁴, [0000-0002-5902-4539]
Guadalupe Cantarero-Garcia⁴, [0000-0003-3169-8547]
Roberto Alonso González-Lezcano⁴, [0000-0002-6185-4929]
Sam Aerts⁵, [0000-0002-7444-4312]
John Bolte⁵, [0000-0001-8301-5547]
Hongli Joosten-Ma⁵
Maria Nilsson Tengelin⁶, [0000-0002-0909-626X]
Oliver Stefani⁷, [0000-0003-0199-6500]
Altuğ Didikoğlu⁸, [0000-0002-5582-6956]
Johannes Zauner², [0000-0003-2171-4566]
Manuel Spitschan¹, ², ⁸, [0000-0002-8572-9268] *

¹ Max Planck Institute for Biological Cybernetics, Max Planck Research Group Translational Sensory & Circadian Neuroscience, Tübingen, Germany
² TUM School of Medicine and Health, Department Health and Sports Sciences, Chronobiology & Health, Technical University of Munich, Munich, Germany
³ Federal Institute for Occupational Safety and Health (BAuA), Dortmund, Germany
⁴ Research Group ARIE, Department of Architecture and Design, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
⁵ Research Group Smart Sensor Systems, The Hague University of Applied Sciences, Delft, The Netherlands
⁶ Department of Measurement Science and Technology, RISE Research Institutes of Sweden, Borås, Sweden
⁷ Lucerne University of Applied Sciences and Arts, Lucerne, Switzerland
⁸ Department of Neuroscience, İzmir Institute of Technology, Gülbahçe,Urla, 35430 İzmir, Turkey
⁹ TUM Institute for Advanced Study (TUM-IAS), Technical University of Munich, Garching, Germany

* Corresponding author: manuel.spitschan@tum.de

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Author contributions

Conceptualisation: C.G., M.S.

Data curation: n/a

Formal Analysis: n/a

Funding acquisition: L.U., D.B.M., M.N.T., O.S., M.S.

Investigation: n/a

Project administration: M.S.

Resources: n/a

Software: C.G., J.Z., M.S.

Supervision: n/a

Validation: n/a

Visualisation: C.G.

Writing – original draft: C.G., M.S.

Funding statement

The project (22NRM05 MeLiDos) has received funding from the European Partnership on Metrology, co-financed by the European Union’s Horizon Europe Research and Innovation Programme and by the Participating States.
Abstract

Light profoundly impacts many aspects of human physiology and behaviour, including the synchronization of the circadian clock, the production of melatonin, and cognition. These effects of light, termed the non-visual effects of light, have been primarily investigated in laboratory settings, where light intensity, spectrum and timing can be carefully controlled to draw associations with physiological outcomes of interest. Recently, the increasing availability of wearable light loggers has opened the possibility of studying personal light exposure in free-living conditions where people engage in activities of daily living, yielding findings associating aspects of light exposure and health outcomes, supporting the importance of adequate light exposure at appropriate times for human health. However, comprehensive protocols capturing environmental (e.g., geographical location, season, climate, photoperiod) and individual factors (e.g., culture, personal habits, behaviour, commute type, profession) contributing to the measured light exposure are currently lacking. Here, we present a protocol that combines smartphone-based experience sampling (ESM implementing Karolinska Sleepiness Scale, KSS, ratings) and high-quality light exposure data collection at three body sites (near-corneal plane between the two eyes mounted on spectacle, neck-worn pendant/badge, and wrist-worn watch-like design) to capture daily factors related to individuals’ light exposure. We will be implement the protocol in an international multi-centre study to investigate the environmental and socio-cultural factors influencing light exposure patterns in Germany, Netherlands, Spain, Sweden, and Turkey (minimum n=15, target n=30 per site, minimum n=75, target n=150 across all sites). With the resulting dataset, lifestyle and context-specific factors that contribute to healthy light exposure will be identified. This information is essential in designing effective public health interventions.
Contents

Author contributions ... 1
Funding statement .. 1
Abstract ... 2

Introduction .. 5
Background .. 5
Prior evidence ... 6

Objectives .. 7

Methods and materials .. 7
Sample ... 7
Inclusion and exclusion criteria ... 7
Participant recruitment .. 8
Stopping guidelines ... 8

Measures .. 9
Light measurements ... 9

Protocol ... 14
Study design ... 14
Environment and context .. 14
Screening .. 14
Procedure ... 14
Timeline ... 16
Randomization ... 16

Statistical analysis .. 16
Power analysis .. 16
Pre-processing ... 17
Statistical analysis and pre-processing 18
Confirmatory analysis ... 18
Exploratory analyses ... 20
Data storage and privacy .. 21

Outcomes .. 21
Primary outcome measures ... 21
Secondary outcome measures ... 21
Other measurements ... 22

Code, data and materials availability .. 23

Ethics approval ... 24
Conflicts of interest ... 24

Figures ... 25
Tables .. 26
Introduction

Background

Light significantly affects human health and behaviour, from modulation of circadian rhythms and sleep to regulation of cognitive and neuroendocrine functions (Blume et al., 2019). The effects of light on human physiology can be observed acutely as changes in alertness and mood, according to timing and intensity of light stimuli (Cibeira et al., 2021; Lok et al., 2018). Furthermore, long-lasting consequences on the endocrine and immune systems are known to follow chronic exposure to artificial light at night, as this induces misalignment with the environmental day/night cycle. For example, shift workers have an increased risk of developing diseases such as cancer and metabolic disorders (Lunn et al., 2017; Moreno et al., 2019; Ward et al., 2019).

The human relationship to light has fundamentally changed over the past decades with the advent of highly efficient light-emitting diode (LED) lamps and emissive displays such as smartphones and laptops (Westland et al., 2017). The increased availability and luminous output of these novel light sources, together with the large number of people in modern 24/7 society suffering from circadian misalignment, pose the question of how these light exposure patterns affect our mental and physical health. Recent expert consensus-based recommendations by Brown and colleagues (2022) provide a framework for understanding the appropriate light amounts for healthy, day-active individuals during daytime, evening, and nighttime hours to maintain optimal physiology and circadian health. Whether the “spectral diet” or the light exposure patterns experienced by an individual (Webler et al., 2019) meets these recommendations has not yet been established.

Over the past 20 years, researchers in this field have attempted to measure personal light exposure in field settings using various wearable devices (Hartmeyer et al., 2022). These devices, known as light loggers, can be worn in various positions on the body, including the wrist (e.g. as a wristwatch), chest (e.g. as a pendant or brooch), or eye level (e.g. on a pair of glasses) by study participants. When worn continuously over time, these wearable devices approximate the retinal irradiance an individual receives daily. The melanopic retinal irradiance drives the physiological effects of light (Spitschan et al., 2022). Light exposure patterns can yield light metrics, including time spent above a specific light threshold (time above threshold, TAT; (Hartmeyer & Andersen, 2023)) and variability of light timing (mean light timing, MLiT; (Reid et al., 2014)). These metrics can subsequently be linked to health outcomes of interest (Spitschan et al., 2022). For example, field studies using wrist-worn light loggers have shown an association between greater light exposure before sleep with lower self-reported alertness during the day (Didikoglu et al., 2023), poorer objective sleep quality (Cain et al., 2020), differences in sleep-wake consolidataton (Lok et al., 2023), and altered sleep architecture (Wams et al.,
Furthermore, higher light exposure during sleep has been linked to later sleep offset and poorer sleep continuity (Mead et al., 2023).

