
 1 

Title: Host-Microbe Multiomic Profiling Reveals Age-Dependent COVID-19 1 

Immunopathology 2 

 3 

One sentence summary: We observed age-dependent immune dysregulation at the 4 

transcriptional, protein and cellular levels, manifesting in an imbalance of inflammatory responses 5 

over the course of hospitalization, and suggesting potential new therapeutic targets. 6 

 7 

Authors: 8 

Hoang Van Phan1†, Alexandra Tsitsiklis1†, Cole P. Maguire2, Elias K. Haddad3, Patrice M. Becker4, 9 

Seunghee Kim-Schulze5, Brian Lee5, Jing Chen6,7, Annmarie Hoch6, Harry Pickering8, Patrick Van 10 

Zalm6, Matthew C. Altman9, Alison D. Augustine4, Carolyn S. Calfee1, Steve Bosinger10, Charles 11 

Cairns3, Walter Eckalbar1, Leying Guan11, Naresh Doni Jayavelu9, Steven H. Kleinstein12, Florian 12 

Krammer5, Holden T. Maecker13, Al Ozonoff6, Bjoern Peters14, Nadine Rouphael10, IMPACC 13 

Network, Ruth R. Montgomery12, Elaine Reed8, Joanna Schaenman8, Hanno Steen6, Ofer Levy 6, 14 

Joann Diray-Arce6, *Charles R. Langelier1,15 15 

 16 

Affiliations: 17 
1University of California San Francisco 18 
2University of Texas Austin 19 
3Drexel University/Tower Health Hospital 20 
4National Institute of Allergy and Infectious Diseases/National Institutes of Health 21 
5Icahn School of Medicine at Mount Sinai 22 
6Precision Vaccines Program, Boston Children’s Hospital 23 
7Research Computing, Department of Information Technology, Boston Children’s Hospital 24 
8David Geffen School of Medicine, University of California Los Angeles 25 
9Benaroya Research Institute 26 
10Emory University 27 
11Yale School of Public Health 28 
12Yale School of Medicine 29 
13Stanford University 30 
14La Jolla Institute for Immunology 31 
15Chan Zuckerberg Biohub San Francisco 32 

 33 
†These authors contributed equally 34 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 13, 2024. ; https://doi.org/10.1101/2024.02.11.24301704doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2024.02.11.24301704
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

*Correspondence: chaz.langelier@ucsf.edu 35 

Abstract: 36 

Age is a major risk factor for severe coronavirus disease-2019 (COVID-19), yet the mechanisms 37 

responsible for this relationship have remained incompletely understood. To address this, we 38 

evaluated the impact of aging on host and viral dynamics in a prospective, multicenter cohort of 39 

1,031 patients hospitalized for COVID-19, ranging from 18 to 96 years of age. We performed 40 

blood transcriptomics and nasal metatranscriptomics, and measured peripheral blood immune 41 

cell populations, inflammatory protein expression, anti-SARS-CoV-2 antibodies, and anti-42 

interferon (IFN) autoantibodies. We found that older age correlated with an increased SARS-CoV-43 

2 viral load at the time of admission, and with delayed viral clearance over 28 days. This 44 

contributed to an age-dependent increase in type I IFN gene expression in both the respiratory 45 

tract and blood. We also observed age-dependent transcriptional increases in peripheral blood 46 

IFN-g, neutrophil degranulation, and Toll like receptor (TLR) signaling pathways, and decreases 47 

in T cell receptor (TCR) and B cell receptor signaling pathways. Over time, older adults exhibited 48 

a remarkably sustained induction of proinflammatory genes (e.g., CXCL6) and serum chemokines 49 

(e.g., CXCL9) compared to younger individuals, highlighting a striking age-dependent impairment 50 

in inflammation resolution. Augmented inflammatory signaling also involved the upper airway, 51 

where aging was associated with upregulation of TLR, IL17, type I IFN and IL1 pathways, and 52 

downregulation TCR and PD-1 signaling pathways. Metatranscriptomics revealed that the oldest 53 

adults exhibited disproportionate reactivation of herpes simplex virus and cytomegalovirus in the 54 

upper airway following hospitalization. Mass cytometry demonstrated that aging correlated with 55 

reduced naïve T and B cell populations, and increased monocytes and exhausted natural killer 56 

cells. Transcriptional and protein biomarkers of disease severity markedly differed with age, with 57 

the oldest adults exhibiting greater expression of TLR and inflammasome signaling genes, as well 58 

as proinflammatory proteins (e.g., IL6, CXCL8), in severe COVID-19 compared to mild/moderate 59 

disease. Anti-IFN autoantibody prevalence correlated with both age and disease severity. Taken 60 

together, this work profiles both host and microbe in the blood and airway to provide fresh insights 61 

into aging-related immune changes in a large cohort of vaccine-naïve COVID-19 patients. We 62 

observed age-dependent immune dysregulation at the transcriptional, protein and cellular levels, 63 

manifesting in an imbalance of inflammatory responses over the course of hospitalization, and 64 

suggesting potential new therapeutic targets. 65 

  66 
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Main text: 67 

Introduction: 68 

 Age is a major risk factor for severe Coronavirus disease 2019 (COVID-19), with older 69 

adults experiencing markedly greater rates of acute respiratory distress syndrome (ARDS) and 70 

death compared to younger indiviudals1–3. Even with vaccination rates above 90%, adults over 75 71 

years of age are 140 times more likely to die if infected with SARS-CoV-24. Despite these striking 72 

epidemiological associations, the biological mechanisms underlying the impact of aging on 73 

COVID-19 remain incompletely understood. 74 

 Observational cohort studies of healthy adults5,6 demonstrate that aging leads to baseline 75 

increases in plasma concentrations of proinflammatory cytokines5,7, several of which (e.g., IL6) 76 

are well-known biomarkers of COVID-19 severity, suggesting potential connections between the 77 

pathophysiology of human aging and COVID-197. Juxtaposed against this state of aging-78 

associated inflammation are functional impairments in innate and adaptive immune signaling, 79 

observed during vaccination of aged individuals8–11. Furthermore, recent human in vitro data 80 

indicates that aging results in impaired production of type I interferons in monocytes and dendritic 81 

cells following Toll-like receptor (TLR) ligation, suggesting disrupted innate immunity12–16.  82 

 Comparative upper respiratory tract transcriptional profiling has demonstrated that mild 83 

SARS-CoV-2 infection induces a more robust innate and adaptive immune response in children 84 

compared to adults17,18. Paradoxically, amongst adults hospitalized for COVID-19, a more robust 85 

immune response underlies the pathogenesis of severe disease, suggesting more complicated 86 

relationships between aging and host defense for older individuals. Adding further complexity, 87 

and highlighting the need for additional investigation, is the association between increased age, 88 

development of anti-interferon autoantibodies (autoAbs), and disease severity2,19,20. 89 

 The pathophysiology of COVID-19 involves a dynamic relationship between SARS-CoV-90 

2 and the host immune response21,22, yet studies of COVID-19 and aging have assessed each 91 

independently. Furthermore, heterogeneity in human physiology necessitates a large sample size 92 
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to optimally study aging and host immunity. To address these gaps, we leverage data from 1,031 93 

adults hospitalized for COVID-19 enrolled in the IMPACC (IMmunoPhenotyping Assessment in a 94 

COVID-19 Cohort) cohort2,23, and perform a multiomic, host/microbe systems immunoprofiling 95 

study of aging. 96 

 From 2,523 longitudinally collected blood and nasal swab samples, we investigate the 97 

impact of aging on SARS-CoV-2 viral load, SARS-CoV-2 antibody (Ab) levels, host gene 98 

expression, inflammatory protein expression, immune cell populations, and the nasal microbiome. 99 

Our study leverages a robust multicenter cohort to gain new insights into aging and immunity by 100 

integrating host and microbe data. This work builds on landmark clinical studies demonstrating 101 

that age is a major risk factor for COVID-19 severity1–3, assesses the generalizability of early 102 

translational studies that included smaller numbers of study participants7,12,24,25, and generates 103 

fresh insights into age-dependent COVID-19 pathophysiology that could assist in developing age-104 

specific therapeutic interventions and biomarkers of disease severity. 105 

 106 

Results: 107 

Study cohort 108 

We analyzed blood and nasal swab specimens from 1,031 adults with COVID-19 enrolled 109 

in the IMPACC cohort from 20 hospitals across the United States2,23 (Fig. 1, Supp. Table 1). 110 

