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ABSTRACT 
The computa4onal analysis to assist radiologists in the interpreta4on of mammograms usually 
requires a pre-processing step where the image is converted into a black and white mask to 
separate breast 4ssue from the pectoral muscle and the image background. The manual 
delinea4on of the breast 4ssue from the mammogram image is subjec4ve and 4me-consuming. 
The 2D Wavelet Transform Modulus Maxima (WTMM) segmenta4on method, a powerful and 
versa4le mul4-scale edge detec4on approach, is adapted and presented as a novel automated 
breast 4ssue segmenta4on method. The algorithm computes the local maxima of the modulus of 
the con4nuous Gaussian wavelet transform to produce candidate edge detec4on lines called 
maxima chains. These maxima chains from mul4ple wavelet scales are op4mally sorted to 
produce a breast 4ssue segmenta4on mask. The mammographic mask is quan4ta4vely compared 
to a manual delinea4on using the Dice-Sorenson Coefficient (DSC). The adapta4on of the 2D 
WTMM segmenta4on method produces a median DSC of 0.9763 on 1042 mediolateral oblique 
(MLO) 2D Full Field Digital mammographic views from 82 pa4ents obtained from the MaineHealth 
Biobank (Scarborough, Maine, USA). Our proposed approach is evaluated against OpenBreast, an 
open-source automated analysis sobware in MATLAB, through comparing each approach’s masks 
to the manual delinea4ons. OpenBreast produces a lower median DSC of 0.9710. To determine 
sta4s4cal significance, the analysis is restricted to 82 mammograms (one randomly chosen per 
pa4ent), which yields DSC medians of 0.9756 for the WTMM approach vs. 0.9698 for OpenBreast 
(p-value = 0.0067 using a paired Wilcoxon Rank Sum test). Thus, the 2D WTMM segmenta4on 
method can reliably delineate the pectoral muscle and produce an accurate segmenta4on of 
whole breast 4ssue in mammograms. 
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INTRODUCTION 
Breast cancer is the most common cancer among women, affec4ng one in eight [1]. The 
introduc4on of computer-aided detec4on (CADe), diagnosis (CADx), and triage (CADt) have 
rapidly become useful tools in clinical support systems for screening mammography and the use 
of CAD in a clinical sekng has increased from 5% in 2003 to 92.3% in 2016 [2]. CADx and CADe 
allow radiologists to augment their visual assessment by marking suspected abnormali4es and 
providing the probability of malignancy in the cases of CADe., while CADt systems are designed 
to priori4ze suspicious studies [3]. Unfortunately, current CAD methods have been associated 
with decreased specificity, increased recall rates of healthy women, and false posi4ves on up to 
70% of normal cases of breast cancer [4-6]. More recently, deep learning models have shown the 
poten4al to improve detec4on rates, lower recall rates, and assess future cancer risk. However, 
their predic4ve power may be diminished for extremely dense breasts, which are women who 
are also at the greatest risk of cancer [7, 8]. In addi4on to the limita4ons of deep learning 
approaches due to their inexplicability [9], they may be strongly affected by otherwise 
inconsequen4al rou4ne equipment maintenance. For example, one study showed that recall 
rates increased approximately threefold following a sobware upgrade on the mammography 
equipment [10]. Taken with the high computa4onal costs of deep learning approaches, 
interpretable methods are being developed, such as our patented method that is not based on  
deep learning [11, 12] and is designed to assess the breast 4ssue microenvironment from 
mammograms through the use of a wavelet-based mul4fractal image analysis formalism [13, 14], 
a core part of the proposed approach in this manuscript. 
 
Prior to performing a computa4onal analysis on a mammogram, a spa4al representa4on (i.e. a 
mask) of the breast 4ssue is typically required. A common, yet subjec4ve, method for crea4ng a 
mammographic mask is for a person to manually trace the outline of the breast. Manual 
segmenta4on is tedious due to the click-and-trace nature of following along the pectoral muscle 
contour and the rest of the breast from the image background. The sheer nature of human 
variability regarding the shape of the breast, pectoral muscle, and, through the technician 
imaging the breast causes the segmenta4on of the pectoral muscle from mammograms to be an 
innate problem in the crea4on of these masks. Such subjec4vity and variability can influence the 
subsequent computa4onal analysis of the mammograms. An automa4c method allows for the 
limita4ons associated with the manual masking process and the human subjec4vity associated 
with delinea4ng the breast 4ssue to be eliminated. 
 
