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Abstract 
 

A leading transdiagnostic framework, RDoC, posits that cognitive abilities are a major 
functional domain underlying mental health. Specifically, RDoC assumes the relationship 
between cognitive abilities and mental health to be 1) manifested across neural and genetic 
units of analysis, 2) environmentally situated, and 3) reliable. To test these assumptions, we 
applied machine learning and commonality analyses to the ABCD dataset (n=11,876). Mental 
health predicted cognitive abilities of unseen children at out-of-sample r=.39. At baseline, 
this cognitive-abilities-mental-health relationship was accounted for by neuroimaging 
(including 45 types of brain MRI; 71%), by polygenic scores (18%) and by socio-
demographics, lifestyles and developments (70%). Moreover, the variance in the cognitive-
abilities-mental-health that was captured by socio-demographics, lifestyles and developments 
was explained by neuroimaging (68%) and polygenic scores (28%). These patterns were 
similar across two years. Consistent with RDoC, the cognitive-abilities-mental-health 
relationship was 1) manifested in both neuroimaging and polygenic scores, 2) explained by 
socio-demographics, lifestyles and developments and 3) reliable across two years. This 
supports RDoC’s view of cognitive abilities as an integrative-functional domain for the 
aetiology of mental health. 
 
Keywords: Research Domain Criteria (RDoC), Adolescent Brain Cognitive Development 
(ABCD), cognitive abilities, psychopathology, neuroimaging, polygenic scores 
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Introduction 
 

Over a decade ago, the National Institute of Mental Health launched Research Domain 
Criteria (RDoC) in an effort to improve mental health aetiology1. Conventional diagnostic 
criteria, such as the Diagnostic and Statistical Manual of Mental Disorders (DSM) and 
International Classification of Diseases (ICD), classify mental disorders based on consensus 
among clinician experts who agree on which observable symptoms belong to which 
disorder2. Accordingly, often these diagnostic criteria do not align well with research in 
neuroscience and genetics and do not integrate the roles of environments, such as socio-
demographics and lifestyles3. Instead of focusing on specific mental disorders, RDoC focuses 
on the transdiagnostic relationship between mental health and functional domains, such as 
cognitive abilities/systems, and more importantly, the extent to which neurobiological and 
social-environmental factors capture this relationship4.  
 
Yet, despite being a prominent view with thousands of studies adopting the framework3, 
RDoC currently faces the same problem as DSM/ICD – it relies heavily on expert 
consensus5. For example, RDoC’s constructs for cognitive abilities were selected based on 
meetings among experts on cognitive neuroscience and schizophrenia4,6. Accordingly, after a 
decade of work, RDoC is still driven by experts’ opinions and in need of empirical evidence 
to support its framework. Therefore, we aim to empirically investigate if cognitive abilities 
have the properties of a functional domain as proposed by RDoC. 
 
RDoC stipulates the relationship between cognitive abilities and mental health to be 
manifested across neurobiological units of analysis, from the brain to genes7. Recent 
advances in large-scale data and machine learning8 allow researchers to build predictive 
models to estimate cognitive abilities of unseen participants, not part of the modelling 
process, based on their neuroimaging data (e.g., via different types of brain MRI9,10) and 
genetic risk profiles (e.g., via polygenetic scores9,11). Accordingly, these predictive models 
create neurobiological proxy measures of cognitive abilities, close to what RDoC considers 
as units of analysis. Thus, RDoC would predict these neurobiological proxy measures to 
account for the relationship between cognitive abilities and mental health. 
 
RDoC, additionally, assumes the relationship between cognitive abilities and mental health to 
be affected by environments (https://www.nimh.nih.gov/research/research-funded-by-
nimh/rdoc/developmental-and-environmental-aspects). It is well-accepted that environmental 
factors play a large role on cognitive abilities12. Recent research applied machine learning to 
compute proxy measures of cognitive abilities in children based on their socio-demographics 
(e.g., parental income/education), lifestyles (e.g., screen/video game use) along with child 
developmental adversary (e.g., birth/pregnancy complication)9,13. Similar to neurobiological 
proxy measures, RDoC would predict these proxy measures of cognitive abilities based on 
socio-demographics, lifestyles and developments to account for the relationship between 
cognitive abilities and mental health. Moreover, RDoC would further predict these variances 
explained by socio-demographics, lifestyles and developments to be overlapped with those 
from the neurobiological proxy measures. Such patterns would provide an integrative, 
holistic account of the relationship between cognitive abilities and mental health, as claimed 
by RDoC. 
 
RDoC also emphasises the reliability of measurements4,14. The Adolescent Brain Cognition 
Development (ABCD)15, an on-going, population-based cohort study, has already provided 
cognitive, neuroimaging, genetic and social-environmental data from over 11,000 adolescents 
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at ages 9-10 and 11-12 years old. Therefore, the ABCD is suitable for testing whether the 
cognitive abilities and mental health relationship is reliably manifested in both the 
neuroimaging and polygenic scores and affected by socio-demographics, across time points. 
 
Here using the ABCD, we operationalised cognitive abilities as a latent variable of 
behavioural performance during cognitive tasks, covering most of RDoC’s cognitive-
ability/systems constructs (apart from perception), including attention, working memory, 
declarative memory, language and cognitive control7. We then built predictive, machine-
learning models to predict the cognitive abilities of unseen children from their mental health. 
These predictive models allowed us to quantify the relationship between cognitive abilities 
and mental health. Following RDoC’s holistic view of mental health, covering symptoms, 
risk factors and family environments1,4, we included not only children’s but also their 
caretakers’ emotional and behavioural problems16 as well as children’s at-risk personalities, 
including behavioural inhibition/activation17 and impulsivity18.  
 
Similar to mental health, we also built predictive models of cognitive abilities based on 
neuroimaging, polygenic scores, socio-demographics, lifestyles and developments to create 
different proxy measures of cognitive abilities. For the neuroimaging, we included 45 types 
of brain MRI, derived from task/resting-state fMRI, structural MRI and diffusion tensor 
imaging (DTI). For polygenic scores, we used three definitions of cognitive abilities based on 
previous meta/mega analyses19–21. For socio-demographics, lifestyles and developments, we 
included 44 variables, covering factors, such as parental income/education, screen use and 
birth/pregnancy complications. Finally, we conducted a series of linear-mixed model 
commonality analyses22 to demonstrate the extent to which proxy measures of cognitive 
abilities based on neuroimaging, polygenic scores and socio-demographics, lifestyles and 
developments explained the relationship between cognitive abilities and mental health. To 
examine the reliability, we repeated the analyses across two-time points and examined the 
similarity between the two. 
 

Results 
Predictive modelling 

 
Predicting cognitive abilities from mental health 

Figure 1a and Supplementary Table 5 show the predictive performance of the Partial Least 
Square (PLS) models, predicting cognitive abilities from mental-health features. These 
features included 1) children’s (CBCL) and 2) caretakers’ (ASR) emotional and behavioural 
problems and 3) children’s at-risk personalities. Using these three sets of mental health 
features separately led to moderate predictive performance, ranging from r=.21 to r=.31. 
Combining them into one set of features, “mental health,” boosted the performance to around 
r=.4, similarly across the two time points. 
 