Participants were grouped into quintiles based on age for analyses (18-46, 47-54, 55-62, 63-70, 111 

and 71-96 years old), ranging from 187 to 223 participants (median 206 participants) per age 112 

group (Fig. 2a). We analyzed age distributions across five previously defined COVID-19 disease 113 

trajectory groups2, ranging from mild disease with brief length of hospital stay (TG1) to severe 114 

disease and death (TG5). We found that advanced age was significantly associated with disease 115 

trajectory group (Fig. 2b) and mortality (Fig. 2c). To investigate host immunologic and microbial 116 

features associated with age, we employed a wide range of assays at baseline (within 72 hours 117 

of hospital admission) and longitudinally post-hospital admission (Fig. 1, Methods). These 118 
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included transcriptional profiling of PBMCs and nasal swabs, soluble serum immune protein 119 

profiling, whole blood mass cytometry (CyTOF), nasal metatranscriptomics, SARS-CoV-2 IgG 120 

assays, and anti-IFN-a autoAb measurements. 121 

 122 

 123 

Fig. 1: Graphical study overview. This study evaluated 1,031 COVID-19 patients between the ages of 18 and 96 124 

enrolled in the IMPACC cohort at 20 hospitals across the United States. Blood (PBMCs, plasma and serum) and nasal 125 

swab samples were collected at up to 6 visits over 28 days and processed for RNA sequencing, proteomics, mass 126 

cytometry, and serology. 127 

 128 
Aging is associated with higher SARS-CoV-2 viral load, impaired viral clearance, and lower 129 

SARS-CoV-2 antibody levels 130 

 Older adults had a significantly higher SARS-CoV-2 viral load at Visit 1, measured in reads 131 

per million (rpM) from nasal swab RNA sequencing (P = 0.0011, Fig. 2d), a measurement that 132 

highly correlated with qPCR cycle threshold (P < 2.2e-16, Supp. Fig. 1). This age-related increase 133 

in viral load was not explained by differences in time from symptom onset (Supp. Fig. 2). 134 

Longitudinal analysis also revealed significant differences in viral load dynamics, with the oldest 135 

adults demonstrating reduced viral clearance compared to the youngest adults (P = 0.0024, Fig. 136 
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2e). We also assessed anti-SARS-CoV-2 receptor binding domain (RBD) IgG levels across the 137 

five age groups, and found that the oldest adults had lower levels at Visit 1 (Supp. Fig. 3a) and 138 

lower Ab production over time (Supp. Fig. 3b). 139 

 140 

 141 

Fig. 2: Older adults have more severe COVID-19 and higher SARS-CoV-2 viral loads. (a) Age distribution of the 142 

participant cohort. (b, c) Box plot showing the relationship between patients’ age and (b) trajectory group severity or (c) 143 

mortality. (d) Nasal swab SARS-CoV-2 viral load at Visit 1 (reads per million (rpM) measured by metatranscriptomics) 144 

in each age group. In (b-d), P-values were calculated using Kruskal-Wallis test. (e) Nasal swab SARS-CoV-2 viral load 145 

over time in each age group. P-value was calculated with generalized additive mixed effects modeling. 146 

  147 
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Age-dependent differences in immune cell populations 148 

 We quantified differences in proportions of immune cell populations in the peripheral blood 149 

by mass cytometry (CyTOF) to assess whether aging altered cell frequencies23. Using a panel of 150 

43 Abs designed to identify cell lineages in whole blood samples from Visit 1, we found 21 cell 151 

types (Fig. 3a) significantly associated with participant age (adjusted P < 0.05, Fig. 3b). Increased 152 

age correlated with higher proportions of circulating classical monocytes (CD14+ CD16-), non-153 

classical monocytes (CD14- CD16+), and intermediate monocytes (CD14+ CD16+). Terminally 154 

differentiated/exhausted natural killer (NK) cell (CD56low CD16hi CD57hi) proportions also 155 

increased with age, as did activated CD4+ T cells and central memory (CM) CD8+ T cells (Fig. 156 

3b, c). In contrast, older adults had lower proportions of naïve CD8+ T cells, naïve B cells, gamma-157 

delta (gd) T cells, and plasmablasts (Fig. 3c). Finally, we found that the age-related differences in 158 

cell type frequencies were not affected by SARS-CoV-2 viral load (Supp. Fig. 4). 159 
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 160 

Fig. 3: Aging alters immune cell populations during COVID-19. (a) Uniform Manifold Approximation and Projection 161 

(UMAP) plot highlighting blood cell types analyzed by CyTOF. (b) Bar plot depicting blood cell types that are upregulated 162 

(red) or downregulated (blue) with age at Visit 1. “gd T cell” stands for gd T cell. (c) Scatter plots depict centered log 163 

ratio (CLR) transformed proportions of CD14+CD16+ monocytes and naïve CD8 T cells as a function of age. P values 164 

were calculated using linear modeling with Benjamini-Hochberg correction. 165 

 166 

Age-dependent changes in PBMC gene expression at the time of hospitalization 167 

 Next, we performed PBMC transcriptional profiling and identified 3,763 genes significantly 168 

associated with age at baseline (Visit 1), controlling for sex and disease severity (see Methods) 169 

(adjusted P < 0.05, Fig. 4a). Gene set enrichment analysis (GSEA) revealed upregulation of 170 
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several innate immune-related pathways in older participants, including IFN-a/b and TLR 171 

cascades, as well as IFN-g signaling (Fig. 4b). In contrast, several adaptive immunity-related 172 

pathways were downregulated in older individuals, such as B cell receptor (BCR) signaling, T cell 173 

receptor (TCR) signaling, and PD1 signaling. 174 

 175 

Increased activation of type I interferon signaling in older adults  176 

 Prior studies have demonstrated a direct relationship between SARS-CoV-2 viral load and 177 

IFN-stimulated gene (ISG) expression17,26. We therefore hypothesized that the strong positive 178 

correlation between age and viral load (Fig. 2e) might contribute to the upregulation of innate 179 

immunity genes and pathways that we observed in older adults. To test this hypothesis, we 180 

repeated the differential expression and GSEA analyses while controlling for SARS-CoV-2 viral 181 

load. Age-related increases in IFN-g, TLR signaling, and neutrophil degranulation remained 182 

significant. IFN-a/b, IL2, and caspase activation signaling, however, lost statistical significance, 183 

suggesting that the stronger activation of these pathways in older patients was due to the age-184 

related increase in viral load. 185 

 To assess whether our observations were specific for COVID-19 or reflected general 186 

effects of aging, we compared our GSEA results against public data from 14,983 healthy adults 187 

across the age spectrum5. While we observed age-related upregulation of some pathways (e.g., 188 

IFN-g and TLR signaling) in both our data and the healthy controls (Supp. Fig. 5a), other pathways 189 

were uniquely upregulated in the context of COVID-19 (e.g., caspase activation, TRAF6-mediated 190 

IRF7 activation) (Supp. Data 3). Similarly, age-related downregulation of TCR and BCR signaling, 191 

as well as several other pathways, was unique to COVID-19 (Supp. Fig. 5b). 192 

 193 

Age-dependent differences in the longitudinal dynamics of PBMC gene expression 194 
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 10 

 We next performed a longitudinal analysis of PBMC transcriptomics data over 28 days 195 

following hospital admission to identify genes that exhibited age-dependent differences in 196 

temporal dynamics, while controlling for participants’ sex and severity trajectory group. Using 197 

linear mixed effects modeling, we identified 2,737 genes that had different longitudinal dynamics 198 

across age quintiles (Fig. 4c, Supp. Data 5). Several groups of genes demonstrated marked 199 

differences in expression dynamics. For example, the expression of MHC class II genes (e.g., 200 

HLA-DRA) increased over time post-hospitalization in all age groups, but the rate of increase was 201 

greater in younger participants (Fig. 4d, e, Supp. Fig. 6). In contrast, the expression of MHC class 202 

I genes (e.g., HLA-A) decreased over time across all five age groups, but the rate of decrease 203 

was greater in older participants. TCR signaling genes (e.g., CD3E, LAT) were globally 204 

upregulated over time, however their induction was notably attenuated in the oldest versus 205 

youngest age quintiles. 206 

 The longitudinal dynamics of several canonical inflammatory genes also differed between 207 

age groups. For instance, the expression of CXCL6 increased over the course of hospitalization 208 

in the oldest age group, while in younger participants its expression decreased markedly. In 209 

contrast, expression of the anti-inflammatory gene IL10RA in the youngest participants increased 210 

over time to a much greater extent compared to the oldest participants, suggesting both greater 211 

activation and impaired attenuation of immune signaling with advanced age. 212 
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 12 

Fig. 4: Aging leads to changes in PBMC gene expression during COVID-19. (a) Volcano plot highlighting genes 214 

associated with age at Visit 1 in PBMC RNA-seq data. (b) Plot demonstrating the normalized enrichment score of select 215 

Reactome pathways associated with age at Visit 1, with and without controlling for viral load, in PBMC samples. (Full 216 

results are tabulated in Supp. Data 1 and 2.) P values in (a, b) were calculated with limma’s linear model and Benjamini-217 

Hochberg correction. (c) Heatmap representing the temporal slopes (i.e., change in gene expression per 1 day) of 218 

2,812 genes that differ longitudinally between the 5 age groups (adjusted P < 0.05). (d) Heatmaps representing the 219 

temporal slopes of select MHC, inflammatory, and TCR signaling genes from (c). (e) Plots demonstrating the temporal 220 

dynamics of 6 example genes from (g). P values were calculated using linear mixed effects modeling and Benjamini-221 

Hochberg correction. (Full temporal dynamics plots with confidence intervals are provided in Supp. Fig. 6.) 222 