The pectoral muscle area of the mammogram is usually high in pixel intensity, and similar to the 
intensity seen in that of dense breast 4ssue. The similarity in the intensity of the dense breast 
4ssue and the pectoral muscle area causes failures for off-the-shelf automated threshold-based 
segmenta4on techniques, based on our early trials [data not shown]. Yet there is a gradient lying 
at the boundary between breast 4ssue and the pectoral muscle region of the breast (Figure 1a). 
A wavelet-based pectoral muscle segmenta4on algorithm for grayscale mammograms was 
constructed through the adapta4on of the 2D Wavelet-Transform Modulus Maxima (2D WTMM) 
segmenta4on method. Using mul4-scale edge detec4on lines, the 2D WTMM segmenta4on 
method can be used to perform automa4c image segmenta4on for a variety of images across 
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scien4fic fields. Indeed, the 2D WTMM segmenta4on method was first developed and used for 
the automa4c segmenta4on and analysis of the morphology of interphase chromosome 
territories from fluorescence microscopy images [15]. Addi4onally, this method was implemented 
for the automa4c detec4on of aggregates in ultra-thin gold surfaces [16], coronal loops in 
ultraviolet (UV) images of the solar corona [17], solar photospheric magne4c structures [18], and 
C. elegans embryonic cell nuclei in three-dimensional image stacks from fluorescence microscopy 
[19]. The 2D WTMM segmenta4on method was also implemented to detect and characterize 
clusters of microcalcifica4ons from mammograms [20-22], track bacteria in digital holographic 
microscopy 4me series [23], as well as for tracking glacier termini from satellite imagery in 
southeast Greenland [24]. 
 
Related Works: Op4mized thresholding can be u4lized to acquire the most efficient threshold to 
segment only the pectoral muscle region of the grayscale mammogram rather than breast 4ssue 
[25, 26]. Challenging issues with these approaches occur when similar pixel intensi4es are found 
between the pectoral muscle region and dense breast 4ssue. Another limi4ng factor may be 
related to the assump4on that the pectoral muscle region must be triangular. The similar pixel 
intensi4es from these two regions can be u4lized in a region-growing approach in which a uniform 
intensity value (UIV) is calculated based upon the mean and standard devia4on of pixel values, 
excluding those equal to zero, across the grayscale mammogram [27]. The UIV can then be used 
to fully segment the pectoral muscle region, in which curve fikng is included as the final step to 
insure the en4re pectoral muscle region has been segmented. In a different approach, the 
pectoral muscle boundary is acquired through the use of thresholding, in which an ac4ve contour 
model can be used to search for the true pectoral muscle contour [28]. A graph-cut technique can 
be u4lized to create a region of interest (ROI) containing the en4re pectoral muscle region of the 
breast [29]. The similar intensi4es present in this region are used to ensure the en4re pectoral 
muscle region is acquired in this ROI with the help of Bezier curves, used widely in computer 
graphics to represent smooth curves. The top right corner of the ROI can then be selected as a 
control point for the Bezier curve in which an itera4ve method can be implemented for the final 
construc4on of a smoother Bezier curve represen4ng the pectoral muscle contour. Gene4c 
algorithms, morphological methods, and random sample consensus approaches have also been 
explored [30, 31]. 
 
Machine learning methodologies are also u4lized for the segmenta4on of the pectoral muscle 
from mammograms [26, 32-34]. An example of this is seen through a connected component 
labeling method to remove the pectoral muscle region of the breast from the mammogram. All 
mammograms are flipped to the leb MLO orienta4on in which Otsu’s mul4-thresholding 
approach is used to separate the background, high, and low dense regions of the respec4ve input 
mammogram [26]. The company VolparaTM designed an implementa4on of the U-net machine 
learning algorithm [35] to segment both the breast and pectoral region of the mammogram. 
Volpara'sTM machine learning approach addi4onally u4lizes image normaliza4on, algorithmic 
padding, image sizing and contrast adjustment, and altering image resolu4on to improve 
algorithm efficiency [33]. Fuzzy C-Means clustering algorithms can be u4lized to acquire the 
pectoral muscle region of the breast, while the final pectoral muscle contour is acquired through 
itera4ve contour improvement and valida4on [32]. 
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An open-sourced MATLAB sobware, OpenBreast, employs an automated breast and chest wall 
segmenta4on algorithm in their breast cancer risk evalua4on pipeline [36]. For breast 
segmenta4on, OpenBreast employs an established thresholding methodology in which the 
threshold is determined based upon the highest value of the distribu4on of pixel intensi4es of 
the mammogram [36]. Once the breast is segmented, the chest wall is then segmented through 
the use of the Hough-based edge detector methodology [36]. The OpenBreast algorithm was 
tested on a total of 305 2D full-field digital mammography images from the Breast Cancer Digital 
Repository [36]. 
 