Figure 1b shows loadings and the ratio of variance explained by these PLS models. The first 
PLS component had the highest ratio of variance explained (19.3%-24.3%). Based on its 
loadings, this component was driven by features such as attention and social problems, rule-
breaking and aggressive behaviours, Behavioural-Activation-System drive and the 
caretaker’s personal strength. We found a similar pattern across the two-time points. 
 

Predicting cognitive abilities from neuroimaging  
Figures 2a and Supplementary Figures 2-3 and Supplementary Tables 5-7 show the predictive 
performance of the opportunistic stacking models, predicting cognitive abilities from 45 sets 
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of neuroimaging features. Predictive performance from each set of neuroimaging features 
varied considerably, ranging from r around 0 (ENBack: Positive vs Neutral Face) to r around 
.4 (ENBack: 2-Back vs 0-Back). Drawing information across 45 sets of neuroimaging 
features into a stacked model boosted the performance to around r=.54, similarly across the 
two time points. In fact, the stacked model (R2 around .3) accounted for variance in cognitive 
abilities twice as much as the model based on the best set of neuroimaging features (ENBack: 
2-Back vs 0-Back, R2 around .15). Figures 2b,3 and Supplementary Figure 4 show the feature 
importance of the opportunistic stacking models. Across the two time points, the top 
contributing sets of neuroimaging features, reflected by SHapley Additive exPlanations 
(SHAP)23, were ENBack task-fMRI contrasts, rs-fMRI and cortical thickness. 
 

Predicting cognitive abilities from polygenic scores 
Figures 2a and Supplementary Tables 5 show the predictive performance of the Elastic Net 
models, predicting cognitive abilities from three polygenic scores (PGSs) of cognitive 
abilities. Predictive performance from polygenic scores was r=.25 and .24 in baseline and 
follow-up, respectively. Figures 2c shows the feature importance of these models, suggesting 
a stronger contribution from Savage and colleagues’ PGS21. 
 
Predicting cognitive abilities from socio-demographics, lifestyles and developments 
Figure 4a and Supplementary Table 5 show the predictive performance of the Partial Least 
Square (PLS) models, predicting cognitive abilities from socio-demographics, lifestyles and 
developments. Using 44 features covering socio-demographics, lifestyles and developments, 
we saw predictive performance around r=.48, similarly across the two time points. Figure 4b 
shows loadings and the ratio of variance explained of these PLS models. The first PLS 
component had the highest ratio of variance explained (around 10%). Based on its loadings, 
this first component was a) positively driven by features such as parent’s income and 
education, neighbourhood safety and extracurricular activity and b) negatively driven by 
features such as area deprivation, having a single parent, screen use, economic insecurities, 
lack of sleep, mature video games play/movies watch and lead risk.  
 
Commonality analyses 

 
Commonality analyses for proxy measures of cognitive abilities based on mental 

health and neuroimaging 
At baseline, having both proxy measures based on mental health and neuroimaging in a linear 
mixed model explained 33% of the variance in cognitive abilities. And 14.01% of the 
variance in cognitive abilities was explained by mental health, which included the common 
effect between the two proxy measures (9.91%) and the unique effect of mental health (4.1%) 
(see Supplementary Tables 8-9 and Figure 5). This means that neuroimaging accounted for 
71% of the relationship between cognitive abilities and mental health (i.e., 
(9.91÷14.01)x100). The common effects varied considerably across sets of neuroimaging 
features, from around 0.17% to 4.4%, with the highest set being ENBack task fMRI: 2-Back 
vs 0-Back (see Supplementary Figure 5). The pattern of results was similar across two time 
points. 
 

Commonality analyses for proxy measures of cognitive abilities based on mental 
health and polygenic scores 
At baseline, having both proxy measures based on mental health and polygenic scores in a 
linear mixed model explained 11.8% of the variance in cognitive abilities. And 11.4% of the 
variance in cognitive abilities was explained by mental health, which included the common 
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effect between the two proxy measures (2.06%) and the unique effect of mental health 
(9.36%) (see Supplementary Tables 10-11 and Figure 5). This means that polygenic scores 
accounted for over 18% of the relationship between cognitive abilities and mental health (i.e., 
(2.06÷11.4)x100). The pattern of results was similar across two time points. 
 

Commonality analyses for proxy measures of cognitive abilities based on mental 
health and socio-demographics, lifestyles and developments 
At baseline, having both proxy measures based on mental health and socio-demographics, 
lifestyles and developments in a linear mixed model explained 27.1% of the variance in 
cognitive abilities. And 14.13% of the variance in cognitive abilities was explained by mental 
health, which included the common effect between the two proxy measures (9.92%) and the 
unique effect of mental health (4.21%) (see Supplementary Tables 12-13 and Figure 5). This 
means that socio-demographics, lifestyles and developments accounted for over 70% of the 
relationship between cognitive abilities and mental health (i.e., (9.92÷14.13)x100). The 
pattern of results was similar across two time points. 
 

Commonality analyses for proxy measures of cognitive abilities based on mental 
health, neuroimaging, polygenic scores and socio-demographics, lifestyles and 
developments 
At baseline, having all four proxy measures based on mental health, neuroimaging, polygenic 
scores and socio-demographics, lifestyles and developments in a linear mixed model 
explained 28.8% of the variance in cognitive abilities. And 1.59% of the variance in cognitive 
abilities was the common effect among the four proxy measures. Additionally, out of 11.2% 
of the variance in cognitive abilities explained by mental health, 9.18% could be explained by 
any of the other proxy measures. That means the three proxy measures accounted for 82% 
(i.e., (9.18÷11.2)x100) of the relationship between cognitive abilities and mental health (see 
Supplementary Tables 14-15 and Figure 5). This also means that, among the variance that 
socio-demographics, lifestyles and developments accounted for in the relationship between 
cognitive abilities and mental health, neuroimaging could capture 68% while polygenic 
scores could capture 28%. The pattern of results was similar across two time points. 
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Discussions 
 

Using large-scale data in adolescents collected two years apart, we empirically tested whether 
cognitive abilities have the properties of a functional domain as proposed by RDoC7. We 
started by quantifying the relationship between cognitive abilities and mental health and 
found a medium-sized out-of-sample r around .4. Consistent with RDoC4,14, first, this 
relationship was explained by the neurobiological proxy measures of cognitive abilities based 
on neuroimaging and polygenic scores (71% and 18%, respectively, at baseline). Second, this 
relationship between cognitive abilities and mental health was also explained by proxy 
measures of cognitive abilities based on socio-demographics, lifestyles and developments 
(70% at baseline). The variance due to socio-demographics, lifestyles and developments was 
largely accounted for by the proxy measures based on neuroimaging and polygenic scores 
(68% and 28%, respectively at baseline). Third, this pattern of results was reliable across the 
two-time points. Accordingly, overall, our results support RDoC’s view of cognitive abilities 
as an integrative, functional domain for mental health. 
 
Our predictive modelling revealed a medium-sized predictive relationship between cognitive 
abilities and mental health. This aligns with recent meta-analyses linking cognitive abilities 
and mental disorders24. We also found that including, not just children’s, but also caretakers’ 
emotional and behavioural problems16 and children’s at-risk personalities25,26 as mental health 
features improved the strength of the relationship. This solidifies RDoC’s holistic view of 
mental health as a broad concept, spanning from pathologies to risk factors and incorporating 
individual and family environments1,4. Examining the PLS loading of our predictive models 
revealed that the relationship was driven by different aspects of mental health, from thought 
and externalising symptoms to motivation and caretakers’ personal strength. Altogether, we 
confirmed the transdiagnostic nature of cognitive abilities. 
 