 223 

Age-dependent differences in cytokine and chemokine levels upon hospitalization and 224 

over time 225 

 The impact of aging on immune signaling in COVID-19 was also evident at the protein 226 

level. Analysis of proximity extension assay (Olink) protein data from serum samples identified 43 227 

proteins that significantly correlated with age at the time of hospital admission (Fig. 5a, b, Supp. 228 

Fig. 7a). Of these, 31 increased with age, and the protein with the greatest effect size was CXCL9, 229 

a T-cell chemoattractant induced by IFN-g and produced by neutrophils and macrophages6. 230 

Twelve proteins significantly decreased with age, including TNFSF11, which is involved in the 231 

regulation of T cell-dependent immune responses and group 2 innate lymphoid cell-mediated type 232 

2 immunity27, and SIRT2, which may attenuate aging-associated inflammation through de-233 

acetylation of the NLRP3 inflammasome28. 234 

 Based on prior work17, we hypothesized that aging might affect the relationship between 235 

protein expression and viral load. Consistent with this idea, we identified eight cytokines and 236 

chemokines whose expression levels correlated with SARS-CoV-2 viral load (Fig. 5c), and 237 

observed differences in this relationship between the oldest and youngest age groups. For 238 

instance, expression of IL10, a key anti-inflammatory cytokine, increased more strongly in 239 
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younger versus older adults in response to viral load. CX3CL1, a chemoattractant of T cells and 240 

monocytes, exhibited a similar relationship (Fig. 5c). 241 

 We next evaluated the longitudinal dynamics of cytokine/chemokine expression in the 242 

serum after hospitalization (Fig. 5d). The expression of several cytokines, such as TNFSF11, 243 

increased steeply over time in younger adults but lagged in the oldest adults (Fig. 5e, Supp. Fig. 244 

7b). Conversely, the expression of several proinflammatory cytokines and chemokines such as 245 

CXCL8, CXCL9 and IL6 decreased rapidly over time in younger adults, while in the oldest adults 246 

expression increased over time (CXCL8, CXCL9) or declined more slowly (IL6) (Fig. 5e). 247 

 248 

 249 

Fig. 5: Aging leads to differences in cytokine and chemokine levels during COVID-19. (a) Bar plot highlighting 250 

proteins that are upregulated (red) or downregulated (blue) with age at Visit 1 (adjusted P < 0.05). (b) Scatter plots of 251 

the normalized protein expression (NPX) of representative proteins, CXCL9 and SIRT2, as a function of age. P values 252 
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are calculated using linear regression and Benjamini-Hochberg correction. (c) Dot plot representing the slope of 253 

cytokine expression versus viral load in the youngest and oldest age quintiles, [18,46] and [71,96], respectively. (d) 254 

Heatmap depicting temporal slopes (i.e., change in protein expression per 1 day) of all cytokines that display age-255 

dependent longitudinal dynamics (adjusted P < 0.05). (e) Plots showing the temporal dynamics of 4 example cytokines 256 

from (d). P values in (d, e) are calculated using linear mixed effects modeling and Benjamini-Hochberg correction. 257 

 258 
Age-dependent changes in respiratory tract gene expression and the airway microbiome 259 

 We next asked whether aging was associated with changes in host gene expression and 260 

the upper airway microbiome (including virome) using nasal swab metatranscriptomics. We 261 

identified 913 host genes that were significantly associated with age (Fig. 6a), representing 262 

several key immune signaling pathways (Fig. 6b). TLR signaling, which plays an important role in 263 

microbial recognition, was upregulated with age, as were genes related to IFN-α/β, IL1, IL4, IL13, 264 

IL10, IL17, and caspase activation signaling. In contrast, T cell-related pathways (TCR signaling, 265 

co-stimulation by the CD28 family, and PD1 signaling) were downregulated with age, similar to 266 

our observations in peripheral blood. In silico prediction of upstream cytokine activation states 267 

demonstrated age-related activation of TNF, IL6, IFN-g, IL1A/B, IL22 and CSF1 (Fig. 6c). 268 

 Our study design enabled assessment of inflammatory pathways across anatomic 269 

compartments. Thus, we were interested in the extent to which gene expression in the blood and 270 

the upper respiratory tract was coordinated. To this end, we calculated the Pearson’s correlation 271 

coefficients of gene expression between matched PBMC and nasal samples in the youngest 272 

group, and separately in the oldest group. We found 52 genes that had relatively high correlation 273 

coefficients in both groups, in particular those related to type I IFN signaling (e.g., IFI6, IFI44, 274 

IFIT3) and antigen presentation (HLA genes) (Fig. 6d). 275 

 As TLR pathways in the airway were strongly upregulated with age, we asked whether 276 

this could be due to differences in SARS-CoV-2 viral load and/or the nasal microbiome. We found 277 

that at Visit 1, the total bacterial load correlated with both ISG and TLR gene expression, while 278 

SARS-CoV-2 viral load only correlated with ISG expression (Fig. 6e). We thus considered whether 279 
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variations in bacterial load across the age span might explain the observed age-related TLR 280 

signaling differences, however no variation was found (Supp. Fig. 8). 281 

 We also considered whether age-related differences in specific taxa within the airway 282 

microbiome might contribute to the aforementioned differences in TLR signaling. 283 

Metatranscriptomic analysis identified only one significant genus, Lawsonella, whose abundance 284 

decreased with age (Fig. 6f). Lawsonella abundance positively correlated with TLR gene 285 

expression across all age groups, however, demonstrating that it did not account for the age-286 

related upregulation in TLR signaling (Fig. 6g). Lastly, we evaluated the upper respiratory tract 287 

virome, and observed reactivation of herpes simplex virus and cytomegalovirus over the course 288 

of hospitalization in the oldest age quintile, but not in younger participants (Fig. 6h). This 289 

suggested that older adults may have less capacity to maintain innate immune control of latent 290 

viral infections. 291 
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 292 

Fig. 6: Aging changes upper respiratory tract gene expression and the airway microbiome in COVID-19. (a) 293 

Volcano plot depicting genes associated with age at Visit 1 in nasal swab metatranscriptomics data. (b) Normalized 294 

enrichment scores of select Reactome pathways associated with age at Visit 1, with (right) and without (left) controlling 295 

for viral load, in nasal samples. (c) Bar plot depicting cytokines predicted by Ingenuity Pathway Analysis to be 296 

upregulated with age in nasal samples. (d) Scatter plot depicting the Pearson’s correlation coefficient of gene 297 
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expression between PBMC and nasal samples. Each dot indicates the correlation coefficient between PBMC 298 

expression and nasal expression of a gene, in the youngest (x-axis) and oldest (y-axis) age group. The black dots mark 299 

the genes with correlation coefficients > 0.5 in both age groups (n = 52 genes). (e) Dot plot highlighting correlations 300 

between SARS-CoV-2 viral load (log-transformed reads per million (rpM)), total bacterial abundance (log-transformed 301 

rpM), interferon stimulated gene (ISG) expression score and Toll like receptor (TLR) gene expression score. (f) Relative 302 

abundance of Lawsonella (rpM) across the age quintiles. In (f, g), P values were calculated with one-way ANOVA test. 303 

(g) Correlation between Lawsonella relative abundance and TLR gene expression across the age quintiles. P values 304 

were calculated using the test of association with Pearson’s correlation coefficient and adjusted with Benjamini-305 

Hochberg correction. (h) Percentages of cases with herpes simplex virus (HSV) or cytomegalovirus (CMV) transcript 306 

detection in the youngest versus oldest age quintiles. The number on top of each bar indicates the number of positive 307 

cases over the number of total samples. P-values were calculated by Fisher exact test. 308 

 309 

Relationships between aging, immune response, and COVID-19 severity  310 

 Previous studies have established that severe COVID-19 involves a dysregulated host 311 

response characterized by inappropriate activation of inflammatory and immunoregulatory 312 

pathways29–31. We therefore sought to examine the intersection of aging, COVID-19 severity, and 313 

host immune responses by assessing PBMC gene expression differences at Visit 1 between 314 

participants with mild/moderate (baseline respiratory severity ordinal scale2 (OS) 3-4) and severe 315 

(baseline OS 5-6) COVID-19, within the youngest and oldest age groups (Fig. 7a). 316 

 Several immune signaling pathways were associated with disease severity in an age-317 

dependent manner. For example, only in the oldest age quintile was severe COVID-19 associated 318 

with upregulation of IL3, IL5 and GM-CSF, IL4 and IL13, TLR, and NRLP3 inflammasome 319 

signaling pathways in the upper airway. Similarly in the blood, we found that the IL1 signaling 320 

pathway was only upregulated in severe COVID-19 in the oldest adults. We also identified several 321 

pathways that associated with COVID-19 severity independent of age. For example, in PBMCs 322 

from both the youngest and oldest participants, severe disease was associated with upregulation 323 

of neutrophil degranulation genes, and downregulation of pathways related to TCR, IFN-α/β, IFN-324 

g, IL2 and PD1 signaling. 325 
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 Assessment at the protein level provided further insights regarding the immunological 326 

intersection of aging and COVID-19 severity (Fig. 7b). Notably, we found that the expression of 327 

several canonical proinflammatory cytokines and chemokines, such as IL6, oncostatin M (OSM), 328 