As wearable light loggers become more accessible, research on light exposure patterns in free-living conditions has surged (Hartmeyer et al., 2022). Much of the literature, however, remains descriptive, linking light metrics to one or two health outcomes of interest, usually related to cognitive performance and sleep health. While highly informative, these investigations fail to capture the contextual and behavioural dimensions leading to a given light exposure pattern. An individual’s “spectral diet” ultimately depends on many factors, including environmental ones (geographical location, season, climate and photoperiod) as well as interindividual ones (culture, personal habits, behaviour, commute type and profession). Furthermore, while some determinants of daily light exposure are independent of the individual (e.g. type of lights present in one’s office), individuals can exert a level of control on their light exposure by actively seeking or avoiding behaviours which involve specific light exposure (e.g. having lunch break outside or inside) (Siraji, Lazar, et al., 2023; Siraji, Spitschan, et al., 2023).

Considering the growing evidence that well-timed light exposure is crucial to support human health, it is vital not only to describe the timing and quantities of light that individuals receive during the day but also to understand which contextual and behavioural factors contribute to specific light exposure patterns. This information is essential to identify populations at risk of receiving insufficient or aberrant light exposure throughout the day and, ultimately, to design effective personalised interventions to improve people’s light exposure.

Here, we outline a comprehensive study protocol for field studies to collect rich and high-quality datasets comprising of light exposure data and its contextual and behavioural contributors. To obtain clean light exposure data from the light loggers, we describe in detail how to instruct participants and ensure their compliance with the protocol. Additionally, we present a questionnaire structure designed to capture daily factors linked to individual light exposure using a mobile app interface. Overall, this protocol provides a framework that researchers interested in collecting light exposure data can flexibly adjust. We will use this protocol to create a reference dataset that characterises individual light exposure over seven days at five different geographical locations in Europe. Our dataset will characterise light exposure and probe the suitability of light logging devices in different geographical and sociocultural contexts. This will help identify context- and lifestyle-specific factors associated with healthy light exposure patterns, which will serve as a first step to designing effective public health interventions.

Prior evidence

Table 1 summarises some relevant prior literature underlying our research questions. For a systematic overview of prior studies, see (Hartmeyer et al., 2022). Bierman et al. (2005), Higgins et al.
(2010), Rea et al. (2011), and Smolders et al. (2013) used a head-mounted device that measures personal light exposure at the corneal plane. The device was tested in various settings with different outcome measures. A similar device, which provides eye-level illuminance data, was presented by Hubalek and colleagues (2010). Bajaj et al. (2011a) investigated the correlation between self-reported subjective light exposure via a seven-day retrospective questionnaire and photopic light exposure objectively measured by a head-mounted light dosimeter. These studies are relevant to our research as we intend to use an adapted version of their questionnaire to measure daily personal light exposure. Furthermore, the studies by Brown et al. (2021) and Cheng et al. (2021) describe novel, non-physiological methods to predict individuals’ circadian phases. Finally, the studies by (Balajadia et al., 2023) and van Duijnhoven et al. (2017) highlight the limitations of current corneal-plane light loggers placed laterally on glasses in ensuring high-quality data experience by participants.

Objectives

The three objectives of the study are

1. To characterise individuals’ light exposure over seven days utilizing a near-corneal-plane light logger placed at the centre of non-prescription glasses frame, along with a light logger as a chest-worn pendant and a wrist-worn light logger;

2. To collect data across four countries (Germany, Netherlands, Spain, Sweden, and Turkey);

3. To investigate the correlations between recommended light exposure, physiological variables such as chronotype and light sensitivity, and behavioral outcomes including exercise, mood, and alertness.

Methods and materials

Sample

Inclusion and exclusion criteria

Eligible participants will be selected according to the inclusion and exclusion criteria listed in Table 2. These include demographic as well as mental and physical health parameters. Individuals with corrected vision requiring prescription glasses during the experimental week will be excluded due to incompatibility with our light glasses. However, individuals with a) prescription lenses or b) prescription glasses but are able and willing to wear prescription contact lenses during the experimental week will
be able to participate in our study. Individuals suffering from psychiatric or sleep disorders will be excluded from the study. Furthermore, intake of any drugs and/or medications known to influence photosensitivity will be considered a criterion for exclusion. Finally, only people based at or near (<60 km) the local hubs of each geographical location during the weekdays (Monday to Friday) of the experiment will be accepted for this study to have similar environmental conditions across participants at each measurement hub. All criteria mentioned above for inclusion and exclusion will be assessed by self-report through an online platform developed for this purpose (Research Electronic Data Capture, REDCap; (Harris et al., 2009, 2019, 2022)). The eligibility criteria used here can be modified for studies in which the goal is to assess a different population.

Participant recruitment

Participants will be recruited by self-selection through advertisements which will be posted at the local hubs (Spain: FUSP-CEU, Sweden: RISE, Netherlands: THUAS, Germany: BAuA, TUM, Turkey: IZTECH) as well as in local newsletters. Participants interested in the study will be directed to an online platform (REDCap) for the initial screening survey. Detailed information about the study and its aim will be provided during this screening step. Inclusion and exclusion criteria will be tested using a questionnaire on the same online platform. This questionnaire will also collect demographic data (age, sex, gender, native language(s) and occupational status). If eligible for the study, participants will then be contacted by the experimenters to agree on possible participation dates and discuss any further questions.

Furthermore, they will be sent a picture of what the light logger looks like and asked if they feel comfortable wearing them throughout the experimental week. They will also be informed about the availability of the researchers throughout the experiment in case of doubts or technical issues with the light logger. Participants will be compensated at the end of the study according to their compliance with the experimental procedure: for every day of wearing the light logger for at least 80% of their waking hours (as defined by the Munich Chronotype Questionnaire; MCTQ) (Roenneberg et al., 2015), volunteers will receive financial compensation, such that those adhering to the whole duration of the experiment will receive more than those adhering, for example, to only four out of the seven experimental days. The rates of financial compensation will depend on each measurement site and local customs.