Our predictive modelling also created proxy measures of cognitive abilities for two RDoC 
units of analysis7: at the neural, reflected by neuroimaging, and genetic, reflected by 
polygenic scores, levels. For neuroimaging, combining 45 sets of neuroimaging features via 
opportunistic stacking led to a relatively high effect size (out-of-sample r=.54 at baseline), as 
compared to using any single set, consistent with previous research27–29. The superior 
performance from ENBack: 2-Back vs 0-Back was also consistent with work done in adults 
from the Human Connectome Project29,30. For the polygenic scores, using polygenic scores 
led to a weaker effect size (out-of-sample r=.25 at baseline). However, this predictive 
strength is still in the ballpark of previous work in children11. More importantly, these 
neurobiological proxy measures of cognitive abilities were able to capture the majority of the 
relationship between cognitive abilities and mental health, consistent with RDoC. 
 
Similarly, our predictive modelling created proxy measures of cognitive abilities from socio-
demographics, lifestyles and developments. In line with previous work9,13, we could predict 
unseen children’s cognitive abilities based on their socio-demographics, lifestyles and 
developments at a medium-to-high out-of-sample r=.48 (at baseline). This prediction was 
driven more strongly by socio-demographics (e.g., parent’s income and education, 
neighbourhood safety, area deprivation, single parenting), somewhat weaker by lifestyles 
(e.g., extracurricular activities, sleep, screen time, video gaming, mature movie watching and 
parental monitoring) and much weaker by developments (e.g., pregnancy complications).  
 
More relevant to RDoC, proxy measures based on socio-demographics, lifestyles and 
developments captured a large proportion of the relationship between cognitive abilities and 
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mental health. Furthermore, as predicted by RDoC, this variance captured by socio-
demographics, lifestyles and developments overlapped largely with that of the 
neurobiological proxy measures. This reiterates RDoC’s main tenet that understanding the 
neurobiology of a functional domain, such as cognitive abilities, could lead us to understand 
how social environments influence mental health1,4. More importantly, all of the 
aforementioned results regarding neuroimaging, polygenic scores, socio-demographics, 
lifestyles and developments were reliable across two years during a sensitive period for 
adolescents. 
 
This study has some limitations, mainly due to the availability of the data provided by 
ABCD15. For mental health, even though we relied on four measures (CBCL16, ASR16, 
UPSS-P26 and BIS/BAS31), we may still miss important mental-health variability, such as 
learning disability. Similarly, for cognitive abilities, while the six cognitive tasks32,33 covered 
most of RDoC cognitive abilities/systems constructs, we still missed variability in 
perception7. For neuroimaging, while we used comprehensive multimodal MRI from 45 sets 
of features, three fMRI tasks included were not chosen based on RDoC cognitive 
abilities/systems constructs15. It is possible to obtain higher predictive performance based on 
other fMRI tasks. For genetics, we relied on polygenic scores, built to predict adults’ 
cognitive abilities using cognitive tasks different from ABCD’s19–21, which might not 
translate well to children’s cognitive abilities. Lastly, we also relied on 44 variables of socio-
demographics, lifestyles and developments included in the study, which might miss some 
variables relevant to cognitive abilities (e.g., nutrition). ABCD15 is still ongoing, and future 
data might be able to address some of these limitations.  
 
Altogether, we provide empirical evidence to support RDoC’s view of cognitive abilities as a 
transdiagnostic domain for mental health. By doing so, we laid a foundation to achieve the 
four goals set by RDoC3. First, we have addressed the aetiology of mental health by showing 
the reliable and predictable transdiagnostic relationship between cognitive abilities and 
mental health. Second, we also identified neuroimaging and genetic biomarkers that explain 
this relationship. Third, with our findings on the socio-demographics, lifestyles and 
developments, we touched on target identification. Finally, our use of machine learning to 
make out-of-sample predictions on individual children could lead to further development of 
personalised interventions. Overall, our findings lend credibility to RDoC focusing on 
cognitive abilities. 
 
For a decade, RDoC has been driven by experts’ opinions5. At the start, empirical data that 
could validate this framework were scarce. The recent revolution in neurobiological big data, 
such as ABCD15 and various genome-wide-study consortiums19–21, has provided us with 
high-quality mental health and cognitive phenotypes, multimodal neuroimaging, genomics 
and social-environmental data, across time points. These findings empirically support 
RDoC’s perspective that cognitive abilities are integral to mental health. 
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Figure 1. Predictive models, predicting cognitive abilities from mental-health features 
via Partial Least Square (PLS). a) predictive performance of the models, indicated by 
scatter plots between observed vs predicted cognitive abilities based on mental health. All 
data points are from test sets. r is the average Pearson’s r across 21 test sites, and a value in 
the parenthesis is the standard deviation of Pearson’s r across sites. UPPS-P Impulsive and 
Behaviour Scale and the Behavioural Inhibition System/Behavioural Activation System 
(BIS/BAS) were used for child personality traits, conceptualised as risk factors for mental 
issues. Mental health includes features from CBCL, ASR and child personality. b) Feature 
importance of mental health, predicting cognitive abilities. The features were ordered based 
on the loading of the first PLS component. Univariate correlations were Pearson’s r between 
each mental-health feature and cognitive abilities. Error bars reflect 95%CIs of the 
correlations. CBCL = Child Behavioural Checklist, reflecting children’s emotional and 
behavioural problems; ASR = Aseba Adult Self Report, reflecting caretakers’ emotional and 
behavioural problems; UPPS-P = Urgency, Premeditation, Perseverance, Sensation seeking 
and Positive urgency Impulsive Behaviour Scale; BAS = Behavioural Activation System. 
 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 12, 2024. ; https://doi.org/10.1101/2024.02.09.24302602doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.09.24302602
http://creativecommons.org/licenses/by-nc/4.0/


 
Figure 2. Predictive models predicting cognitive abilities from neuroimaging via 
opportunistic stacking and polygenic scores via Elastic Net. a) Scatter plots between 
observed vs predicted cognitive abilities based on neuroimaging and polygenic scores. a) All 
data points are from test sets. r is the average Pearson’s r across 21 test sites, and a value in 
the parenthesis is the standard deviation of Pearson’s r across sites. b) Feature importance of 
the stacking layer of neuroimaging, predicting cognitive abilities via Random Forest. For the 
stacking layer of neuroimaging, the feature importance was based on the absolute value of 
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SHAP, averaged across test sites. A higher absolute value of SHAP indicates a higher 
contribution to the prediction. Error bars reflect standard deviations across sites. c) Feature 
importance of polygenic scores, predicting cognitive abilities via Elastic Net. For polygenic 
scores, the feature importance was based on the Elastic Net coefficients, averaged across test 
sites. We also plotted Pearson’s correlations between each polygenic score and cognitive 
abilities, computed from the full data. Error bars reflect 95%CIs of these correlations. 
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Figure 3. Feature importance of each set of neuroimaging features, predicting cognitive 
abilities in the baseline data. The feature importance was based on the Elastic Net 
coefficients, averaged across test sites. MID = Monetary Incentive Delay task; SST = Stop 
Signal Task; DTI = Diffusion Tensor Imaging; FC = functional connectivity. 
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Figure 4. Predictive models, predicting cognitive abilities from socio-demographics, 
lifestyles and developments via Partial Least Square (PLS). a) Scatter plots between 
observed vs predicted cognitive abilities based on socio-demographics, lifestyles and 
developments. All data points are from test sets. r is the average Pearson’s r across 21 test 
sites, and a value in the parenthesis is the standard deviation of Pearson’s r across sites. b) 
Feature importance of socio-demographics, lifestyles and developments, predicting cognitive 
abilities via Partial Least Square. The features were ordered based on the loading of the first 
component. Univariate correlations were Pearson’s r between each feature and cognitive 
abilities. Error bars reflect 95%CIs of the correlations. 
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Figure 5. Venn diagrams showing common and unique effects of proxy measures of 
cognitive abilities based on mental health, neuroimaging, polygenic scores and/or socio-
demographics, lifestyles and developments in explaining cognitive abilities across test 
sites. We computed the common and unique effects in % based on the marginal  of four 
sets of linear-mixed models.  
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Online Methods 
 