CXCL8 and CXCL9, was uniquely upregulated with disease severity in the oldest adults. 329 

Increased expression of the anti-inflammatory cytokines TGF-b1 and IL10 in severe disease was 330 

also specific to the oldest age quintile. Serum concentrations of several other proteins increased 331 

in severe disease independent of age, including CCL7, a leukocyte chemoattractant32, S100A12, 332 

a neutrophil-derived cytosolic pro-inflammatory protein33, and CD274 (PDL1), an immune 333 

checkpoint inhibitor. Similarly, we found that severity was associated with reduced expression of 334 

several cytokines regardless of age, including IL12B and LTA (TNF-b). We tested whether the 335 

differences in SARS-CoV-2 viral load could significantly influence the results, and found that they 336 

did not (Supp. Fig. 9). 337 

 Finally, we asked whether anti-IFN-a autoAb prevalence was associated with aging and 338 

COVID-19 severity. We found a significant positive correlation between age and anti-IFN-α 339 

autoAb prevalence at Visit 1 (Fig. 7c), and a greater prevalence of the autoAbs in participants 340 

with severe disease (Fig. 7d). The presence of anti-IFN-α autoAbs was also associated with 341 

impaired ISG expression (Supp. Fig. 10). 342 
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 343 

Fig. 7: Aging and COVID-19 severity. (a, b) Dot plots highlighting a) select Reactome pathways in PBMC or nasal 344 

RNA-seq data, and b) serum proteins (Olink) that were upregulated in severe participants (baseline respiratory severity 345 

ordinal scale 5-6) compared to mild/moderate (ordinal scale 3-4) participants at Visit 1, stratified by age group (youngest 346 

or oldest). P values in (a, b) were calculated with linear modeling and Benjamini-Hochberg correction. (c) Box plot 347 

demonstrating association between age and presence of anti-IFN-α autoAbs in the 835 participants with available 348 

autoAb data at Visit 1. P value was calculated with the Wilcoxon rank-sum test. (d) Bar plot demonstrating the 349 

percentage of severe and mild/moderate participants who had anti-IFN-α antibodies (9/542 participants, 1.66% in 350 

mild/moderate; 20/293 participants, 6.83% in severe). P-value was calculated using the Chi-squared test. 351 

 352 

Integrated analysis of protein and transcriptomics data 353 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 13, 2024. ; https://doi.org/10.1101/2024.02.11.24301704doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.11.24301704
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20 

 Finally, we sought to integrate findings across genes and proteins, and between the blood 354 

and airway compartments. Integrated network analysis of statistically significant age-associated 355 

proteins and age-associated genes from the blood identified three prominent nodes related to 356 

chemokine ligand (CCL) signaling, T cell signaling and the cell cycle (Fig. 8a, see Methods). 357 

Additionally, analysis of the ten most significant proteins and their immediately downstream genes 358 

illuminated the complex cross talk between several key immune mediators. For example, CXCL9 359 

activates the genes CXCR3 and CXCR5, and inhibits the gene DPP4 (also known as CD26), 360 

which is upregulated on T cells after activation34 (Supp. Fig. 11). Of these, CXCL9 was positively 361 

associated with age, while the three downstream genes were negatively correlated with age. 362 

 To investigate how aging could potentially affect ligand-receptor interactions in both the 363 

blood and airway, we studied ligands in our protein data that were significantly associated with 364 

age at Visit 1, and examined the expression of the genes that encoded their cognate receptors. 365 

This analysis further highlighted transcriptomic/proteomic concordance and discordance (Fig. 8b). 366 

For example, aging was associated with increased expression of serum CXCL9 and CCL11, but 367 

decreased expression of DPP4, which encodes a receptor for these ligands. In contrast, the 368 

expression of both TNF ligand and its receptors (e.g., TNFRSF1A, TNFRSF1B, LTBR) were 369 

positively associated with age. 370 
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 371 
 372 
Fig. 8: Integrated network analysis of serum cytokine/chemokine and PBMC and nasal transcriptomic data. (a) 373 

Network analysis of serum cytokines and PBMC genes significantly associated with age at Visit 1 using protein-protein 374 

interactions reported in Omnipath. (b) Analysis of ligand-receptor interactions from cytokine data, PBMC and nasal 375 

RNA-seq data. The inner most ring shows the significant cytokines from Visit 1 analysis and their magnitude of their 376 

average change per 1 year of age. The two outer rings illustrated genes that encode known receptors for each cytokine 377 

and their associated change per one year of age. P values for the cytokines were calculated using linear models and 378 

Benjamini-Hochberg correction. *P<0.05, **P<0.01, ***P<0.001. 379 
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 380 

Discussion: 381 

 An effective host response to viral infection depends on potent early innate immune 382 

activation, engagement of adaptive immune effectors, and then, upon effective viral clearance, 383 

attenuation of this inflammatory signaling to prevent excessive tissue and pathologic 384 

consequences35. We observed age-dependent dysregulation of this program at the 385 

transcriptional, protein and cellular levels, manifesting in an imbalance of inflammatory responses 386 

over the course of hospitalization. Our results identify discrete innate and adaptive immune 387 

signaling pathways which are altered with age, suggesting potential targets for therapeutic 388 

intervention. 389 

 The role of type I IFN signaling in age-related immune dysregulation during COVID-19 has 390 

remained unclear, with some reports suggesting impaired induction of ISGs7,15,24 and others 391 

demonstrating the contrary12,25. We found that older age was associated with increased type I IFN 392 

signaling in both the blood and respiratory tract, but that the relationship was principally driven by 393 

differences in SARS-CoV-2 viral load. In contrast, IFN-g signaling, which is associated with poor 394 

prognosis in COVID-19 participants36, was significantly upregulated with age independent of viral 395 

load. 396 

 Several factors likely contribute to higher SARS-CoV-2 viral loads in older adults, including 397 

impaired T and B cell immunity and impaired MHC antigen presentation, each of which we 398 

observed at the transcriptional, protein and cellular levels in our dataset. Delayed viral clearance 399 

due to these age-related factors could facilitate the evolution of novel SARS-CoV-2 variants37,38. 400 

Therefore, it is possible that coronavirus evolution could occur inside the host to a greater extent 401 

in older adults compared to the young, although our study was not designed to test this possibility. 402 

 Older adults had lower proportions of naïve CD8+ T cells and gd T cells, which contribute 403 

to effective clearance of viral pathogens24,39,40. Terminally differentiated/exhausted NK cells, 404 

which are associated with severe COVID-1941, were more prevalent in older adults, as previously 405 
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observed12, as were central memory CD8+ T cells. Impaired T cell signaling in older adults was 406 

also observed at the transcriptional level in both the blood and the upper respiratory tract upon 407 

hospitalization. Longitudinal analyses demonstrated attenuated expression dynamics of TCR 408 

signaling-related genes in the older participants’ blood samples (Fig. 3g, h). We also observed 409 

differences in the relationship between viral load and cytokines important for T cell recruitment in 410 

the oldest versus youngest adults, such as the chemokine CX3CL1. 411 

 Younger adults exhibited a much more robust induction of MHC II gene expression over 412 

the course of hospitalization. This is consistent with a previous study that reported HLA-DR 413 

expression increases over time following symptom onset in young COVID-19 participants, but not 414 

in older ones12. We also found that expression of MHC I genes decreased more rapidly post-415 

hospitalization in the oldest versus the youngest adults. Given that SARS-CoV-2 can subvert 416 

immune responses by reducing MHC I surface levels in infected cells42, our results suggest that 417 

older participants may be even more vulnerable to this viral immune evasion mechanism. 418 

 Evidence of impaired B cell immunity was also observed in the older participants, 419 

consistent with prior studies12,24. Age was associated with reduced expression of genes involved 420 

in BCR signaling at the time of hospitalization. Furthermore, we observed lower proportions of 421 

naïve B cells and plasmablasts in the oldest adults. Functional ramifications of this were evident 422 

in decreased anti-SARS-CoV-2 RBD Ab levels, both upon hospitalization and when assessed 423 

longitudinally over 28 days. 424 

 Effective modulation of inflammatory responses is critical for restoration of immune 425 

homeostasis and mitigation of excessive tissue damage. We found consistent evidence of 426 

prolonged, potentially pathologic inflammatory responses in the oldest adults from transcriptomic 427 

and proteomic analyses. For instance, upon hospitalization, proinflammatory cytokines such as 428 