Stopping guidelines

Data collection can terminate after reaching at least n=15 per site, with a target of n=30. The researchers will terminate the study for an individual participant in case of technical issues which do not allow the experiment to continue, e.g., when the light logger is not working as expected.
Measures

Light measurements

Personal light logging

To measure personal light exposure, we will deploy ActLumus light loggers (Condor Instruments, São Paulo, Brazil) worn by participants for one week. ActLumus light loggers contain ten spectral channels, the outputs of which are combined to estimate photopic and melanopic irradiance. Throughout the trial, participants will wear three light loggers:

1. To measure light centrally in the near-corneal plane, the light loggers will be placed on the frame of non-prescription glasses. A 3D-printed holder for the light loggers has been designed and attached to the bridge of the glasses frame, enabling the insertion and removal of the ActLumus devices.

2. To measure light on the chest, the light loggers will be clipped to clothing or worn as a pendant.

3. To measure light on the wrist, a conventional location, the light loggers will be worn with manufacturer-provided wrist bands.

The sampling interval of each ActLumus light logger will be set to 10 seconds to achieve highly temporally resolved data, and the devices will never be turned off nor charged during the experimental week. Light exposure data for each participant will then be downloaded only upon the return of the devices on the final Monday (day 8). The choice of light loggers used here can vary depending on the availability.

As the use of non-prescription glasses still requires the use of lenses without optical power, the transmittance properties of the lenses will be measured between 250 and 2500 nm.

Activity measurement

One of the ActLumus light loggers will be worn on the wrist. The ActLumus measures movement through an integrated tri-axial accelerometer and is used in field studies such as ours to distinguish wake and sleep time. Participants will be instructed to keep the wrist-worn device on during the day and night and only remove it when in contact with water and during contact sports.

First-day questionnaires (Chronotype questionnaires)

On the first day of the experiment, participants completed two questionnaires measuring circadian time and circadian preference: the Munich Chronotype Questionnaire (MCTQ, Roenneberg et al., 2015) and the Morning-Eveningness Questionnaire (MEQ, Horne & Østberg, 1977). The MCTQ is
used to assess circadian time using questions about their sleep and wake habits during work and free
days and commute type. The MEQ is used to determine the circadian preference of individuals to
perform certain activities at specific times of the day.

Continuous questionnaires

All continuous measurements except the Light exposure and activity diary are completed by
participants on the MyCap app (Harris et al., 2022). This mobile application for survey data collection
integrates with REDCap (Harris et al., 2009, 2019).

Wear log

Throughout the day, participants are instructed to report their wear and non-wear time (only
concerning the spectacle-worn glasses) in a digital log book. Specifically, they have five choices of
wear log entry: 1 = “Taking the light glasses off”, 2 = “Putting the light glasses on”, 3 = “Taking the light
glasses off before sleep and placing them on a nightstand or flat surface”, 4 = “Leaving <study location
> and its surroundings (60 km radius)” and 5 = “Re-entering < study location > and its surroundings
(60 km radius)”. For options 1 to 3, participants also press the button on the light glasses to signal an
event occurring, and in the case of 1, they are asked to confirm whether they place the light glasses in
the black bag provided to them and if they are in movement. Options 4 and 5 are introduced to control
for potential differences in personal light exposure due to environmental availability rather than
behaviour. For all the five wear log entry choices, participants must state whether they are logging a
present or a past event.

Additionally, participants are asked for the reasons they took the off (“What is prompting you to
remove the light logger?”), with the options “Sports activity”, “Leisure activity where I do not feel
comfortable wearing the light logger (e.g. public space)”, “Activity involving contact with water (e.g.,
showering or bathing)”, “Discomfort due to wearing the light glasses (e.g. disturbance to eyesight or
pain due to weight)” and “Other (please specify)”.

Experience log

During the week, participants also have the opportunity to report their experiences with the light
glasses using a log on the app. This log prompts participants to describe situations in which they
received verbal or nonverbal feedback from others and personal comfort with wearing the light
glasses. They are also asked whether and how these experiences might influence their future use of
the light glasses.
Morning sleep log

Every morning after waking up, participants fill in the core Consensus Sleep Diary (Carney et al., 2012) consisting of 9 items to assess their sleep timing, sleep duration during the night, and subjective sleep quality. This last item is scored on a five-point Likert scale (1 = “Very poor” to 5 = “Very good”).

Ecological momentary assessment (“Current conditions”)

Four times a day (at 11:00, 14:00, 17:00 and 20:00), participants fill in a questionnaire concerning their current light conditions, mood and sleepiness. The researcher sends a reminder message through the REDCap/MyCap messaging channel, and phone alarms set by participants at these times serve to ensure compliance. Firstly, current light conditions are tested through a multiple-choice question, where participants can choose one of 8 possible light scenarios as the “main light source” and, if applicable, as the “secondary light source”. The potential light sources to choose from consist of the same categories listed in the modified Harvard Light Exposure Assessment diary, which participants fill in every evening (see ”Light exposure and activity diary”, H-LEA; (Bajaj et al., 2011b)). Secondly, a modified MoodZoom questionnaire (Tsanas et al., 2016) assesses current mood. Lastly, sleepiness is assessed using the Karolinska Sleepiness Scale (KSS; (Akerstedt & Gillberg, 1990)) on a 10-point Likert scale ranging from 1 = “Extremely alert” to 10 = “Extremely sleepy, fighting sleep”.

Exercise log

Every evening before sleep, participants complete a custom-made questionnaire about the exercise they performed during the day. This questionnaire was designed to assess intensity (vigorous/moderate/light, lack of exercise) and location (indoors/outdoors) of exercise, as well as sedentary time (“How much time did you spend sitting or reclining?”).

Wellbeing log

Every evening before sleep, participants complete a modified version of the WHO-5 Wellbeing Index (Bech, P., 2004), consisting of 5 statements (1 = “I have felt cheerful and in good spirits”, 2 = “I have felt calm and relaxed”, 3 = “I have felt active and vigorous”, 4 = “How would you rate the quality of your sleep last night?”, and 5 = “My daily life has been filled with things that interest me”). Participants have to express agreement using a 5-point Likert scale ranging from 0 = “At no time” to 5 = “All of the time” (for statements 1, 2, 3 and 5) and from 1 = “Very poor” to 5 = “Very good” for statement 4.