The Adolescent Brain Cognitive Development Dataset 
We used data from Adolescent Brain Cognitive Development (ABCD) Study Curated Annual 
Release 4.034,35 from two time points. The baseline included the data from 11,876 children 
(5,680 females, 9-10 years old), while the two-year follow-up included the data from the 
same children two years later (11,225 children, 5,353 females). While the ABCD collected 
data from 22 sites across the United States, we excluded data from Site 22 since this site only 
provided data from 32 children at the baseline36. Note following the release note37, we revised 
the site ID of 25 children whose site ID was incorrectly entered. We also excluded 58 
children based on Snellen Vision Screener32,38. These children either could not read any line 
in the chart, could only read the largest line or could read as far as the fourth line clearly but 
showed difficulty reading stimuli on an iPad, used for administering cognitive tasks 
(explained below). The study protocols are approved by Institutional Review Boards at each 
site. For ethical details, such as informed consent, confidentiality and communication with 
participants about assessment results, please see Clark and colleagues39. 
 
Measures of cognitive abilities 
Cognitive abilities were based on six cognitive tasks, collected with an iPad in a 70-min 
session outside of MRI at both baseline and two-year follow-up32,33. The first task was 
Picture Vocabulary, measuring language comprehension40. The second task was Oral 
Reading Recognition, measuring language decoding41. The third task was Flanker, measuring 
conflict monitoring and inhibitory control42. The fourth task was Pattern Comparison 
Processing, measuring the speed of processing patterns43. The fifth task was Picture Sequence 
Memory, measuring episodic memory44. The sixth task was Rey-Auditory Verbal Learning, 
measuring memory recall after distraction and a short delay45. Note 3,860 children in the 
follow-up did not complete some of these tasks, and thus were dropped from the analysis 
involving the follow-up data. 
 
We operationalised individual differences in cognitive abilities across the six cognitive tasks 
as a factor score of a latent variable ‘g-factor’. To estimate this factor score, we fit the 
standardised performance of the six cognitive tasks to second-order confirmatory factor 
analysis (CFA) of a ‘g-factor’ model, similar to previous work9,33,46,47. In this CFA, we 
treated the g-factor as the second-order latent variable that underlined three first-layer latent 
variables, each of which had two manifest variables: 1) ‘language,’ underlying Picture 
Vocabulary and Oral Reading Recognition, 2) ‘mental flexibility,’ underlying Flanker and 
Pattern Comparison Processing, and 3) ‘memory recall,’ underlying Picture Sequence 
Memory and Rey-Auditory Verbal Learning.  
 
We fixed the variance of the latent factors to one and applied the Maximum Likelihood with 
Robust standard errors (MLR) approach with Huber-White standard errors and scaled test 
statistics. To provide information about the internal consistency of the g-factor, we calculated 
Omegal248. We used the lavaan49 (version 0.6-15), semTools48, semPlots50 packages for this 
CFA of cognitive abilities.  
 
We found the second-order ‘g-factor’ model to fit cognitive abilities across the six cognitive 
tasks well. This can be seen by several indices: scaled and robust CFI (.994), TLI (.986) and 
RMSEA (.031, 90%CI [.024-.037]) and robust SRMR (.013) and OmegaL2 (.78). See 
Supplementary Figure 1 for the standardised weights of this CFA model. This enabled us to 
use the factor score of the latent variable ‘g-factor’ as the target for our predictive models. 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 12, 2024. ; https://doi.org/10.1101/2024.02.09.24302602doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.09.24302602
http://creativecommons.org/licenses/by-nc/4.0/


 18

Measures of Mental health 
Mental health was based on three sets of features. The first set was parental reports of 
children’s emotional and behavioural problems, reflected by Child Behaviour Checklist 
(CBCL)16. Here, we used eight summary scores: anxious/depressed, withdrawn, somatic 
complaints, social problems, thought problems, attention problems, rule-breaking behaviours 
and aggressive behaviours. The second set is caretakers’ emotional and behavioural 
problems, reflected by Aseba Adult Self Report (ASR)16. Here we included nine summary 
scores from personal strength and symptom scales: personal strength, anxious/depressed, 
withdrawn, somatic complaints, thought problems, attention problems, aggressive 
behaviours, rule-breaking behaviours and intrusive. The third set is children’s personality 
traits conceptualised as risk factors for mental issues17,51, reflected by the Urgency, 
Premeditation, Perseverance, Sensation seeking and Positive urgency (UPPS-P) Impulsive 
Behaviour Scale26 and the Behavioural Inhibition System/Behavioural Activation System 
(BIS/BAS)31. Here we used nine summary scores: negative urgency, lack of planning, 
sensation seeking, positive urgency, lack of perseverance, BIS, BAS reward responsiveness, 
BAS drive and BAS fun.                 
 
Measures of Neuroimaging  
Neuroimaging was based on the tabulated brain-MRI data, pre-processed by the ABCD. We 
organised the brain-MRI data into 45 sets of neuroimaging features, covering task-fMRI 
(including NBack, stop signal (SST), and monetary incentive delay (MID) tasks), resting 
state fMRI, structural MRI and diffusion tensor imaging (DTI). The ABCD presented details 
on the MRI acquisition and image processing elsewhere34,35,52. The study provided 
recommended exclusion criteria for brain-MRI data, based on automated and manual quality 
control (QC) 35. More specifically, the study created an exclusion flag for each set of 
neuroimaging features (with the prefix ‘imgincl’ in the ‘abcd_imgincl01 table) based on the 
criteria involving image quality, MR neurological screening, behavioural performance, and 
the number of repetition times (TRs) among others. We strictly followed their 
recommendations by removing data with an exclusion flag at any neuroimaging features, 
separately for each set of neuroimaging features. In addition, we also removed data from 
participants whose MRI data were flagged with known issues by the ABCD study (26 at 
baseline and 4 at follow-up35).  
 
We further processed the brain-MRI data, separately for each set of neuroimaging features. 
Our first step was to detect outliers with over three interquartile ranges from the neatest 
quartile. We excluded a particular set of neuroimaging features when this set had outliers 
over 5% of the total number of its neuroimaging features. We, then, standardised each 
neuroimaging feature across participants and harmonised variation across MRI scanners 
using ComBat53–55. Note see below under predictive modelling for strategies we implemented 
during predictive modelling to avoid data leakage and to model the data with missing values. 
  