TNF, IL6, CXCL8, and CXCL9 were higher in the older participants, and continued to increase 429 

over time. In contrast, these cytokines decreased over time in the younger participants. Our 430 

results suggest that age-related changes may exacerbate the overexuberant inflammatory 431 
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signaling in severe COVID-19, an early hypothesis12,24 that has not yet been validated in a large 432 

observational cohort. 433 

 The oldest adults in our cohort had evidence of HSV and CMV reactivation in the airway 434 

over the first 28 days after hospitalization. This may reflect impaired antiviral immune defenses in 435 

older adults exacerbated in the context of SARS-CoV-2 challenge. Furthermore, reactivation of 436 

latent Herpesviridae may contribute to excessive inflammatory responses observed in the older 437 

adults, as has been described in participants with human immunodeficiency virus (HIV) 438 

infection43. 439 

 Advanced age was also associated with upregulation of TLR signaling genes in both the 440 

airway and the blood, independent of SARS-CoV-2 viral load (Fig. 3e, 5b). We found that airway 441 

bacterial load correlated with TLR expression independent of age, and compositional differences 442 

in the microbiome across age groups did not explain this association, suggesting that age-related 443 

increases in TLR gene expression were caused by microbe-independent factors. Consistent with 444 

this idea are studies demonstrating that upregulation of innate immune receptors, including TLRs, 445 

could be an intrinsic feature of inflammaging24,44. 446 

 Severe COVID-19 is characterized by dysregulated, pathologic inflammatory 447 

responses29,45,46. We found that aging was associated with higher expression of several signaling 448 

pathways previously implicated in this pathologic immune dysregulation. For instance, in the 449 

oldest adults, severe COVID-19 was uniquely associated with impaired systemic Type 1 T helper 450 

cell (IL2, GM-CSF) and Type 2 T helper cell (IL5) responses, juxtaposed against hyperactivation 451 

of proinflammatory cytokines such as IL6, OSM, CXCL8, and CXCL9. In the airway, severe 452 

COVID-19 in the oldest age group led to greater NLRP3 inflammasome and TLR activation 453 

compared to the youngest group. These differences raise the possibility that older adults with 454 

severe COVID-19 may respond differently, and perhaps more favorably, to immunomodulatory 455 

therapies directed at certain inflammatory cytokines. 456 
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 We also found that many features of severity-associated immune dysregulation were 457 

conserved across the lifespan, including an impairment in type I IFN signaling in severe disease. 458 

While presence of anti-IFN-α autoAbs was associated with impaired ISG expression and 459 

increased COVID-19 severity, they were detected in < 7% of adults in the oldest age quintile, 460 

suggesting a potentially important, but overall limited contribution to aging-associated COVID-19 461 

severity relative to other immunological factors. 462 

 Our study is the largest molecular assessment of aging and COVID-19 to date (n = 1,031 463 

participants at 20 hospitals across the United States), and one of the few to perform an integrated 464 

assessment of both immune and microbial features, allowing for identification of aging-related 465 

changes at a scale not previously achieved. We conducted multiomic, host/microbe systems 466 

immunoprofiling to assess the longitudinal dynamics of immune responses at the cellular, 467 

transcriptional and protein level in both the blood and airway. In addition, we add to the COVID-468 

19 aging literature by integrating immunological analyses with assessment of both viral and 469 

microbiome dynamics over the course of hospitalization. 470 

 Our findings may have implications for age-specific COVID-19 therapeutic approaches. 471 

For example, a longer duration of antiviral therapy in older adults may be needed to achieve 472 

sufficient viral clearance for infection resolution compared to younger participants, and 473 

immunotherapy regimens may be particularly beneficial in older age, given impaired B cell 474 

responses. In addition, the optimal timing and use of immunomodulatory therapies (such as 475 

corticosteroids) may differ across the age spectrum, given the need to maximize control of 476 

inflammation without compromising the immune response to infection47,48. 477 

 Limitations of our study include the lack of a concurrently enrolled SARS-CoV-2-negative 478 

control group, and the lack of a non-hospitalized COVID-19 group. To partially address the first 479 

limitation, we analyzed publicly available gene expression datasets to incorporate findings from 480 

unrelated, healthy cohorts5. Participants in our current study were enrolled prior to the introduction 481 

of SARS-CoV-2 vaccines, and age-related differences in host immune responses may differ from 482 
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a contemporary cohort due to variation in both vaccination status and the circulating SARS-CoV-483 

2 variants. While this aspect limits extrapolation of our findings to immunized older adults, the 484 

naïve state of our study population was also a strength, as our results are not confounded by prior 485 

vaccination or infection, providing a window into age-related differences in immune response to 486 

a novel emerging viral respiratory pathogen.  487 

 In summary, we find that aging has marked impacts on host immune and viral dynamics 488 

in both recognized and novel ways in hospitalized participants with COVID-19. Notably, older 489 

adults exhibited impaired viral clearance, dysregulated immune signaling, and persistent and 490 

presumably pathologic activation of proinflammatory genes and cytokines.  491 
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Materials and methods: 492 

Patient enrollment and sample collection 493 

 This study leveraged data from the IMPACC cohort2,23, which enrolled participants from 494 

20 hospitals across 15 medical centers in the United States between May 5th, 2020 and March 495 

19th, 2021. Eligible participants were participants hospitalized with SARS-CoV-2 infection 496 

confirmed by RT-PCR and symptoms or signs consistent with COVID-19. The detailed study 497 

design and schedule for clinical data and biologic sample collection, and shared core platform 498 

assessments were previously described23,30. Detailed clinical assessments and sampling of blood 499 

and upper respiratory tract were performed within approximately 72 hours of hospitalization (Visit 500 

1), and on approximately Days 4, 7, 14, 21, 28 after hospital admission. As previously described23, 501 

biological sample collection and processing followed a standard protocol utilized by every 502 

participating academic institution.  503 

 504 

Ethics 505 

 NIAID staff conferred with the Department of Health and Human Services Office for 506 

Human Research Protections (OHRP) regarding potential applicability of the public health 507 

surveillance exception [45CFR46.102(l)(2)] to the IMPACC study protocol. OHRP concurred that 508 

the study satisfied criteria for the public health surveillance exception, and the IMPACC study 509 

team sent the study protocol, and participant information sheet for review, and assessment to 510 

institutional review boards (IRBs) at participating institutions. Twelve institutions elected to 511 

conduct the study as public health surveillance, while three sites with prior IRB-approved 512 

biobanking protocols elected to integrate and conduct IMPACC under their institutional protocols 513 

(University of Texas at Austin, IRB 2020-04-0117; University of California San Francisco, IRB 20-514 

30497; Case Western reserve university, IRB STUDY20200573) with informed consent 515 

requirements. Participants enrolled under the public health surveillance exclusion were provided 516 

information sheets describing the study, samples to be collected, and plans for data de-517 
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identification, and use. Those that requested not to participate after reviewing the information 518 

sheet were not enrolled. In addition, participants did not receive compensation for study 519 

participation while inpatient, and subsequently were offered compensation during outpatient 520 

follow-ups. 521 

 522 

Common statistical analyses framework 523 

 All raw data was obtained from the IMPACC study and are publicly available2,23. QC was 524 

performed by the IMPACC study as previously reported2,23. All data analyses were done in R 525 

v4.0.2. For each data type, we investigated the behavior of features both at Visit 1 (within 72 526 

hours of hospital admission for most of the participants) and longitudinally for scheduled visits 527 

(Visits 1-6, up to 30 days post-hospital admission, both inpatient and outpatient samples, and 528 

excluding escalation samples). For Visit 1 analyses, we used linear modeling with age as a 529 

continuous variable and controlled for sex and baseline respiratory severity. Severity was 530 

assessed using a previously described 7-point severity ordinal scale (OS) based on degree of 531 

respiratory illness at the time of sampling2. 532 

 In the longitudinal analyses, we used age quintiles ([18,46], [47,54], [55,62], [63,70] and 533 

[71,96]), and controlled for sex and disease severity trajectory group (TG), a previously defined 534 

metric of COVID-19 severity over time. Clinical trajectory groups were previously identified and 535 

assigned to all participants in this study2. For longitudinal analysis of SARS-CoV-2 nasal viral load 536 

and serum anti-Spike IgG, we used generalized additive models with mixed effects from the 537 

package gamm4 (v0.2.6) to evaluate the effects of age while controlling for sex and TG. 538 

Generalized additive modeling was preferred for these features due to their non-linear trajectories 539 

as previously reported. For all other data types, we used linear mixed effects models from the 540 

package lme4 (v1.1.25). P values in all analyses were adjusted with Benjamini-Hochberg 541 

correction. 542 

 543 
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Analysis of nasal metagenomics data 544 

 Taxonomic alignments from nasal metagenomics data were obtained from raw fastq files 545 

using the CZ-ID pipeline49, which first removes human sequences via subtractive alignment 546 

against human genome build 38, followed by quality and complexity filtering. Subsequently, 547 

reference-based taxonomic alignment at both the nucleotide and amino acid levels against 548 

sequences in the National Center for Biotechnology Information (NCBI) nucleotide (NT) and non-549 

redundant (NR) databases, respectively, is carried out, followed by assembly of the reads 550 

matching each taxon. Taxa were aggregated to the genus level for analyses. For all analyses 551 

using SARS-CoV-2 viral load, log transformation of total reads per million (rpM) aligned to the 552 

Beta-coronavirus genus was used. 553 

 554 

Analysis of SARS-CoV-2 antibody titers 555 

 Antibody levels against the recombinant SARS-CoV-2 spike protein receptor-binding 556 

domain (RBD) were measured using a research-grade enzyme-linked immunosorbent assay 557 