Worktime log

Every evening before sleep, participants complete a custom-made questionnaire on the clock times they went to their workplace, how, and when they returned home.
Light exposure and activity log

Every evening, participants have to fill in a modified version of the Harvard Light Exposure Assessment (H-LEA; (Bajaj et al., 2011b)). This is referred to as “mH-LEA” and is done on paper using a form provided by the experimenter during the in-person visit (see Appendix). Participants are asked to report, for each hour of the day, the primary light source they are exposed to and the activity they performed in that hour. The primary light source is described as “the biggest and brightest light source”. They can choose between 8 light categories (L = “Electric light source indoors (e.g., lamps such as LEDs)”, S = “Electric light source outdoors (e.g., street lights)”, I = “Daylight indoors (through windows)”, O = “Daylight outdoors (including being in the shade)”, E = “Emissive displays (e.g., smartphone, laptop etc.)”, D = “Darkness (outdoors and/or indoors)”, W = “Light entering from outside during sleep (e.g., daylight, street lights etc.)”). If they believe they are exposed to a combination of lights within the same hour, they can choose from the following combinations: “L+I”, “L+E”, “I+E”, “S+O”, and “D+W”. With regards to their activity, they could choose between “8 categories (1 = “Sleeping in bed”, 2 = “Awake at home”, 3 = “On the road with public transport/car”, 4 = “On the road with bike/on foot”, 5 = “Working in the office/from home”, 6 = “Working outdoors (including lunch break outdoors), 7 = “Free time outdoors (e.g. garden/park etc.), 8 = “Other: please specify (e.g. sport)”. To ensure that participants complete this task, they send a picture of the completed form every night and upload it to a shared folder (separate for each participant) where the experimenter could check compliance. Furthermore, they are asked to rate the confidence in their answers (“How sure are you about the light exposure and activity categories you chose?”) on MyCap, where they can answer using a 5-point Likert scale ranging from 1 = “Not confident at all” to 5 = “Completely confident”.

Final day questionnaires

On their final day of the experiment, participants return the devices and filled in a series of questionnaires and open-ended questions on their phones, during an in-person visit to the laboratory.

Light Exposure Behaviour Assessment (LEBA)

The 22-item Light Exposure Behaviour Assessment (LEBA; (Siraji, Lazar, et al., 2023)) is used to retrospectively assess individuals’ light behaviours during the experimental week. Since the first three items of this instrument ask questions related to wearing blue-filtering, orange-tinted and/or red-tinted glasses, which do not apply to our participants due to the presence of the light logger device, these items are eliminated. The final questionnaire thus comprises the remaining 19 items. These concern specific behaviours such as exposure to daylight, smartphone use, light-related bedtime habits and electric light use at home. Participants can express the frequency of such behaviours using a 5-point Likert scale ranging from 1 = “Never” to 5 = “Always”.
Visual Light Sensitivity Questionnaire-8 (VLSQ-8)

Participants complete the 8-point Visual Light Sensitivity Questionnaire-8 (VLSQ-8; Verriotto et al., 2017) to answer questions about their visual light sensitivity during the experimental week. The questions include aspects of frequency and severity of photosensitivity as well as impacts of photosensitivity on daily behaviours, and participants answer using a 5-point Likert scale (1 = “Never” to 5 = “Always”).

Assessment of Sleep Environment (ASE) questionnaire

The 13-item Assessment of Sleep Environment (ASE) questionnaire is used to ask participants about aspects such as light, noise, temperature and humidity in their sleeping environment (Grandner et al., 2022), which might affect their sleeping quality as well as the light measured by the light logger placed next to participants during sleep (e.g., in case of light coming through windows during sleep). Participants can express their agreement to each item using a 5-point Likert scale (1 = “Strongly agree” to 5 = “Strongly disagree”).

Open-ended questions

To further probe the usability of our light logger, we present participants with the following open-ended questions: “Can you describe any challenges or discomfort you experienced while wearing the light glasses? How did you cope with them?”, “In what situations did you notice the light glasses having the most impact on your daily activities or behaviour?”, “How did you adapt your behaviour, if at all, because of the light glasses? Please provide some examples.”, “Can you share any suggestions or improvements for the design or functionality of the light glasses (comprising the sensor and the glasses) for future experiments?”, “Please describe any situations or activities where the light glasses failed to capture your “typical” light exposure because you had to take them off?”, and “How comfortable were the light glasses for you to wear during your daily activities?”.

OPTIONAL: Environmental light logging

To measure the environmental light in the local site during each experimental week, one ActLumus light logger will optionally be placed on the rooftop of a chosen building. The set-up for these environmental light measurements consists of a black metal floor, where the device lies horizontally, covered by a plastic half-dome to minimise light scattering while ensuring protection from the elements (Figure 2). This set-up is placed on the rooftop before participants start the study every week and remain there for the entire week until participants discharge, measuring environmental light with a sampling interval of 30 seconds. Each day, a researcher will check and, if necessary, clean the outside and/or the inside of the set-up from dirt or rain. At the end of each experimental week, the data...
from this environmental light logger will be downloaded, and the device will be charged before being placed back on the rooftop just before the next participants start the study on the same day. As not all sites can complete this measurement, this measurement is optional.

Protocol

Study design

This experiment is an observational field study in which all participants will undergo the same experimental conditions and questionnaires. These are shown in Table 3.

Environment and context

The study will take place between 1 March 2024 and 31 March 2025. On the first and last day of the experiment, each volunteer will complete questionnaires at the local hub. During the field part of this study, in which the participants will be wearing the light logger, the environment and settings will depend on each participant, occupation, and activities. These include households, workplaces, and outdoor and public indoor spaces.

We will collect additional contextual data to keep track of the environmental and light conditions at each local hub.

- Where possible, a light logger covered by a protective plastic cover will optionally be placed on a rooftop without vertical obstructions/shading. This light logger will be checked regularly during weeks of experimental data collection to ensure it remains in good condition.
- When such measurements are impossible, secondary data sources, including historical weather data, sunshine duration, sunrise/sunset times, or existing radiation measurement infrastructure, will be used.

Screening

Screening for the current study will take place online using a screening questionnaire. The criteria of inclusion/exclusion are based on self-reported answers provided by the participants in this online questionnaire. This screening survey will be available online from March 2024 onwards so that participant enrollment in the study will remain open during the months of data collection.

Procedure

A schematic representation of the experimental procedure is illustrated in Figure 1. Eligible participants will start the experiment on a Monday with an in-person visit to the office or laboratory of
the selected hub and finish the experiment on the following Monday. On the first Monday (day 1), they will receive a detailed explanation of the experiment and sign an informed consent document. Volunteers will then be provided with the three wearable light loggers. They will receive detailed instructions on using both devices correctly, including removing them when in contact with water and during contact sports. Participants will also install the MyCap app (Harris et al., 2022), which is used to fill in daily questionnaires and set alarms on their phones as reminders to complete the scheduled questionnaires on the app. Before leaving, participants will complete two questionnaires measuring circadian time and circadian preference (MCTQ and MEQ, respectively).

Participants will wear the three light loggers throughout the week during their daily activities. Participants will be instructed to log non-wear time as follows. When taking off the spectacle-mounted light logger during the day, they will press the event button on the device and place it in a black bag. They will then log this action in the “Wear log” on the MyCap app. Similarly, when putting the light logger back on, they will take it out of the black bag, press the event button, and log this action in the “Wear log” on the MyCap app. If the participants forget the black bag, they will be prompted to describe where they placed the light glasses instead.