The use of deep and machine learning algorithms seems to perform well in segmen4ng the 
pectoral muscle. However, weaknesses seen through these literature reviews lie in the 
assump4on of the pectoral muscle as a straight line, which indicates breast 4ssue loss in the 
crea4on of binary masks, which creates an opportunity for a missed cancer. Furthermore, the 
necessity to train the respec4ve machine learning, and/or the inability to explain the model's 
predic4ons present limita4ons. The training process takes 4me and can be swayed due to poor 
model construc4on or even the presence of an unbalanced training sample set. Table 1 reports 
the performances of the approaches described above in which varying datasets were used.  
 

Table 1: Metrics used in literature to evaluate current methodologies in pectoral muscle segmenta5on. 
Study Evalua/on Metrics* Mean Results 

Rahimeto et al. 2021 [26] Accuracy and IoU 0.9862 and 0.8362 
Gomez et al. 2021 [27] Accuracy 0.95 
Rampun et al. 2017 [28] DSC 0.963 ± 0.026 
Camilus et al. 2009 [29] FN and FP 0.0558 and 0.0064 
Shen et al. 2018 [30] FN and FP Three datasets: (1) 0.0203 and 0.0690; (2) 

0.0160 and 0.0403; (3) 0.0242 and 0.1361 
Feudijo et al. 2013 [32] FN and FP 0.1112 ± 0.1253 and 0.0335 ± 0.872 
Wang et al. 2019 [33] DSC 0.8879 
Yu et al. 2022 [34] IoU and DSC 0.9746 ± 0.0045 and 0.9630 ± 0.0066 
Yoon et al. 2016 [31] Accuracy 0.922 
*IoU: Intersec5on over Union; DSC: Dice-Sorenson Coefficient; FN: False Nega5ve Rate; FP: False Posi5ve Rate 

 
MATERIALS AND METHODS 
The 2D Wavelet Transform Modulus Maxima SegmentaKon Method: The 2D WTMM 
segmenta4on method is a mul4-scale, gradient-based method that iden4fies contours 
represen4ng the locally maximal changes in intensity in an image. A 2D smoothing Gaussian 

func4on is used, denoted as 𝜙(𝑥⃑) = exp	 +− |"⃑|!

$
- [15, 24], where 𝑥⃑ represents a coordinate 

(𝑥%, 𝑥$) and |𝑥⃑| = 0𝑥%$ + 𝑥$$. The con4nuous wavelet transform is then calculated by the par4al 
deriva4ves of this smoothing func4on 𝜙(𝑥⃑) with respect to 𝑥% and 𝑥$, respec4vely, 𝜓%(𝑥⃑) =
	&'("⃑)
&""

 and 𝜓$(𝑥⃑) = 	
&'("⃑)
&"!

. The gradient is calculated through convolving the image with the 2D 

smoothing func4on, where * represents the convolu4on in the image, 𝑏4⃑  represents the posi4on, 
and 𝑎 represents the scale of the convolu4on: 𝑇*[𝑓]:𝑏4⃑ , 𝑎; = 	 :𝑇+" , 𝑇+!; = 	∇(𝜙 ∗ 𝑓). The 
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wavelet transform is performed at 50 different size scales, 𝑎 = 0, 1, … , 49, where the size scale in 

pixels is 7 × 2
#
"$. 𝑇+"  and 𝑇+!  represent the two components of the wavelet transform: 

𝑇+"[𝑓] = 	
%
,! ∫𝑑

$𝑥⃑ 	𝜓% +
"⃑-./⃑

,
- 	𝑓(𝑥) and 𝑇+![𝑓] = 	

%
,! ∫𝑑

$𝑥⃑ 	𝜓$ +
"⃑-./⃑

,
- 	𝑓(𝑥⃑). 

The resul4ng gradient is in vector form, meaning it has both a magnitude and direc4on. The 
magnitude of the gradient is known as the wavelet transform modulus 𝑀+, while the direc4on is 
known as the argument 𝐴+ poin4ng to the largest intensity varia4on in an image: 

𝑀+[𝑓] = 	J:𝑇+"[𝑓]$ +	𝑇+![𝑓]$; and 𝐴+[𝑓] = 	𝐴𝑟𝑔:𝑇+"[𝑓] +	 𝑖	𝑇+![𝑓];. 