(ELISA) as described30. The optical density (OD) was measured and the area under the curve 558 

was calculated, considering 0.15 OD as the cutoff. 559 

 Longitudinal analysis of SARS-CoV-2 viral load was performed using the gamm4 function 560 

from the gamm4 package (v0.2.6), using the following formula: 561 

viral_load ~ s(event_date,bs="cr") + s(event_date,bs="cr",by=age_group) + age_group + 562 

trajectory_group + sex 563 

with random effects (1|site/pid). In the formula, viral_load is the log-transformed rpM counts of 564 

SARS-CoV-2 as measured by nasal metatranscriptomics, event_date was the number of days 565 

post hospitalization, age_group was the participant's age quintile ([18,46], [47,54], [55,62], 566 

[63,70], [71,96]), TG was the participant’s trajectory group, site was the participant’s enrolment 567 

site and pid was the participant ID. 568 

 569 
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Analysis of PBMC and nasal RNA-seq data 570 

 PBMC and nasal RNA-seq libraries were sequenced on a NovaSeq 6000 (Illumina) at 100 571 

bp paired-end read length. The sequencing data was aligned using STAR aligner v2.4.2a and 572 

v.2.4.350 and GRCh38 reference genome (Ensembl releases 91 and 100). Gene count tables 573 

were generated using htseq-count v0.4.1 and v0.4.251. 574 

 For all RNA-seq analyses, we retained protein-coding genes that had a minimum of 10 575 

counts in at least 20% of the samples. We normalized the gene counts using the voom function 576 

(normalize.method = “quantile”) from the limma package v3.46.052, fitted a linear model for the 577 

gene expression with lmFit function (default settings), calculated the empirical Bayes statistics 578 

with ebayes function (default settings), and calculated the P values for differential expression with 579 

Benjamini-Hochberg multiple comparison correction. For Visit 1 analyses, we controlled for sex 580 

and severity OS at Visit 1, as well as log-transformed viral load in certain analyses when indicated. 581 

In silico prediction of upstream cytokine activation was performed with Qiagen’s Ingenuity 582 

Pathway Analysis software v01-21-03 (using default settings). 583 

 For the Visit 1 severity analysis, we defined mild/moderate participants as having baseline 584 

respiratory disease severity (OS) 3-4, and severe participants as having baseline OS 5-6, and 585 

limited to the youngest and oldest age quintiles. First, we normalized the gene counts with the 586 

voom function (normalize.method = “quantile”), and fitted a linear model for the gene expression 587 

using the lmFit function and the formula ~ 0 + age_severity + sex, where age_severity is the 588 

combined categorical variable of participants’ ages (young, ≤ 46 years old, or old, ≥ 71 years old) 589 

and disease severity (mild or severe). With this parameterization, the age_severity variable has 590 

4 levels: young_mild, young_severe, old_mild, and old_severe. To assess differences between 591 

severe and mild disease among young and old participants, we used the contrasts.fit function on 592 

the contrasts [young_severe – young_mild) and [old_severe – old_mild), respectively. Finally, we 593 

calculated the empirical Bayes statistics on the two contrasts with the ebayes function (default 594 
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settings), and calculated the P values for differential expression with Benjamini-Hochberg 595 

correction. 596 

 For the longitudinal analysis, we restricted to hospitalized and outpatient samples that 597 

were collected up to 30 days post hospitalization, excluding samples collected during care 598 

escalation. We retained protein-coding genes with at least 10 counts in at least 20% of samples. 599 

Next, we normalized the gene counts using the voom function without adding any covariates, and 600 

modelled the normalized gene expression using linear mixed effects (LME) model with the lmer 601 

function from the lme4 package v1.1.25. Our LME model’s formula was: 602 

genei ~ event_date + age_group + event_date:age_group + sex + TG + (1|pid) 603 

(1) 604 

where genei was the normalized expression of gene i. 605 

 To calculate the P value of the interaction term between event_date and age_group, we 606 

used the anova function (test = “LRT”) to perform a likelihood ratio test between the model (1) 607 

above and the null model: 608 

genei ~ event_date + age_group + sex + TG + (1|pid) 609 

(2) 610 

The P values from the likelihood ratio tests were then adjusted with Benjamini-Hochberg 611 

correction. 612 

 Significant genes from the longitudinal analysis of PBMC RNA-seq data were clustered 613 

with the pheatmap package v1.0.12, using the Euclidean distance metric and the Ward’s linkage 614 

(clustering_method = "ward.D2"). The TCR signaling genes and inflammatory genes were 615 

obtained from the corresponding Reactome and Hallmark pathways, respectively. 616 

 617 

Analysis of CyTOF data 618 

 Blood samples were quantified on the Fluidigm Helios mass cytometer, and the cell types 619 

were annotated using an automated annotation pipeline30. Prior to analysis, we removed cells 620 
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identified as multiplets, debris, and those that were not identifiable with high confidence. Next, 621 

because neutrophils (CD16hi) were much more abundant than the other cell types (median 60% 622 

of all detected cells), they were also removed. Then, we normalized the cell type abundance for 623 

each participant by calculating the percentage of each cell type, adding a pseudocount of 1 to 624 

avoid taking the logarithm of zeros (the pseudocount is added even if the percentage is higher 625 

than zero), and computing its centered log ratio (CLR): 626 

!"#(%!") = log + %!"
,-%!".

/ 627 

where log is the natural logarithm, and Xi’ is the percentage of the cell type i: 628 

%!" =
%!
∑ %!  

× 100 + 1 629 

where Xi is the number of cells of cell type i in a participant. 630 

 For the Visit 1 analysis, we used a linear model to regress each cell type’s CLR-631 

transformed abundance on age, while controlling for sex and OS. For the longitudinal analysis, 632 

we used a linear mixed effect model to model the CLR-transformed abundance. The formulae for 633 

the full and null models are identical to equations (1) and (2). 634 

 635 

Analysis of serum inflammatory protein (Olink) data 636 

 All samples were processed with the Olink multiplex assay inflammatory panels (Olink 637 

Proteomics), according to the manufacturer’s instructions and as previously described30. This 638 

inflammatory panel included 92 proteins associated with human inflammatory conditions. Target 639 

protein quantification was performed by real-time microfluidic qPCR via the Normalized Protein 640 

Expression (NPX) manager software. Data were normalized using internal controls in every 641 

sample, inter-plate control and negative controls, and correction factor and expressed as log2 642 

scale proportional to the protein concentration. For additional quality control, we set any NPX 643 
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measurements below the assay’s limit of detection (LOD) to zero. Next, we excluded proteins that 644 

were detected in fewer than 20% of samples, resulting in 84 proteins for analysis. 645 

 For the Visit 1 analysis, we standardized the NPX values and modeled them with linear 646 

regression on participants’ ages, controlling for sex and OS. For the severity analysis, we defined 647 

mild participants as baseline OS of 3-4, and severe participants as baseline OS of 5-6. We then 648 

set up two linear models, one for young participants (≤ 46 years old) and one for old participants 649 

(≥ 71 years old), to model the standardized NPX values on severity (mild or severe), while 650 

controlling for sex. 651 

 For the longitudinal analysis, we also standardized the NPX values, and used the LME 652 

models and the formulae in equations (1) and (2). Significant cytokines in the longitudinal analysis 653 

were clustered with the pheatmap package v1.0.12, using the Euclidean distance metric and the 654 

complete linkage. P values in all cytokine analyses were adjusted with Benjamini-Hochberg 655 

correction. 656 

 657 

Analysis of anti-IFN-a antibody presence and correlation with interferon-related gene 658 

expression 659 

 Samples were screened for anti-type I IFN autoAbs in a multiplex, particle-based assay 660 

as previously described30. Participant samples with a fluorescence intensity > 3 standard 661 

deviations above a mean of 1099 healthy controls at the earliest timepoint received were 662 

considered positive for anti-IFN Abs (> 1310 FI for IFN-a). To assess whether presence of anti-663 

IFN-a Abs correlated with changes in IFN-related gene expression, we assessed expression of 664 

genes present in the REACTOME pathway “interferon alpha beta signaling” obtained from gsea-665 

msigdb.org. All genes were assessed by linear regression using the formula lm(exp ~ anti_IFNa 666 

+ age + sex + viral_load), where exp was the normalized gene expression from PBMC data, 667 

antiIFNa was a binary variable indicating presence or absence of anti-IFN-a Abs, and viral_load 668 
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was the log-transformed viral load measured by SARS-CoV-2 rpM from the nasal metagenomics 669 

data. P values were adjusted with Benjamini-Hochberg correction. 670 

 671 

Integrated analysis of serum cytokine, PBMC RNA-seq and nasal RNA-seq data 672 

 To integrate the serum cytokines/chemokines with the PBMC and nasal transcriptomic 673 

data, ligand/receptor pairs were retrieved from Omnipath, a database of known protein-protein 674 

interactions, using the R package OmnipathR to identify receptors and protein associates for 675 

ligands in the serum OLINK. The change per year of age was graphed for significant age-676 

associated ligands in the serum OLINK and their respective receptors/interactive proteins for both 677 

transcriptomics using the R package ComplexHeatmap. 678 

 679 
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Supplementary Materials 

 

Supplementary Table 1. Clinical and demographic characteristics of the cohort at 

baseline (Visit 1). P values were calculated using Chi-square test for categorical variables, 
and Kruskal-Wallis test for continuous variables. Percentages might not sum to 100% due 
to rounding. The number of patients who died within 28 days is the same as the number of 
patients in trajectory group 5 (TG5). 
 