Sets of Neuroimaging Features 1-26: task-fMRI 
For task-fMRI sets of features, we used unthresholded generalised-linear model (GLM) 
contrasts, averaged across two runs9,56,57. These contrasts were embedded in the brain parcels 
based on the FreeSurfer’s atlases58: 148 cortical-surface Destrieux parcels 59 and subcortical-
volumetric 19 ASEG parcels60, leaving 167 features in each task-fMRI set of features. 
 

Sets of Neuroimaging Features 1-9: ENBack task-fMRI 
The “ENBack” or emotional n-back task was designed to elicit fMRI activity related to 
working memory to neurtral and emotional stimuli34,61. Depending on the block, the children 
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were asked whether a picture presented matched the picture shown two trials earlier (2-Back) 
or the picture shown at the beginning of the block (0-Back). In this version of the task, the 
pictures shown included emotional faces and places. Accordingly, in addition to working 
memory, the task also allowed us to extract fMRI activity related to emotion processing and 
facial processing. We used the following contrasts as nine separate sets of neuroimaging 
features for ENBack task-fMRI: 2-Back vs 0-Back, Face vs Place, Emotion vs Neutral Face, 
Positive vs Neutral Face, Negative vs Neutral Face, 2-Back, 0-Back, Emotion and Place. 
 

Sets of Neuroimaging Features 10-19: Monetary Incentive Delay (MID) 
task-fMRI 

The MID task was designed to elicit fMRI activity related to reward-processing34,62. Here 
children responded to a stimulus shown on a screen. If they responded before a stimulus 
shown on a screen disappeared, they could either win $5 (Large Reward), win $0.2 (Small 
Reward), lose $5 (Large Loss), lose $0.2 (Small Loss) or not win or lose any money 
(Neutral), depending on the conditions. At the end of each trial, they then were shown 
feedback on whether they won money (Positive Reward Feedback), did not win money 
(Negative Reward Feedback), avoided losing money (Positive Punishment Feedback), or lose 
money (Negative Punishment Feedback). We used the following contrasts as 10 separate sets 
of neuroimaging features for MID task-fMRI: Large Reward vs Small Reward anticipation, 
Small Reward vs Neutral anticipation, Large Reward vs Neutral anticipation, Large Loss vs 
Small Loss anticipation, Small Loss vs Neutral anticipation, Large Loss vs Neutral 
anticipation, Loss vs Neutral anticipation, Reward vs Neutral anticipation, Positive vs 
Negative Reward Feedback and Positive vs Negative Punishment Feedback. 
 

Sets of Neuroimaging Features 20-26: Stop-Signal Task (SST) task-fMRI 
The SST was designed to elicit fMRI activity related to inhibitory control34,63. Children were 
asked to withhold or interrupt their motor response to a ‘Go’ stimulus whenever they saw a 
‘Stop’ signal. Note we used two additional QC exclusion criteria for the SST task: 
tfmri_sst_beh_glitchflag, and tfmri_sst_beh_violatorflag, which notified glitches as 
recommended 36,64. We used the following contrasts as 7 separate sets of neuroimaging 
features for SST task-fMRI: Incorrect Go vs Incorrect Stop, Incorrect Go vs Correct Go, 
Correct Stop vs Incorrect Stop, Any Stop vs Correct Go, Incorrect Stop vs Correct Go, 
Correct Stop vs Correct Go, Correct Go vs Fixation. 
 

Sets of Neuroimaging Features 27-29: Resting-state fMRI (rs-fMRI) 
The ABCD study collected rs-fMRI for 20 mins while children were viewing a crosshair. The 
study described the pre-processing procedure elsewhere52. The investigators parcellated 
cortical surface into 333 regions and subcortical volume into 19 regions using Gordon’s65 and 
ASEG60 atlas, respectively. They grouped the cortical-surface regions into 13 predefined 
large-scale cortical networks65. These large-scale cortical networks included auditory, 
cingulo-opercular, cingulo-parietal, default-mode, dorsal-attention, frontoparietal, none, 
retrosplenial-temporal, salience, sensorimotor-hand, sensorimotor-mouth, ventral-attention 
and visual networks. Note that the term ‘None’ refers to those regions that did not belong to 
any networks. They then correlated time series from these regions and applied Fisher's z-
scoring to the correlations. We included three sets of neuroimaging features for rs-fMRI. The 
first set was cortical functional connectivity (FC) with 91 features. This set included the mean 
values of the correlations between pairs of regions within the same large-scale cortical 
network as well as between large-scale cortical networks. The second set was subcortical-
network FC with 247 features. This set included the mean values of the correlations between 
each of the 19 subcortical regions and each of the 13 large-scale cortical networks. The third 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 12, 2024. ; https://doi.org/10.1101/2024.02.09.24302602doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.09.24302602
http://creativecommons.org/licenses/by-nc/4.0/


 20

set was temporal variance with 352 features (i.e., 333 cortical and 19 subcortical regions). 
This set was the variance across time, calculated for each of the parcellated regions. 
Temporal variance reflects the magnitude of low-frequency oscillations35.  
 

Sets of Neuroimaging Features 30-44: Structural MRI (sMRI) 
The ABCD study collected T1-weighted and T2-weighted 3D sMRI images and quantified 
them into various measures, mainly through FreeSurfer v7.1.1 35. Similar to task-fMRI, we 
used 148 cortical-surface Destrieux 59 and subcortical-volumetric 19 ASEG 60 atlases. We 
included 15 sets of neuroimaging features for sMRI: cortical thickness, cortical area, cortical 
volume, sulcal depth, T1 white-matter averaged intensity, T1 grey-matter averaged intensity, 
T1 normalised intensity, T2 white-matter averaged intensity, T2 grey-matter averaged 
intensity, T2 normalised intensity, T1 summations, T2 summations, T1 subcortical averaged 
intensity, T2 subcortical averaged intensity and subcortical volume. Note see Figure 4 for the 
neuroimaging features including in T1 and T2 summations. 
  

Sets of Neuroimaging Features 45: Diffusion tensor imaging (DTI) 
We included fractional anisotropy (FA) derived from DTI as another set of neuroimaging 
features. FA characterises the directionality of diffusion distribution within white matter 
tracts, which is thought to indicate the density of fibre packing66. The ABCD study used 
AtlasTrack52,67 to segment major white matter tracts. These included the corpus callosum, 
forceps major, forceps minor, cingulate and parahippocampal portions of cingulum, fornix, 
inferior frontal occipital fasciculus, inferior longitudinal fasciculus, pyramidal/corticospinal 
tract, superior longitudinal fasciculus, temporal lobe portion of superior longitudinal 
fasciculus, anterior thalamic radiations and uncinate. Given 10 tracks were separately labelled 
for each hemisphere, there were 23 features for the set of neuroimaging features for DTI. 
 
Measures of Genetic Risk Profiles 
Genetic risk profiles were based on polygenic scores (PGS) of cognitive abilities. The ABCD 
study gave detailed notes on genotyping elsewhere68. Briefly, the study genotyped saliva and 
whole blood samples using Smokescreen™ Array. The investigators, then, quality-controlled 
the data using calling signals and variant call rates, applied the Ricopili pipeline and imputed 
the data with TOPMED (https://topmedimpute.readthedocs.io/). The study also identified 
problematic plates and data points with a subject-matching issue. We further excluded 
children with minimal or excessive heterozygosity and excluded Single Nucleotide 
Polymorphisms (SNPs) based on minor allele frequency (<5%) and violations of Hardy–
Weinberg equilibrium (P <�1E−10) (see https://github.com/ricanney/stata). 
 