Before sleep, participants will place the spectacle-worn light logger facing upwards on a bedside table or flat surface near their bed. They will also log this action in the “Wear log”. In case participants exit the local area (defined as a 60 km radius from the local hub), they will describe where they are located at this time and report when they re-entered the local area on the "Wear log". Each "Wear log" entry includes taking a timestamp of the moment they performed this action, and this date time information is then used in the analysis to distinguish wear and non-wear time. In case they forget to log an activity, participants are allowed to log any of the five possible “Wear log” events (“Light logger on”, “Light logger off”, “Light logger off before sleep”, “Exiting local area”, “Re-entering local area”) as “past events” which happened previously. In this case, they are instructed to try their best to remember and retrospectively report the times of these actions.

Every morning after waking up, participants will start wearing the light logger and log this in the “Wear log” on the MyCap app. They will also fill in a questionnaire regarding their sleep (Consensus Sleep Diary; CSD). Throughout the day, they will receive notifications at four scheduled times to fill in questionnaires regarding their current light conditions (modified Harvard Light Exposure Assessment Questionnaire; modified H-LEA), alertness (Karolinska Sleepiness Scale; KSS) and mood (MoodZoom). In the evening, participants will complete questionnaires about their light exposure and activities during the last 24 hours (modified H-LEA), wellbeing (WHO-5 Wellbeing Index; WHO-5) and exercise (custom questionnaire). Throughout the experiment, participants will also report their positive and negative experiences in the “Experience log”.

Participants will return to the local centre on the following Monday, one week after the experiment starts. On this day, they will return the devices and complete a retrospective questionnaire regarding
their light exposure (Light Exposure Behaviour Assessment; LEBA), light sensitivity (Visual Light Sensitivity Questionnaire-8; VLSQ-8), and their sleep environment (Assessment of Sleep Environment questionnaire; ASE) during the seven days they participated in the study. Furthermore, they will complete open-ended questions about their opinions on the light logger device. After completing these questionnaires, participants will be reimbursed based on their compliance with the experiment. The devices will be charged, and the next set of participants will start the experiment later that day.

All questionnaires will be

Timeline

Participants will begin the experiment on a Monday according to their and the researchers' availability. Each participant will wear the light loggers for seven consecutive days and thus return to the laboratory on the consecutive Monday. The number of participants wearing the light logger during the same week (Monday to Monday) may vary according to availability of participants and devices, i.e., more than one volunteer might be taking part in the study during the same seven days.

Randomization

This is an observational experiment where all participants undergo the same experimental conditions; therefore, no randomisation will be necessary for this study.

Statistical analysis

Power analysis

A sample size calculation based on power analysis was performed based on a framework described elsewhere (Zauner et al., 2023). The calculation was based on a historical dataset (Price et al., 2022) provided by one of the geographical locations (Germany: BAuA); where participants measured light exposure for multiple days in winter, spring, and summer with devices attached to clothing at chest height. A suitable subset of this data was used to calculate the necessary sample size to reach a power of 0.8 across common light exposure metrics when comparing them between winter and summer seasons. While the experiment producing the historical data deviates somewhat from the current study's experimental structure, it still allows for a realistic comparison of metrics between different environmental conditions while considering intra-individual variability. The sample size calculation is based on a bootstrap resampling of daily metrics between winter and summer. For each
resampled dataset, significance was tested in a mixed-effect model (fixed effect: season, random effect: participants) with a significance level of 0.05. The fraction of significant differences were compared against the power level threshold of 0.8. The required sample size is the minimum sample size that reaches this threshold, with 1000 resamples per sample size (sample sizes from 3 to 50 were tested). A total of twelve metrics were analyzed:

- Geometric mean of melanopic EDI (lx)
- Geometric standard deviation of melanopic EDI (lx)
- Luminous exposure (lx*h)
- Time above 250 lux (h)
- Time above 1000 lux (h)
- Mean timing of light above 250 lux (h)
- Mean timing of light below 10 lux (h)
- Intradaily variability
- Mean across the darkest (L5) hours (lx)
- Midpoint of the darkest (L5) hours (lx)
- Mean across brightest (M10) hours (lx)
- Midpoint of the brightest (M10) hours (lx)

Three metrics had no effect in the historical dataset and thus did not reach the power threshold (Geometric standard deviation, mean timing of light above 250 lux, midpoint of darkest 5 hours). With a sample size of 15 participants, eight out of nine metrics showed sufficient power (intradaily variability: 21 participants to threshold power). Even considering a high dropout rate of 33% leaves seven out of nine metrics sufficiently powered (mean of darkest 5 hours: 15 participants to threshold power).

Pre-processing

Objectively measured light exposure data will be log-transformed (base 10) to account for large light level differences, such as indoor and outdoor light exposure. Data from the light logger will be processed to separate non-wear time from wear time. This will be possible through information from three sources:

- Wear log completed by the participant;
- Button presses done by the participant;
- Light exposure recordings while in a black bag (expected to drop to near 0 during non-wear time).
We will confirm non-wear time by visual inspection and concordance between at least two sources. Concordance between the three sources of non-wear will be calculated as a probability score: the three sources will be combined as binary variables for each non-wear period as detected by visual inspection. The criterion for non-wear time classification will be set to ≥0.66. Once confirmed by visual inspection and probability score, non-wear times of ≥10 minutes will be removed.

We will apply stringent exclusion criteria for our confirmatory tests (see Confirmatory analysis). We will exclude the following missing data in hourly analyses:

- Missing entry on the modified H-LEA for a given hour during waking hours: if no category has been selected for a given waking hour (waking hours as specified in the sleep log of the corresponding day);
- Missing 50% of objectively measured light exposure for a given hour.

Furthermore, we will exclude an individual day from the analysis if 20% of the objective light exposure data from a participant’s waking hours (specified in the MCTQ) is missing. This does not apply to the first and last experimental days, as these are not “complete” days (participants will receive and return the light logger throughout the day).

Finally, we will exclude a participant from the analysis if an entire day of objective light exposure data is missing, meaning no data was recorded with the light logger from Tuesday to Sunday.

When data have been excluded from confirmatory analyses, we may include them in future exploratory analyses.

Statistical analysis and pre-processing

We plan to analyse all data with the R software and the package LightLogR (https://tscnlab.github.io/LightLogR/index.html) which provides a workflow for the processing, visualization and metrics calculation based on wearable light logger data. If not otherwise specified below, the planned method for statistical analysis is through (linear) mixed-effect models implemented with the lme4 package (Bates et al., 2015). Equations follow the notation used by the package. p-values obtained by likelihood-ratio tests of the full model with the effect in question, against the model without the effect. p-values less than or equal to 0.05 will be considered significant. p-value adjustment for multiple tests within each hypothesis is planned using Benjamini and Hochberg’s false discovery rate (FDR) method (Benjamini & Hochberg, 1995).