The maxima points, known as the wavelet transform modulus maxima, or WTMM, represent the 
posi4ons in the image where 𝑀+ are maximal. These maxima points are organized into maxima 
chains, which can be u4lized as edge detec4on lines (Figure 1).  
 

 
Figure 1: For a sample MLO mammographic view (a), the WTMM chains at scale 30 (b) are overlaid onto the 
mammogram (c). The final pectoral muscle chain (red) and linear chain extensions (green) are overlaid onto the 
mammogram (d). The segmented pectoral muscle region can be subtracted from the whole thresholded MLO 
mammogram (e) to create the final automa5c binary mask from the 2D WTMM segmenta5on method (f). Maxima 
chains across 50 wavelet scales for sample MLO mammogram are shown in (g) and the candidate chains (yellow) 
and final pectoral muscle maxima chain (red) are shown in (h). 

 
Dataset: Our algorithm was developed on a dataset of 1042 de-iden4fied 2D digital full field “FOR 
PRESENTATION” mammograms from the MaineHealth Biobank, Scarborough, Maine. These 
mammograms are all MLO views at 70 microns per pixel (vendor = Hologic) and were obtained 
under MaineHealth IRB approval #4664 in 2015. The same mammograms were used to evaluate 
the performance of the 2D WTMM segmenta4on method and the open-source OpenBreast 
approach when compared to manual delinea4ons. 
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Radiological Assessment of Mammographic Density: Mammographic breast density is 
quantified by radiologists using the Breast Imaging and Reporting Data System (BI-RADS) 
recommendations from the American College of Radiology. In its 5th edition, the BI-RADS density 
levels are defined as A: Almost entirely fatty; B: Scattered fibroglandular densities; C: 
Heterogenously dense; and D: Extremely dense [40]. For each of the 82 patients, breast density 
was visually assessed by two breast radiologists (AH and CC). Each patient’s mammographic 
density was categorized as either non-dense (BI-RADS A or B) or dense (BI-RADS C or D).  
 
Manual DelineaKons: To create ground truth masks, all 1042 mammograms were individually 
loaded into the image analysis sobware FIJI [39]. The polygon selec4on tool was used to manually 
select the region of breast 4ssue, excluding the pectoral muscle area. Aber clearing the outside 
of the polygon, the resul4ng image was saved as a black and white binary mask. A subset of 217 
MLO mammograms (~20% of the dataset) were manually delineated by two different people. This 
was to allow us to perform an inter-human variability analysis and empirically determine the 
maximal achievable DSC score when comparing the automated methods to manual delinea4ons. 
To evaluate the similarity between two human delineators, we designed an inter-human 
variability (IHV) analysis. The IHV analysis helps determine a “ground truth” DSC to which an 
automated masking process can be compared to. 
 
WTMM Breast SegmentaKon Approach: As a preprocessing step, the MLO mammogram is scaled 
down by a factor of 4 in the 𝑥 and 𝑦 direc4ons using a pixel averaging algorithm allowing for faster 
processing without compromising accuracy. The 2D WTMM segmenta4on method is then called, 
and the scale-by-scale maxima chain informa4on is saved to file for all 50 wavelet scales. At each 
scale, the descrip4ve metrics of every WTMM chains are recorded: size, mean-modulus, mean-
argument, stdev-argument, mass, posfirst, and distance, where size represents the number of 
maxima points constructed into the chain (i.e. its length); mean-modulus describes the average 
modulus value of the maxima chain; mean-argument and stdev-argument describes the average 
and standard devia4on, respec4vely, of the argument value for the maxima chain; mass is the 
product of size and mean-modulus; posfirst is the posi4on of the first point on the maxima chain 
(used as a coordinate reference); and distance is the Euclidean distance between the geometrical 
center of the maxima chain and the top leb or right corner of the mammogram, depending if the 
view is from the leb or right breast. 
 