We computed PGS using three definitions from three large-scale genome-wide association 
studies (GWAS) on cognitive abilities in adults: n=257,8420, n=300,48619 and n=269,86721.  
These GWASs focused on participants of European ancestry. Because PGS has a lower 
predictive ability when target samples (i.e., in our case, ABCD children) do not have the 
same ancestry as those of the discovery GWAS sample69, we restricted all analyses involving 
polygenic scores to 5,786 children of European ancestry. These children were within four 
standard deviations from the mean of the top four principal components (PCs) of the super-
population individuals in the 1000 Genomes Project Consortium Phase 3 reference70. 
 
We used the Pthreshold approach71. Here we defined risk alleles as those associated with 
cognitive abilities in the three discovery GWASs19–21 at 10 different PGS thresholds: 0.5, 0.1, 
0.05, 0.01, 0.001, 0.0001, 0.00001, 0.000001, 0.0000001, 0.00000001. We then computed 
PGS as the Z-scored, weighted mean number of linkage-independent risk alleles in 
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approximate linkage equilibrium, derived from imputed autosomal SNPs. We selected the 
best PGS threshold for each of the three definitions by choosing the PGS threshold that 
demonstrated the strongest correlation between its PGS and cognitive abilities in the ABCD 
(i.e., the g-factor factor score). Note see below under predictive modelling for strategies we 
implemented to avoid data leakage due to this selection of PGS threshold and the family 
structure in the ABCD. 
 
Measures of Socio-demographics, lifestyles and developments 
Socio-demographics, lifestyles and developments were based on 44 features. This set of 
features included (a) 14 features for child social-demographics72, including bilingual use73, 
parental marital status, parental education, parental income, household size, economic 
insecurities, area deprivation index74, lead risk75, crime report76, neighbourhood safety77, 
school environment, involvement and disengagement78, (b) five features for child social 
interactions from Patent Monitoring scale79, Child Report of Behaviour Inventory80, Strength 
and Difficulties Questionnaire81 and Moos Family Environment Scale82, (c) six features for 
parental use of alcohol, tobacco and marijuana before and after pregnancy from the 
Developmental History Questionnaire83,84, (d) eight features from child’s sleep problems 
based on the Sleep Disturbance scale85, (e) four features for child’s physical activities from 
Youth Behaviour Survey86, (f) four features for child screen use87 and (g) three features for 
child developmental adversary from developmental History Questionnaire, including 
prematurity, birth complications and pregnancy complications83,84. 
 
Predictive modelling  
For building predictive, machine-learning models, we implemented a nested leave-one-site-
out cross-validation. Specifically, we treated one out of 21 sites as a test set and the rest as a 
training set for training predictive models. We then repeated the model-building process until 
every site was a test set once and reported overall predictive performance across all test sites. 
Within each training set, we applied 10-fold cross-validation to tune the hyperparameters of 
the predictive models. The nested leave-one-site-out cross-validation allowed us to ensure the 
generalisability of our predictive models to unseen sites. This is important because different 
sites involved different MRI machines, experimenters and participants with different 
demographics36. Next, data from children from the same family were collected from the same 
site. Accordingly, using leave-one-site-out also prevented data leakage due to family 
structure, which might inflate the predictive performance of the models, particularly those 
involving polygenic scores.  
 
In order to demonstrate the reliability of the results across two years, we built the predictive 
models (including hyperparameter tuning) separately for baseline and follow-up data. To 
prevent data leakage between training and test sets, we separately applied standardisation to 
the baseline training and test sets, for both the target and features. To ensure similarity in data 
scale across two time points, we, then, used the mean and standard deviation of the baseline 
training and test sets to standardise the follow-up training and test sets, respectively. For 
cognitive abilities, which were used as the target for all predictive models, we applied this 
standardisation strategy both before CFA (i.e., to the behavioural performance of the six 
cognitive tasks) and after CFA (i.e., to the g-factor factor scores). Moreover, to ensure that 
the predictive models of the two-time points had the same target, we only estimated the CFA 
of cognitive abilities using the baseline training set. We then applied this estimated CFA 
model to the baseline test set and follow-up training and test sets. We examined the predictive 
performance of the models via the relationship between predicted and observed cognitive 
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abilities, using Pearson's correlation (r), coefficient of determination (R2, calculated using the 
sum of square definition), mean-absolute error (MAE) and root mean square error (RMSE). 
 
Predicting cognitive abilities from mental health 
We built predictive models to predict cognitive abilities from three sets of mental health 
features: CBCL, ASR and personality. We separately modelled each of these three sets and 
also simultaneously modelled the three sets by concatenating them into one set of features, 
called “mental health”. We implemented Partial Least Squares (PLS)88 as an algorithm for 
these predictive models. PLS decomposes features into components that not only capture the 
variance of features but also the variance of the target88. PLS has an advantage in dealing 
with collinear features89, which are common for mental health issues90. We described the PLS 
algorithm in the Supplementary. 
 
PLS has one hyperparameter, the number of components. In our grid search, we tested the 
number of components, ranging from one to the total number of features. We selected the 
number of components based on the drop in root mean square error (RMSE). That is, we kept 
increasing the number of components until the component did not reduce 0.1% of the total 
RMSE. We fit PLS using the mixOmics package91 with the tidymodels package as a 
wrapper92. 
 
To understand how PLS made predictions, we examined loadings and the ratio of variance 
explained. Loadings for each PLS component show how much each feature contributes to 
each PLS component. The ratio of variance explained shows how much variance each PLS 
component captures, compared to the total variance. We then compared loadings and the ratio 
of variance explained with the univariate, Pearson’s correlation between each feature and the 
target. Note, that because we could not guarantee that each training set would result in the 
same PLS components, we calculated loadings and the ratio of variance explained on the full 
data without splitting them into training and test sets.  
 
Predicting cognitive abilities from neuroimaging 
We built predictive models to predict cognitive abilities from 45 sets of neuroimaging 
features. To avoid data leakage, we detected the outliers separately in the baseline training, 
baseline test, follow-up training and follow-up test sets. Similarly, to harmonise 
neuroimaging features across different sites while avoiding data leakage, we applied 
ComBat53–55 to the training set. We, then, applied ComBat to the test set, using the 
ComBatted training set as a reference batch. 
 
Unlike PLS used above for mental-health predictive modelling, we chose to apply 
opportunistic stacking9,27 for neuroimaging predictive modelling. As we showed previously9, 
opportunistic stacking allowed us to handle missingness in the neuroimaging data without 
scarifying predictive performance. Missingness in children's MRI data is common, given high 
levels of noise (e.g., movement artifact)93. For ABCD, if we applied listwise exclusion using 
the study’s exclusion criteria, we would have to exclude around 80% of the children who had 
their MRI data from any sets of neuroimaging features flagged as outliers9. With 
opportunistic stacking, we only needed to exclude around 5% of the children. Our opportunist 
stacking method kept 10,872 and 6,339 participants at baseline and follow-up, respectively, 
while listwise deletion only kept 3,525 and 2,514 participants, respectively. 
 