Demographics 
Overall 

population 
n = 1031 

Age group 
[18,46] 
n = 206 

Age group 
[47,54] 
n = 187 

Age group 
[55,62] 
n = 216 

Age group 
[63,70] 
n = 199 

Age group 
[71,96] 
n = 223 

P-value 

Age at enrollment (years), 
median (IQR) (n=1031) 59.0 (20.0) 37.0 (11.0) 51.0 (4.0) 59.0 (4.0) 67.0 (5.0) 77.0 (8.0) <0.001 

Sex, No. (%) 
Male 639 (62%) 128 (62%) 108 (58%) 135 (63%) 123 (62%) 145 (65%) 

0.68 
Female 392 (38%) 78 (38%) 79 (42%) 81 (38%) 76 (38%) 78 (35%) 

Race, No. (%) 

White 517 (50%) 79 (38%) 85 (45%) 95 (44%) 118 (59%) 140 (63%) 

0.002 

Black/ 
African American 228 (22%) 49 (24%) 47 (25%) 53 (25%) 35 (18%) 44 (20%) 

Asian 40 (4%) 12 (6%) 6 (3%) 6 (3%) 9 (5%) 7 (3%) 
Other/Declined/ 
Unknown 246 (24%) 66 (32%) 49 (26%) 62 (29%) 37 (19%) 32 

(14.3%) 

Ethnicity, No. (%) 

Non-Hispanic 670 (65%) 114 (55%) 120 (64%) 119 (55%) 137 (69%) 180 (81%) 

<0.001 Hispanic 319 (31%) 82 (40%) 63 (34%) 83 (38%) 57 (29%) 34 (15%) 

Unknown 42 (4%) 10 (5%) 4 (2%) 14 (6%) 5 (3%) 9 (4%) 

Comorbidities, No. 
(%) 

None 65 (6%) 23 (11%) 13 (7%) 11 (5%) 10 (5%) 8 (4%)  

Hypertension 592 (57%) 57 (28%) 96 (51%) 134 (62%) 141 (71%) 164 (74%) <0.001 

Diabetes 384 (37%) 45 (22%) 67 (36%) 90 (42%) 95 (48%) 87 (39%) <0.001 
Chronic lung 
disease 208 (20%) 14 (7%) 22 (12%) 43 (20%) 54 (27%) 75 (34%) <0.001 

Asthma 149 (14%) 34 (17%) 30 (16%) 28 (13%) 36 (18%) 21 (9%) 0.085 
Chronic cardiac 
disease 282 (27%) 18 (9%) 38 (20%) 55 (25%) 70 (35%) 101 (45%) <0.001 

Chronic kidney 
disease 155 (15%) 17 (8%) 22 (12%) 41 (19%) 31 (16%) 44 (20%) 0.004 

Chronic liver 
disease 51 (5%) 4 (2%) 9 (5%) 14 (6%) 14 (7%) 10 (4%) 0.14 

Chronic 
neurological 
disorder 

123 (12%) 11 (5%) 13 (7%) 22 (10%) 21 (11%) 56 (25%) <0.001 

Organ 
Transplantation 47 (5%) 7 (3%) 10 (5%) 16 (7%) 13 (7%) 1 (0%) 0.004 

HIV/AIDS 13 (1%) 3 (1%) 3 (2%) 6 (3%) 1 (1%) 0 (0%) 0.092 

Malignancy 101 (10%) 9 (4%) 6 (3%) 17 (8%) 25 (13%) 44 (20%) <0.001 

BMI Category in 
Kg/m2, No. (%) 

Underweight 12 (1%) 3 (1%) 1 (1%) 1 (0%) 4 (2%) 3 (1%) 

<0.001 
Normal weight 145 (14%) 19 (9%) 17 (9%) 19 (9%) 27 (14%) 63 (28%) 
Overweight (25.1-
29.9) 265 (26%) 41 (20%) 43 (23%) 58 (27%) 52 (26%) 71 (32%) 

Class 1-2 Obesity 
(30-39.9) 424 (41%) 82 (40%) 84 (45%) 100 (46%) 85 (43%) 73 (33%) 
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Class 3 Obesity 
(40+) 147 (14%) 44 (21%) 38 (20%) 31 (14%) 23 (12%) 11 (5%) 

Missing 38 (4%) 17 (8%) 4 (2%) 7 (3%) 8 (4%) 2 (1%) 
Length of hospital stay (days), 
median (IQR) (n=890) 6.0 (8.0) 5.0 (5.0) 5.5 (6.5) 6.0 (7.0) 7.0 (8.0) 8.0 (11.0) <0.001 

At baseline visit (V1) 

7-point respiratory 
Ordinal Score (OS), 
No. (%) 

Mechanically 
ventilated or ECMO 
(OS=6) 

126 (12%) 19 (9%) 27 (14%) 31 (14%) 25 (13%) 24 (11%) 

0.002 

Non-invasive 
ventilation or high 
flow O2 (OS=5) 

235 (23%) 32 (16%) 30 (16%) 52 (24%) 63 (32%) 58 (26%) 

Supplemental 
oxygen (not high 
flow) (OS=4) 

443 (43%) 92 (45%) 82 (44%) 91 (42%) 78 (39%) 100 (45%) 

None (OS=3) 225 (22%) 63 (31%) 47 (25%) 41 (19%) 33 (17%) 41 (18%) 

Missing 2 (0%) 0 (0%) 1 (1%) 1 (0%) 0 (0%) 0 (0%) 

SpO2/FiO2 ratio 
category, No. (%) 

235 or lower 246 (24%) 29 (14%) 45 (24%) 49 (23%) 64 (32%) 59 (26%) 

0.002 
236-315 170 (16%) 32 (16%) 26 (14%) 43 (20%) 36 (18%) 33 (15%) 

315 or higher 566 (55%) 137 (67%) 108 (58%) 113 (52%) 93 (47%) 115 (52%) 

Missing 49 (5%) 8 (4%) 8 (4%) 11 (5%) 6 (3%) 16 (7%) 
Lymphopenia,  
No. (%) <500/microliter 132 (13%) 13 (6%) 19 (10%) 32 (15%) 28 (14%) 40 (18%) 0.004 

Thrombocytopenia, 
No. (%) <100,000/microliter 53 (5%) 3 (1%) 8 (4%) 13 (6%) 15 (8%) 14 (6%) 0.054 

D-dimer, No. (%) >0.5 mg/L 542 (53%) 91 (44%) 83 (44%) 126 (58%) 108 (54%) 134 (60%) <0.001 

Creatinine, No. (%) >=1.5 mg/dL 169 (16%) 18 (9%) 25 (13%) 43 (20%) 31 (16%) 52 (23%) <0.001 

CRP, No. (%) >=10 mg/L 446 (43%) 71 (34%) 88 (47%) 99 (46%) 95 (48%) 93 (42%) 0.04 

Across all visits (V1-V6) 

IMPACC trajectory 
group, No. (%) 

TG1 217 (21%) 60 (29%) 44 (24%) 41 (19%) 38 (19%) 34 (15%) 

<0.001 

TG2 270 (26%) 71 (34%) 57 (30%) 53 (25%) 45 (23%) 44 (20%) 

TG3 251 (24%) 52 (25%) 44 (24%) 56 (26%) 43 (22%) 56 (25%) 

TG4 191 (19%) 20 (10%) 33 (18%) 44 (20%) 51 (26%) 43 (19%) 

TG5 102 (10%) 3 (1%) 9 (5%) 22 (10%) 22 (11%) 46 (21%) 

28-day mortality, 
No. (%) 

Yes 102 (10%) 3 (1%) 9 (5%) 22 (10%) 22 (11%) 46 (21%) 
<0.001 

No 929 (90%) 203 (99%) 178 (95%) 194 (90%) 177 (89%) 177 (79%) 

Treatment with 
steroids, No. (%) 

Yes 711 (69%) 124 (60%) 137 (73%) 150 (69%) 155 (78%) 145 (65%) 
0.001 

No 320 (31%) 82 (40%) 50 (27%) 66 (31%) 44 (22%) 78 (35%) 

Treatment with 
remdesivir, No. (%) 

Yes 645 (63%) 122 (59%) 114 (61%) 133 (62%) 137 (69%) 139 (62%) 
0.33 

No 386 (37%) 84 (41%) 73 (39%) 83 (38%) 62 (31%) 84 (38%) 
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Supplementary Figure 1. Comparison of viral load as measured by nasal swab qPCR and 

nasal swab RNA-seq (metatranscriptomics). The Pearson’s correlation coefficient and its P 
value are shown below each panel. 