Confirmatory analysis

We plan to perform the two following confirmatory analyses:

1. H1: We hypothesize that there is a significant relationship between hourly self-reported light
exposure categories and hourly median objective light exposure.

a. Preparation: Hourly entry on light sources from daily modified H-LEA will serve as
categorical variables. In the case of two light sources for a given hour, only the primary
light source will be considered (as reported by participants). The median melanopic
equivalent daylight illuminance (melanopic equivalent daylight illuminance; mEDI) as
measured objectively by the light logger for the corresponding hour will be calculated.

b. Analysis: mEDI is used as the dependent variable, and H-LEA as the fixed effect,
participants within each geolocation as random effect. Participant’s geolocation, sex,
age, occupational status and chronotype (MCTQ) are added as covariates. The
dependency of mEDI and H-LEA as well as the weekday is allowed to vary between
participants within a geolocation. The resulting formula is as follows:

\[E(\text{mEDI}) = H\text{-LEA} + \text{geolocation} + \text{weekday} + \text{sex} + \text{age} + \text{occupational status} + \]
\[\text{chronotype} + (1 + H\text{-LEA} + \text{weekday} | \text{geolocation:participant}) \] (1)

2. H2: We hypothesize that MCTQ-measured chronotype MSF_{sc} (mid-sleep on free days corrected
for sleep debt on weekdays) and M\text{LiT}^{250} \text{lx mEDI} (mean light timing >250 lx melanopic EDI) are
correlated, such that earlier chronotypes receive light earlier in the day.

a. Preparation: calculate MCTQ-derived MSF_{sc} for each participant and calculate M\text{LiT}^{250} \text{lx mEDI}
as average clock time of all data points >250 lx mEDI over the six measurement
days for each participant.

b. Analysis: Spearman’s rank correlation coefficient between MSF_{sc} and 6-day average
M\text{LiT}^{250} \text{lx mEDI} for each participant. Additional models with various ring-fenced covariates
will be built in future steps.

3. H3: We hypothesize that there is a significant difference between daily average objective light
exposure and geographical location, and additionally, that the differences in photoperiod explain
a substantial part of that relationship

a. Preparation: calculate the daily mel EDI light dose (in lx*h) as measured objectively by
the light logger for the corresponding day. Calculate also the photoperiod of that day for
a given location as the time from sunrise until sunset (sun elevation equal to zero), as
calculated by the sun angles given from the \textit{oce R} package
(https://dankelley.github.io/oce/).

b. Analysis: daily mel EDI light dose (in lx*h)is the dependent continuous variable.
Geolocation is the independent categorical variable. A second step also includes
photoperiod. Weekday, sex, age, and chronotype are covariates. Participant ID within
geolocation is a random effect, as is the weekday effect for each participant. The full
formula is as follows:
Exploratory analyses

We plan to explore several relationships regarding behavioural and self-reported data. These are listed here for transparency.

1. Light exposure

1.1. Relationship between metrics of light exposure that describe light properties (melanopic EDI and photopic illuminance) and between metrics describing the temporal pattern of light exposure, including light regularity index (LRI), intraday variability (IV), interday stability (IS).

1.2. Comparison between objectively measured light exposure during weekdays and weekends.

1.3. Relationship between retrospective light exposure items as measured by the LEBA instrument and objective light exposure.

1.4. Relationship between environmental conditions during the experimental week (e.g. photoperiod availability, sunlight hours and temperature) and objective light exposure.

1.5. Relationship between light exposure measured and mood and alertness ratings measured throughout the day.

1.6. Relationship between subjective light sensitivity as reported by the VLSQ-8 and objective light exposure.

1.7. Relationship between daily objective light exposure and wellbeing scores as measured by the WHO-5 questionnaire.

1.8. Relationship between exercise frequency and type as measured by the exercise log and objective light exposure.

1.9. Relationship between geolocation, photoperiod and other metrics of light exposure (see 1.1), also in interaction with the weekday.

2. Light logger acceptability:

2.1. Descriptive analysis of open-ended questions on wearing the light logger.

2.2. Relationship between negative and positive experiences as reported in the experience log and non-wear time as reported in the wear log.
Data storage and privacy

Data collected through REDCap and MyCap will be pseudonymized in the system and stored on this system until the end of data analysis. Anonymised data will be made publicly available after the publication of the primary research publication.

Outcomes

Primary outcome measures

To answer our confirmatory research questions, our primary outcome measures are the following:

1. Daily light exposure (examined in H1 & H3)
2. Chronotype (examined in H2)

Secondary outcome measures

Our secondary outcome measures will be described using descriptive statistics. These will include:

- Daily behavioural outcomes:
 - Sleep log
 - Exercise logs
 - Wellbeing log
- Experience sampling measurements of:
 - Alertness
 - Light exposure conditions
 - Mood
- Retrospective questionnaires on:
 - Light exposure
 - Light sensitivity
- Environmental conditions as measured by the light logger placed on the roof.
- Participants’ experience wearing the light logger:
 - Open-ended questions
 - Experience log
Other measurements

Additional measurements will include the demographic characteristics of the participants provided during screening.

Translation and adaptation of questionnaires

To run the study in our five sites, translation of surveys and questionnaires is required. To this end, a team-based, multi-step process will be employed to achieve this goal, involving a diverse group of individuals, including trained translators and experts in the survey's subject matter (based on the “TRAPD” approach to translate questionnaires). The source language is English and the target languages are German (Germany), Dutch (Netherlands), Swedish (Sweden), Spanish (Spain) and Turkish (Turkey). We will use the following strategy:

Team approach:

- Assemble a translation team of individuals from diverse backgrounds, bringing together interdisciplinary expertise.
- Ensure that the team consists of at least three independent members (two acting as translators and one as a reviewer/adjudicator).

Translator selection:

- Ideally, choose two translators with experience (and some training) in translating surveys/questionnaires.
- The translators should have proficiency in both the source language (the language of the original questionnaire) and the target language (the language into which the questionnaire will be translated). Ideally the translators translate into their mother tongue.
- Ideally at least one of the two translators is a trained and/or professional translator.

First project meeting:

- Discuss potential future challenges translating the questionnaires and surveys and flag items that may be difficult (source questionnaire).

Initial parallel translations:

- Begin the translation process with two parallel translations of the source instrument into the target language (by the two translators mentioned above). The two translators should not contact each other while translating, but delivers independent translations.

Review discussion and adjudication:

- In a “Review” discussion, all items of the questionnaire should be discussed at least by the three persons of the translation team, possibly more: compare and discuss the two initial translations and try to agree on one translation: this may be one of the two initial translations, a blend of both
or a completely new translation, developed during the discussion.

- A “Reviewer” should chair the session. This should be an expert in the matter with good proficiency in both English and the target language.
- Include an adjudicator with expert knowledge in the subject matter to resolve any discrepancies or ambiguities in the translations. This may be the third person in the translation team, the “Reviewer” (then called “Reviewer-cum-Adjudicator”), or an additional, 4th person. If the adjudicator is a 4th person, he/she may participate in the Review meeting, or be consulted after the meeting.
- The translators should be present during this session to answer any language-related questions, clarify, and bring in the translation perspective.