The opportunistic stacking9,27 involves two layers of modelling: set-specific and stacking 
layers. In the set-specific layer, we predicted cognitive abilities, separately from each set of 
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neuroimaging features using Elastic Net94. While being a linear and non-interactive 
algorithm, Elastic Net performs relatively well in predicting behaviours from neuroimaging 
MRI, often on par with, if not better than, other more complicated algorithms10,29,95. 
Moreover, Elastic Net coefficients are readily explainable, enabling us to explain how the 
models drew information from each neuroimaging feature when making a prediction95,96. 
 
Elastic Net simultaneously minimises the weighted sum of the features’ coefficients. Its loss 
function can be written as: 
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where �� is a row vector of all the features in observation �, and �� is a column vector of 
features’ coefficient. There are two hyperparameters: (1) the penalty �λ� constraining the 
magnitude of the coefficients and (2) the mixture (α) deciding whether the model is more of a 
sum of squared coefficients (known as Ridge) or a sum of absolute values of the coefficients 
(known as Least Absolute Shrinkage and Selection Operator, LASSO). Using grid search, we 
chose the pair of penalty and mixture based on the lowest root mean square error (RMSE). 
The penalty was selected from 20 numbers, ranging from 10��� to 10, equally spaced with 
the ����� scale, and the penalty was selected from 11 numbers, ranging from 0 to 1 on a 
linear scale.   
 
Training the set-specific layer resulted in the predicted values of cognitive abilities, one from 
each set of neuroimaging features. The stacking layer, then, took these predicted values 
across 45 sets of neuroimaging features and treated them as features to predict cognitive 
abilities, thereby drawing information across (as opposed to within) sets of neuroimaging 
features. Importantly, we used the same training set across both layers, ensuring no data 
leakage between training and test sets. Opportunistic stacking dealt with missing values from 
each set of neuroimaging features by, first, duplicating each feature (i.e., each of 45 predicted 
values from the set-specific layer) into two features, resulting in 90 features. We, then, 
replaced the missing values in each of the duplicated features either with unrealistically large 
(1000) or small (-1000) values. Accordingly, we were able to keep the data as long as at least 
one set of neuroimaging features did not have any missing value. Using these duplicated and 
imputed features, we predicted cognitive abilities from different sets of neuroimaging 
features using Random Forest97. Ultimately, the stacking layer resulted in a predicted value of 
cognitive abilities based on 45 sets of neuroimaging features.  
 
Random Forest generates several regression trees by bootstrapping observations and 
including a random subset of features at each split97. To make a prediction, Random Forest 
aggregates predicted values across bootstrapped trees, known as bagging. We used 500 trees 
and turned two hyperparameters. First, ‘mtry’ was the number of features selected at each 
branch. Second, ‘min_n’ was the minimum number of observations in a node, needed for the 
node to be split further. Using a Latin hypercube grid search of 3,000 numbers98–100, we chose 
the pair of mtry, ranging from 1 to 90, and min_n, ranging from 2 to 2,000, based on the 
lowest root mean square error (RMSE). 
 
To understand how opportunistic stacking made predictions, we plotted Elastic Net 
coefficients for the set-specific layer and SHapley Additive exPlanations (SHAP)23 for the 
stacking layer, averaged across 21 test sites. For the set-specific layer, Elastic Net made a 
prediction based on the linear summation of its regularised, estimated coefficients, and thus 
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plotting the coefficient of each neuroimaging feature allowed us to understand the 
contribution of such feature. For the stacking layer, it is difficult to trace the contribution 
from each feature from Random Forest directly, given the use of bagging. To overcome this, 
we computed Shapley values instead 101. Shapley values indicate the weighted differences in 
a model output when each feature is included versus not included in all possible subsets of 
features. SHAP23 is a method to efficiently estimate Shapley values. Thus, SHAP allowed us 
to visualise the contribution of each set of neuroimaging features to the prediction in the 
stacking layer. Given that we duplicated the predicted values from each set of neuroimaging 
features in the stacking layer, we combined the magnitude of SHAP across the duplicates.  
 
We fit Elastic Net and Random Forest using the glmnet102 and ranger103 packages, 
respectively, with the tidymodels92 package as a wrapper. We approximated the Shapley 
values23 using the fastshap package104. The brain plots were created via the ggseg,  
ggsegDesterieux, ggsegJHU and ggsegGordon packages105. 
 
Predicting cognitive abilities from polygenic scores 
We built predictive models to predict cognitive abilities from polygenic scores, as reflected 
by PGS of cognitive abilities from three definitions19–21. We, first, selected the PGS threshold 
for each of the three definitions that demonstrated the strongest correlation with cognition 
abilities within the training set. This left three PGSs as features for our predictive models, one 
for each definition. To control for population stratification in genetics, we regressed each 
PGS on four genetic principal components, separately for the training and test sets. Later, we 
treated the residuals of this regression for each PGS as each feature in our predictive models. 
Similar to the predictive models for the set-specific layer of the neuroimaging features, we 
used Elastic Net here as an algorithm. Given the genetic data do not change over time, we 
used the same genetic features for baseline and follow-up predictive models. Note that we 
selected participants based on ancestry for predictive models involving polygenic scores, 
leaving us with a much smaller number of children (n=5,786 vs. n=11,876 in the baseline).  
 
Predicting cognitive abilities from socio-demographics, lifestyles and developments 
We built predictive models to predict cognitive abilities from socio-demographics, lifestyles 
and developments, reflected in the 44 features. Similar to the mental health features, we 
implemented partial least squares (PLS)88 as an algorithm here. To deal with missing values, 
we applied the following steps, separately for baseline training, baseline test, follow-up 
training and follow-up test sets. We, first, imputed categorical features using mode and 
converted them into dummy variables. We, then, standardised all features and imputed them 
using K-nearest neighbours with five neighbours. Note in a certain site, the value in a certain 
feature was at 0 for all of the observations (e.g., site 3 having a crime report at 0 for all 
children), making it impossible for us to standardise this feature when using this site as a test 
set. In this case, we kept the value of this feature at 0 and did not standardise it. Note also that 
the ABCD study only provided the following 22 features in the baseline, but not the follow-
up: child social-demographics, parental use of alcohol, tobacco and marijuana before and 
after pregnancy, child’s physical activities, child screen use and child developmental 
adversary. Accordingly, we treated these baseline features as features in our follow-up 
predictive models and combined them with the other 22 features that were collected in the 
follow-up. 
 
Commonality analyses 
Following the predictive modelling procedure above, we extracted predicted values from 
different sets of features at each test site and treated them as proxy measures of cognitive 
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abilities8. The out-of-sample relationship between observed and proxy measures of cognitive 
abilities based on certain features reflects variation in cognitive abilities explained by those 
features. For instance, the relationship between observed and proxy measures of cognitive 
abilities based on mental health indicates the variation in cognitive abilities that could be 
explained by mental health. Capitalising on this variation, we, then, used commonality 
analyses22 to demonstrate the extent to which other proxy measures captured similar variance 
of cognitive abilities as mental health. 
 