 

 

Supplementary Figure 2. Time since symptom onset across age groups at Visit 1. Data is 
available for a subset of patients (n=796 of 963 Visit 1 samples). Two outliers with >40 days 
since symptom onset are excluded from the plot. P value is calculated by one-way ANOVA test. 
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Supplementary Figure 3. Visit 1 analysis and longitudinal analysis of IgG levels. (a) RBD 
IgG at visit 1 in each age group. P-value determined by likelihood ratio test. (b) RBD IgG levels, 
as measured by area under the curve (AUC, see methods), over time in each age group. P-
value determined by a generalized additive mixed model. Values plotted represent the area 
under the curve of the optical density (OD). 
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Supplementary Figure 4. Visit 1 analysis of CyTOF data while controlling for viral load. 
Bar plot highlighting cell types that are significantly associated with age (P < 0.05, calculated 
with linear regression and Benjamini-Hochberg correction). Analogous to the analyses in Figure 
3b, but controlled for viral load. 
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Supplementary Figure 5. Comparison of PBMC RNA-seq data from this study to healthy 

control datasets5, with differential gene expression analyses performed using age as a 

continuous variable. (a, b) Venn diagrams of the Reactome pathways that are (a) upregulated 
and (b) downregulated with age. The numbers in the left circles indicate the number of 
pathways that are up- or down-regulated with age in the healthy control data only. The numbers 
in the right circles indicate the number of pathways that are up- or down-regulated with age in 
COVID-19 patients (our data) only. The numbers in the overlapping regions indicate the number 
of pathways that are up- or down-regulated with age in both healthy control and COVID-19 
patients. Some examples of overlapping pathways, and of pathways that are associated with 
age in COVID-19 patients only are included under each Venn diagram. 
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Supplementary Figure 6. Plots of the dynamics of 6 example genes in PBMC samples. 

Black lines indicate the regression lines for the fixed effects of the linear mixed-effects model. 
The grey ribbons indicate the 95% confidence intervals of the regression lines. The y-axes were 
truncated at 1.5× the interquartile range below the first quartile and above the third quartile. P 
values are calculated using the likelihood ratio test and Benjamini-Hochberg correction. 
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Supplementary Figure 7. Effect of SARS-CoV-2 viral load on age-cytokine relationship at 

Visit 1, and the dynamics of 4 example cytokines. (a) Bar plot depicting cytokines associated 
with age (P < 0.05, calculated with linear regression and Benjamini-Hochberg correction), while 
controlling for SARS-CoV-2 viral load. Supplementary Figure 6a differs from Figure 4a in that 
the former controlled for viral load, while the latter did not. (b) Plots demonstrating the dynamics 
of four cytokines TNFSF11, CXCL8, CXCL9, and IL6. Black lines indicate the regression lines 
for the fixed effects of the linear mixed-effects model. The grey ribbons indicate the 95% 
confidence intervals of the regression lines. The y-axes were truncated at 1.5× the interquartile 
range below the first quartile and above the third quartile. P values were calculated using the 
likelihood ratio test and Benjamini-Hochberg correction.  
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Supplementary Figure 8. Bacterial load (reads per million, rpM) versus age quintiles. Total 
bacterial abundance (log-transformed rpM, as measured by nasal metatranscriptomics) in each 
of the age quintiles. P value was calculated with one-way ANOVA test. 
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Supplementary Figure 9. Aging and COVID-19 severity, analyses controlled for viral load. 
(a, b) Dot plots depicting a) select Reactome pathways in PBMC or nasal RNA-seq data, and b) 
serum cytokines (olink) that were upregulated in severe patients (NIAID ordinal scales 5-6) 
compared to mild/moderate (NIAID ordinal scales 3-4) patients at Visit 1, stratified by age group 
(youngest or oldest). Analogous analyses to Fig. 7, but controlled for viral load.  
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Supplementary Figure 10. Expression of interferon-related genes in patients with or 

without anti-IFN-a antibodies at Visit 1. Normalized gene expression is plotted for the subset 
of samples with both PMBC RNA-seq and anti-IFNa antibody data available (n=732 visit 1 
samples). All genes from the Reactome interferon alpha/beta signaling pathway with an 
adjusted P-value < 0.05 are included (n=18). 
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Supplementary Figure 11. Network analysis of the top 10 significant serum proteins and 

their receptors and downstream signaling. PBMC RNA-seq and serum cytokine data was 
integrated using Cytoscape. 
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Supplementary Table 2. Prevalence of viral cases by age quintile over time in the nasal 
virome. Adjusted P values (P adj, Benjamini-Hochberg method) are determined by ANOVA with 
respect to change in prevalence of virus over time within each age quintile. HHV = human 
herpes virus, CMV = cytomegalovirus, EBV = Epstein Barr virus, HSV = herpes simplex virus. 

 

Virus 
Age 

Quantile Visit 1 Visit 2 Visit 3 Visit 4 Visit 5 Visit 6 P adj 

CMV 
(HHV-5) 

[18,46] 
0.52% 
(1/191) 

1.01% 
(1/99) 

0%  
(0/53) 

1.61% 
(1/62) 

0%  
(0/4) 

0%  
(0/39) 1.0 

[47,54] 
0% 

(0/175) 
0.95% 
(1/105) 

1.61% 
(1/62) 

1.79% 
(1/56) 

0%  
(0/17) 

0%  
(0/36) 0.61 

[55,62] 
0.49% 
(1/205) 

0% 
(0/128) 

0%  
(0/79) 

0%  
(0/70) 

0%  
(0/20) 

0%  
(0/42) 1.0 

[63,70] 
0% 

(0/190) 
1.79% 
(2/112) 

1.24% 
(1/81) 

1.49% 
(1/67) 

4.17% 
(1/24) 

3.03% 
(1/33) 0.24 

[71,96] 
0.47% 
(1/212) 

0% 
(0/133) 0% (0/94) 

1.27% 
(1/79) 

11.54% 
(3/26) 

6.90% 
(2/29) 1.70E-03 

EBV 
(HHV-4) 

[18,46] 
0% 

(0/191) 
0%  

(0/99) 
0%  

(0/53) 
0%  

(0/62) 
0%  

(0/4) 
0%  

(0/39) 1.0 

[47,54] 
1.14% 
(2/175) 

3.8% 
(4/105) 

1.61% 
(1/62) 

0%  
(0/56) 

0%  
(0/17) 

0%  
(0/36) 0.71 

[55,62] 
0.49% 
(1/205) 

2.34% 
(3/128) 

2.53% 
(2/79) 

4.29% 
(3/70) 

5.0%  
(1/20) 

4.76% 
(2/42) 0.24 

[63,70] 
1.58% 
(3/190) 

0.89% 
(1/112) 

4.94% 
(4/81) 

2.99% 
(2/67) 

8.33% 
(2/24) 

0%  
(0/33) 0.24 

[71,96] 
0% 

(0/212) 
1.50% 
(2/133) 

4.26% 
(4/94) 

1.27% 
(1/79) 

7.70% 
(2/26) 

3.45% 
(1/29) 0.039 

Pegivirus 

[18,46] 
0% 

(0/191) 
0%  

(0/99) 
0%  

(0/53) 
1.61% 
(1/62) 

0%  
(0/4) 

2.56% 
(1/39) 0.24 

[47,54] 
0.57% 
(1/175) 

1.9% 
(2/105) 

1.6% 
(1/62) 

5.36% 
(3/56) 

0%  
(0/17) 

5.56% 
(2/36) 0.24 

[55,62] 
0.98% 
(2/205) 

0.78% 
(1/128) 

0%  
(0/79) 

1.43% 
(1/70) 

0%  
(0/20) 

0%  
(0/42) 1.0 

[63,70] 
0% 

(0/190) 
0% 

(0/112) 
0%  

(0/81) 
0%  

(0/67) 
0%  

(0/24) 
0%  

(0/33) 1.0 

[71,96] 
0% 

(0/212) 
0% 

(0/133) 
0%  

(0/94) 
1.27% 
(1/79) 

0%  
(0/26) 

0%  
(0/29) 0.43 

HSV 
(HHV-1/2) [18,46] 

4.71% 
(9/191) 

8.08% 
(8/99) 

9.43% 
(5/53) 

3.23% 
(2/62) 

0%  
(0/4) 

2.56% 
(1/39) 0.71 

 [47,54] 
3.43% 
(6/175) 

5.71% 
(6/105) 

6.45% 
(4/62) 

7.14% 
(4/56) 

11.77% 
(2/17) 

5.56% 
(2/36) 0.71 

 [55,62] 
2.44% 
(5/205) 

6.25% 
(8/128) 

8.86% 
(7/79) 

11.43% 
(8/70) 

5.0%  
(1/20) 

9.52% 
(4/42) 0.13 

 [63,70] 
3.16% 
(6/190) 

5.36% 
(6/112) 

12.35% 
(10/81) 

13.43% 
(9/67) 

12.50% 
(3/24) 

6.06% 
(2/33) 0.056 

 [71,96] 
2.36% 
(5/212) 

5.26% 
(7/133) 

4.26% 
(4/94) 

16.46% 
(13/79) 

30.77% 
(8/26) 

17.24% 
(5/29) 4.50E-06 
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