Pre-test of the translation:

- Conduct a cognitive pretesting \((n=10)\) of the translated questionnaire to assess its comprehensibility and cultural appropriateness.
- This pretest should involve a sample of the target population who will eventually complete the translated questionnaire.
- Based on the pretest results, consider making necessary adjustments to the translated questionnaire to improve its clarity and cultural relevance.
- If significant issues arise, conducting further cognitive pretesting iterations is advisable.
- In case the cognitive pretests reveal weaknesses of the source questionnaire, please report back to the central team.

Final Review:

- Review and finalise the translated questionnaire based on the feedback and insights gained from the run-through and cognitive pretesting.

Quality Assurance:

- Maintain a comprehensive documentation of the entire translation process, including all versions of the questionnaire, meeting notes, and participant feedback.
- Ensure that the final translated questionnaire is linguistically accurate, culturally appropriate, and equivalent in meaning to the source instrument.

Code, data and materials availability

Upon conclusion of the primary analyses, the data will be made available under the Creative Commons license (CC-BY) with no reservations in the supplementary material of the research publication and/or on a public repository (e.g., FigShare).
Ethics approval

This research protocol was reviewed and approved by the Medical Ethics Committee of the Technical University of Munich (2023-115-S-KK).

Conflicts of interest

The authors declare that the study will be conducted without any financial or commercial relationships that could be explained as a conflict of interest.
Figure 1: Schematic representation of the experimental timeline of the experiment (Monday to Monday).
Tables

<table>
<thead>
<tr>
<th>Reference</th>
<th>Subject group</th>
<th>Level of analysis</th>
<th>Sample size</th>
<th>Methods</th>
<th>Overall findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bierman et al. (2005)</td>
<td>Humans</td>
<td>Observational study</td>
<td>N = 2 (sex unspecified)</td>
<td>Illuminance quantification (lux) using head-mounted device in 1) laboratory settings (5 h) and 2) real-world settings (2 h)</td>
<td>Validation of portable head-mounted device (Daysimeter) to measure light exposure and circadian dosimetry in field settings</td>
</tr>
<tr>
<td>Higgins et al. (2010)</td>
<td>Humans (elderly individuals with dementia and their caregivers)</td>
<td>Case study</td>
<td>N = 2 (1 female, 1 male)</td>
<td>Head-mounted device (Daysimeter) and actimeters simultaneously worn (7 days)</td>
<td>Daysimeter is more reliable device for measuring light exposure at rest compared to a wrist-worn actimeter with light sensors</td>
</tr>
<tr>
<td>Rea et al. (2011)</td>
<td>Humans (female teachers)</td>
<td>Observational study</td>
<td>N = 72 (females)</td>
<td>Comparison of sensitivity of satellite photometers, Daysimeters, and self-reports of light exposure</td>
<td>Daysimeter-measured light exposure does not correlate with a) self-reports on light exposure and b) satellite measured light levels</td>
</tr>
<tr>
<td>Smolders et al. (2013)</td>
<td>Humans (office employees and students)</td>
<td>Observational study</td>
<td>N = 42 (20 males, 22 females)</td>
<td>Daysimeter used to measure variations in light exposure over season. Correlation with self-reported vitality ratings.</td>
<td>Amount of daily light exposure as measured using the Daysimeter correlates with individuals' feelings of vitality, especially during winter months and during mornings</td>
</tr>
<tr>
<td>Bajaj et al. (2011)</td>
<td>Humans (females)</td>
<td>Observational study</td>
<td>N = 132 (females)</td>
<td>Head-mounted device (Daysimeter) light</td>
<td>Self-reported light exposure correlates</td>
</tr>
<tr>
<td>Study</td>
<td>Participants</td>
<td>Study Type</td>
<td>N</td>
<td>Methods</td>
<td>Findings</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>---</td>
<td>----------------------------</td>
<td>------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Hubalek et al. (2010)</td>
<td>Humans (office workers)</td>
<td>Observational study</td>
<td>N = 23 (16 males, 6 females)</td>
<td>Head-mounted device (LuxBlick) light exposure measurement (7 days) and daily diaries on sleep quality</td>
<td>Positive correlation between sleep quality and amounts of light exposure</td>
</tr>
<tr>
<td>Brown et al. (2021)</td>
<td>Humans (college students under forced desynchrony protocols and habitual schedules)</td>
<td>Modelling</td>
<td>N = 174 (sex unspecified)</td>
<td>Tested and trained a neural network used to classify melatonin onset under different circadian schedules</td>
<td>Circadian phase estimation can be obtained by circadian patterns of activity rather than dim-light melatonin onset (DLMO) estimation</td>
</tr>
<tr>
<td>Cheng et al. (2021)</td>
<td>Humans (shift workers)</td>
<td>Modelling</td>
<td>N = 45 (37 females, 8 males)</td>
<td>Actigraphy data and hourly melatonin collected from shift workers. Actigraphy data used as input to model prediction of circadian phase.</td>
<td>Wearable wrist actimeters with light sensors provide better estimation of circadian phase compared to DLMO measurements</td>
</tr>
<tr>
<td>Balajadia et al. (2023)</td>
<td>Humans (students)</td>
<td>Observational study</td>
<td>N = 18 (9 females, 9 males)</td>
<td>Combination of acceptability scales and open-ended questions to test acceptability of corneal-plane light</td>
<td>Participants had modest device acceptability and reported size and weight as main aspects to be</td>
</tr>
</tbody>
</table>
dosimeter (lido) placed laterally on non-prescription glasses, worn for 24 h
improved. Instability of the glasses due to lateral placement of the light logger was also reported

<table>
<thead>
<tr>
<th>van Duijnoven et al. (2017)</th>
<th>Humans</th>
<th>Observational study</th>
<th>N = 21 (12 males, 9 females)</th>
<th>Questionnaires testing participants’ comfort on 6 different devices (including one corneal-plane device placed laterally non-prescription glasses) for 2 h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Participants reported most annoyances for wearing the corneal-plane device compared to other devices in different locations. These complaints mainly were from participants not used to wearing glasses in their daily life</td>
</tr>
</tbody>
</table>