First, we applied random-intercept, linear-mixed models106 to the data from all test sites. In 
these models, we considered families to be nested within each site, meaning that we allowed 
each family to have a different intercept within each site and each site to have a different 
intercept. We treated different proxy measures of cognitive abilities as fixed-effect regressors 
to explain cognitive abilities. We, then, estimated marginal �� from the linear-mixed models, 
which describes the variance explained by all fixed effects included in the models107,108 and 
multiplied the marginal �� by 100 to obtain a percentage. By including and excluding each 
proxy measure in the models, we were able to decompose marginal �� into unique (i.e., 
attributed to the variance, uniquely explained by a particular proxy measure) and common 
(i.e., attributed to the variance, jointly explained by a group of proxy measures) effects22. We 
focused on the common effects a proxy measure based on mental health had with other proxy 
measures in four sets of commonality analyses. Note each of the four sets of commonality 
analyses used different numbers of participants, depending on the availability of data. We fit 
linear-mixed models using the lme4 package109.  
 

Commonality analyses for proxy measures of cognitive abilities based on mental 
health and neuroimaging 
Here, we included proxy measures of cognitive abilities based on mental health and/or 
neuroimaging. Specifically, for each proxy measure, we added two regressors in the models: 
the values centred within each site (denoted �� ) and the site average (denoted  !"�). For 
instance, we applied the following lme4 syntax for the models with both proxy measures: 
 
# � β� � β������� ���������� � β������� ���������!" � β#��$%&'��"'"���� �
β(��$%&'��"'"���!" � �1| �&': )!*��+�,        (2) 
 
We computed unique and common effects22 as follows: 
 
,-�./'����� ������ � ������ ������,�$%&'��"'"

� 0 ��$%&'��"'"
�  

,-�./'�$%&'��"'" � ������ ������,�$%&'��"'"
� 0 ������ ������

�  
1�**�-����� ������,�$%&'��"'" � ������ ������,�$%&'��"'"

� 0 ,-�./'����� ������ 0 
,-�./'�$%&'��"'" ,  
(3)                                                                              
where the subscript of �� indicates which proxy measures were included in the model.  
 
In addition to using the proxy measures based on neuroimaging from the stacking layer, we 
also conducted commonality analyses on proxy measures based on neuroimaging from each 
set of neuroimaging features. This allows us to demonstrate which of the set of neuroimaging 
features showed higher common effects with the proxy measures based on mental health. 
Note to include as many participants in the models as possible, we dropped missing values 
based on availability of data in each set of neuroimaging features included in the models (i.e., 
not applying listwise deletion across sets of neuroimaging features). 
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Commonality analyses for proxy measures of cognitive abilities based on mental 
health and polygenic scores 
Here, we included proxy measures of cognitive abilities based on mental health and/or the 
polygenic scores. Given that family members had more similar genetics than non-members, 
we changed our centring strategy to polygenic scores. With the proxy measure based on 
polygenic scores, we applied 1) centring on two levels: centring its values within each family 
first and then within each site (denoted �� , ��)) 2) averaging on two levels: averaging of its 
values within each family first and then within each site (denoted  !"�, )!"�). Accordingly, 
we applied the following lme4 syntax for the models with both proxy measures: 
 
# �
β� � β������� ���������� � β������� ���������!" � β#�*+,����,��- � β(�*+,���!",-�!" �
�1| �&': )!*��+�,        (4) 
 
We computed unique and common effects as follows: 
 
,-�./'����� ������ � ������ ������,*+,

� 0 �*+,
�  

,-�./'"��� � ������ ������,*+,
� 0 ������ ������

�  
1�**�-����� ������,*+, � ������ ������,*+,

� 0 ,-�./'����� ������ 0 ,-�./'*+, ,(5)     
                                                                          
Commonality analyses for proxy measures of cognitive abilities based on mental health and 
socio-demographics, lifestyles and developments 
Here, we included proxy measures of cognitive abilities based on mental health and/or socio-
demographics, lifestyles and developments. We applied the following lme4 syntax for the 
models with both proxy measures: 
 
# �
β� � β������� ���������� � β������� ���������!" � β#��&� �'- .�!���� �
β(��&� �'- .�!���!" � �1| �&': )!*��+�,        (6) 
 
where soc lif dev shorts for socio-demographics, lifestyles and developments. We computed 
unique and common effects 22 as follows: 
 
,-�./'����� ������ � ������ ������,�&� �'- .�!

� 0 ��&� �'- .�!
�  

,-�./'�&� �'- .�! � ������ ������,�&� �'- .�!
� 0 ������ ������

�  
1�**�-����� ������,�&� �'- .�! � ������ ������,�&� �'- .�!

� 0 ,-�./'����� ������ 0 
,-�./'�&� �'- .�!,           (7)    
 
Commonality analyses for proxy measures of cognitive abilities based on mental health, 
neuroimaging, polygenic scores and socio-demographics, lifestyles and developments 
Here, we included proxy measures of cognitive abilities based on mental health, 
neuroimaging, polygenic scores and/or socio-demographics, lifestyles and developments. We 
applied the following lme4 syntax for the model with all proxy measures included: 
 
# � β� � β������� ���������� � β������� ���������!" � β#��$%&'��"'"���� �
β(����!" � β/�*+,����,��- � β0�*+,���!",-�!" � β1��&� �'- .�!���� �
β2��&� �'- .�!���!" � �1| �&': )!*��+�,        
   (8) 
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We computed unique and common effects 22 as follows: 
 
,-�./'�� � ���,3,�,"

� 0 �3,�,"
�  

,-�./'3 � ���,3,�,"
� 0 ���,�,"

�  
,-�./'� � ���,3,�,"

� 0 ���,3,"
�  

,-�./'" � ���,3,�,"
� 0 ���,3,�

�  
1�**�-��,3 � 0��,"

� � ���,�,"
� � �3,�,"

� 0 ���,3,�,"
�  

1�**�-��,� � 0�3,"
� � ���,3,"

� � �3,�,"
� 0 ���,3,�,"

�  
1�**�-��," � 0�3,�

� � ���,3,�
� � �3,�,"

� 0 ���,3,�,"
�  

1�**�-3,� � 0���,"
� � ���,3,"

� � ���,�,"
� 0 ���,3,�,"

�  
1�**�-3," � 0���,�

� � ���,3,�
� � ���,�,"

� 0 ���,3,�,"
�  

1�**�-��,3,� � 0�"
� � ���,"

� � �3,"
� � ��,"

� 0 ���,3,"
� 0 ���,�,"

� 0 �3,�,"
� � ���,3,�,"

�  
1�**�-��,3," � 0��

� � ���,�
� � �3,�

� � ��,"
� 0 ���,3,�

� 0 ���,�,"
� 0 �3,�,"

� � ���,3,�,"
�  

1�**�-��,�," � 0�3
� � ���,3

� � �3,�
� � �3,"

� 0 ���,3,�
� 0 ���,3,"

� 0 �3,�,"
� � ���,3,�,"

�  
1�**�-3,�," � 0���

� � ���,3
� � ���,�

� � ���,"
� 0 ���,3,�

� 0 ���,3,"
� 0 ���,�,"

� � ���,3,�,"
�  

1�**�-��,3,�," � ���
� � �3

� � ��
� � �"

� 0 ���,3
� 0 ���,�

� 0 ���,"
� 0 �3,�

� 0 �3,"
� 0 ��,"

� �
���,3,�

� � ���,3,"
� � ���,�,"

� � �3,�,"
� 0 ���,3,�,"

� ,       (9)                            
 
where mh, b, g, and s denote mental health, brain (i.e., neuroimaging), genetic profile (i.e., 
polygenic scores) and/or socio-demographics, lifestyles and developments, respectively.  
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