Empirically determined thresholds were based upon calibrated average values of these 
descrip4ve metrics. The implementa4on of these thresholds allows for candidate maxima chains 
to be selected (Figure 1h). Of these candidate maxima chains, the maxima chain with the lowest 
stdev-argument is deemed as the maxima chain most accurately matching the pectoral muscle 
contour, as shown in red in Figures 1d and 1h. In some cases, the final pectoral muscle maxima 
chain does not extend to the top and side of the image, where a linear extension is added based 
on the linear regression fit of the final pectoral muscle maxima chain as shown in green in Figure 
1d. Once the final pectoral muscle maxima chain is acquired, the final step of the algorithm is the 
construc4on of the binary mask by combining the segmented pectoral muscle region with an 
automated intensity-based segmenta4on of the whole breast. 
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Dice-Sorenson Overlap Coefficient: For two binary mask image ROIs, 𝑋 and 𝑌, where 𝑋 is the 
manually delineated mask and 𝑌 is the automated mask obtained by either the WTMM or 
OpenBreast approaches, the Dice-Sorenson Coefficient (DSC) is defined as the ra4o of twice the 
area of intersec4on between the two ROIs over the sum of the individual ROI areas [38], i.e. 
𝐷𝑆𝐶 = 	 $|0∩2||0|3|2|

. The DSC ranges from 0 to 1, where a value of 1 indicates a perfect overlap between 

the two ROIs. 
 
StaKsKcal Analysis: All sta4s4cal distribu4on analyses, and hypothesis tes4ng yielding the p-
values presented in this ar4cle were performed using the R language, version 4.3.1 [37]. 
 
RESULTS 
Segmented mammograms from the automa4c 2D WTMM segmenta4on algorithm were 
quan4ta4vely compared to manually drawn masks via the DSC on a total of 1042 MLO 
mammograms resul4ng in a median DSC of 0.976 (Figure 2). To evaluate the performance of the 
2D WTMM segmenta4on method, OpenBreast was employed on the 1042 MLO mammograms 
from the MaineHealth mammographic dataset and compared to their manually drawn masks 
resul4ng in a median DSC of 0.971. To determine sta4s4cal significance, the analysis was 
restricted to 82 mammograms (one randomly chosen per pa4ent), which yielded DSC medians of 
0.9756 for the WTMM approach vs. 0.9698 for OpenBreast (p-value = 0.0067 using a paired 
Wilcoxon Rank Sum test). We also assessed the poten4al differences in the masking performance 
of the automated methods with different mammographic breast densi4es. The 82 pa4ents were 
categorized as non-dense (n=47) if their BI-RADS mammographic density, as visually assessed by 
radiologists (AH and CC), was either A or B, or dense (n=35) if their BI-RADS mammographic 
density was either C or D. The performances were not sta4s4cally different when comparing the 
non-dense vs dense subgroups for OpenBreast (p-value = 0.4282 using a Wilcoxon Rank Sum test) 
or the WTMM (p-value = 0.3936 using a Wilcoxon Rank Sum test). A median DSC for the IVH 
analysis for the subset of 217 MLO mammograms from these analyses was found to be 0.983. 
 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 11, 2024. ; https://doi.org/10.1101/2024.02.09.24302580doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.09.24302580


 
Figure 2: The median DSCs are compared for the 2D WTMM segmenta5on method (red) and OpenBreast  (blue).  

 
DISCUSSION 
The segmenta4on of the pectoral muscle and image background from mammograms is a 
necessary preprocessing task for various computa4onal analyses. Manual delinea4on from visual 
inspec4on is subjec4ve, 4me-consuming, and does not integrate well into an automated analysis 
workflow of large sets of mammograms, while poten4ally reducing the computa4onal expense 
of machine learning approaches. We propose a novel automated method to segment the pectoral 
muscle in MLO mammographic views using the 2D WTMM segmenta4on method. The 
performance of our wavelet-based breast segmenta4on analysis produced a higher median DSC 
in comparison with the OpenBreast analysis for MLO mammograms. With this, the 2D WTMM 
segmenta4on method is an efficient and automa4c segmenta4on approach for mammograms, 
yielding a high accuracy. Breast density is one of the strongest risk factors for breast cancer [41] 
with an almost five-fold rela4ve risk for extremely dense breasts compared to faxy breasts [42]. 
The performance of both automated methods did not seem to be affected by the mammographic 
density of the breast being masked. However, the results are sugges4ve that the WTMM is more 
effec4ve in pa4ents with dense breasts than OpenBreast. Further development of the WTMM 
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approach includes additional validation on an even larger dataset, with a diversity of 
mammography manufacturers, and from a diverse patient population. In addition to this, the 
WTMM approach is in the process of being adapted into an open-source Python approach. 
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Figure 3: Three sample mammograms overlaid with their human delineations (a)(d)(g), OpenBreast 
(b)(e)(h), and 2D WTMM segmentation method (c)(f)(i). 
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