Table 1: Selection of prior literature. Note: In the assessment of sex/gender proportions, no differences were made.
<table>
<thead>
<tr>
<th>Aspect</th>
<th>Assessment modality</th>
<th>Exclusion criterion and cut-off</th>
<th>Timing of Screening</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>Self-report</td>
<td><18 years</td>
<td>Initial screening survey</td>
</tr>
<tr>
<td></td>
<td></td>
<td>>65 years</td>
<td></td>
</tr>
<tr>
<td>Psychiatric and sleep disorders</td>
<td>Self-report</td>
<td>Presence of any</td>
<td>Initial screening survey</td>
</tr>
<tr>
<td>Tobacco and recreational drug use</td>
<td>Self-report</td>
<td>Regular use (1/week or more)</td>
<td>Initial screening survey</td>
</tr>
<tr>
<td>Medication intake</td>
<td>Self-report</td>
<td>Presence of any known to influence photosensitivity</td>
<td>Initial screening survey</td>
</tr>
<tr>
<td>Visual acuity</td>
<td>Self-report</td>
<td>Requirement of prescription glasses during the experimental week</td>
<td>Initial screening survey</td>
</tr>
<tr>
<td>Normal vision</td>
<td>Self-report</td>
<td>History of ocular or retinal diseases, colour blindness</td>
<td>Initial screening survey</td>
</tr>
<tr>
<td>Location during experimental week</td>
<td>Self-report</td>
<td>Exiting local hubs (≥60 km) during weekdays (Monday to Friday) of the experimental week</td>
<td>Initial screening survey</td>
</tr>
<tr>
<td>Shift work</td>
<td>Self-report</td>
<td>Shiftwork in the past two months</td>
<td>Initial screening survey</td>
</tr>
<tr>
<td>Parenthood</td>
<td>Self-report</td>
<td>Parent of a child <1 year old</td>
<td>Initial screening survey</td>
</tr>
<tr>
<td>Full-time employment</td>
<td>Self-report</td>
<td>Unemployment, leave, working part-time (<80%), studying</td>
<td>Initial screening survey</td>
</tr>
</tbody>
</table>

Table 2: Inclusion and exclusion criteria.
<table>
<thead>
<tr>
<th>Read-out</th>
<th>Measurement modality</th>
<th>Sampling frequency</th>
<th>Timing of sampling</th>
<th>N per participant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective individual light exposure</td>
<td>Light logger</td>
<td>Continuous measurement over 7 days</td>
<td>Every 10 seconds</td>
<td>Approx. 10080</td>
</tr>
<tr>
<td>Objective activity/rest</td>
<td>Actimeter</td>
<td>Continuous measurement over 7 days</td>
<td>Every 10 seconds</td>
<td>Approx. 10080</td>
</tr>
<tr>
<td>Chronotype</td>
<td>Munich Chronotype Questionnaire</td>
<td>1 measurement over 7 days</td>
<td>First experimental day</td>
<td>1</td>
</tr>
<tr>
<td>Subjective sleep</td>
<td>Consensus Sleep Diary (CSD)</td>
<td>7 measurements over 7 days</td>
<td>Every morning</td>
<td>7</td>
</tr>
<tr>
<td>Subjective hourly light exposure and activities</td>
<td>Modified Harvard Light Exposure Questionnaire (modified H-LEA)</td>
<td>7 measurements over 7 days</td>
<td>Every evening</td>
<td>7</td>
</tr>
<tr>
<td>Subjective wellbeing</td>
<td>WHO-5 wellbeing index (WHO-5)</td>
<td>7 measurements over 7 days</td>
<td>Every evening</td>
<td>7</td>
</tr>
<tr>
<td>Exercise frequency and type</td>
<td>Exercise log</td>
<td>7 measurements over 7 days</td>
<td>Every evening</td>
<td>7</td>
</tr>
<tr>
<td>Subjective light exposure</td>
<td>Modified Harvard Light Exposure Questionnaire (modified H-LEA). Experience</td>
<td>24 measurements over 7 days</td>
<td>4 times/day</td>
<td>22</td>
</tr>
<tr>
<td>Study Parameter</td>
<td>Methodology</td>
<td>Frequency</td>
<td>Duration</td>
<td></td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Subjective alertness</td>
<td>Karolinska Sleepiness Scale (KSS). Experience sampling: punctual measurement on participants' current light conditions</td>
<td>22 measurements over 7 days</td>
<td>4 times/day</td>
<td></td>
</tr>
<tr>
<td>Subjective mood</td>
<td>MoodZoom questionnaire</td>
<td>22 measurements over 7 days</td>
<td>4 times/day</td>
<td></td>
</tr>
<tr>
<td>Experience log</td>
<td>Custom-made questionnaire and open-ended questions about positive and negative experiences wearing the light logger</td>
<td>Continuous measurement over 7 days</td>
<td>Throughout the experiment</td>
<td>Depending on participant</td>
</tr>
<tr>
<td>Wear log</td>
<td>Custom-made questionnaire about time of taking the device off and putting it back on</td>
<td>Continuous measurement over 7 days</td>
<td>Throughout the experiment</td>
<td>Depending on participant</td>
</tr>
<tr>
<td>Subjective light sensitivity</td>
<td>Visual Light Sensitivity Questionnaire 8 (VLSQ-8)</td>
<td>1 measurement over 7 days</td>
<td>Last experimental day</td>
<td>1</td>
</tr>
<tr>
<td>User experience of wearing the light logger</td>
<td>Open-ended questions</td>
<td>1 measurement over 7 days</td>
<td>Last experimental day</td>
<td>1</td>
</tr>
<tr>
<td>Sleep environment</td>
<td>Assessment of sleep environment</td>
<td>1 measurement over 7 days</td>
<td>Last experimental day</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Subjective light exposure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>----------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>questionnaire (ASE)</td>
<td>Light Exposure Behaviour Assessment (LEBA)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 measurement over 7 days</td>
<td>Last experimental day</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Measurement schedule.
<table>
<thead>
<tr>
<th>Measurement modality</th>
<th>Derived measure and unit</th>
<th>Definition</th>
<th>Number of measurements per participant</th>
<th>Pre-processing</th>
<th>Linked confirmatory analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective light exposure at three sites</td>
<td>Melanopic EDI (lux)</td>
<td>Weighted spectral irradiance</td>
<td>Depending on participant</td>
<td>1. Removal of non-wear times ≥ 10 minutes after visual inspection and if probability score between non-wear sources ≥ 0.66 2. Removal of single day if 20% data is missing during given day between Tuesday and Sunday 3. Removal of participant if missing data for entire day between Tuesday and Sunday</td>
<td>H1, H2 & H3</td>
</tr>
<tr>
<td>Subjective light exposure</td>
<td>Rating – different modified H-LEA categories</td>
<td>Perceived light exposure</td>
<td>7</td>
<td>1. Removal of hours where entry is missing 2. Exclusion of secondary light source for hourly each entry</td>
<td>H1</td>
</tr>
<tr>
<td>Chronotype</td>
<td>MCTQ</td>
<td>Chronotype</td>
<td>1</td>
<td>Calculation on MSFsc</td>
<td>H2</td>
</tr>
</tbody>
</table>

Table 5: Primary outcome measures
References

Didikoglu, A., Mohammadian, N., Johnson, S., Van Tongeren, M., Wright, P., Casson, A. J., Brown, T.

https://doi.org/10.1016/j.jad.2016.06.065

https://doi.org/10.3233/THC-161258

https://doi.org/10.1016/S1470-2045(19)30455-3

https://doi.org/10.1016/j.cobeha.2019.06.006

https://doi.org/10.1111/cote.12289
