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Abstract 
Introduction. The interplay of daily life factors, including mood, physical activity, or light 

exposure, influences sleep architecture and quality. Laboratory-based studies often isolate 

these determinants to establish causality, thereby sacrificing ecological validity. Furthermore, 

little is known about time-of-year changes in sleep and circadian-related variables at high 

resolution, including the magnitude of individual change across time of year under real-world 

conditions. 

Objectives. This study investigates the combined impact of sleep determinants on individuals' 

daily sleep episodes to elucidate which waking events modify sleep patterns. A second goal 

is to describe high-resolution individual sleep and circadian-related changes across the year 

to understand intra- and interindividual variability. 

Methods and analysis. This study is a prospective cohort study with a measurement-burst 

design. Healthy adults aged 18-35 (N = 12) will be enrolled for 12 months. Participants will 

continuously wear actimeters and pendant-attached light loggers. A subgroup will also 

measure interstitial fluid glucose levels (n = 6). Every four weeks, all participants will undergo 

three consecutive measurement days of four ecological momentary assessments each day 

(“bursts”) to sample sleep determinants during wake. Participants will also continuously wear 

temperature loggers (iButtons) during the bursts. Body weight will be captured before and after 

the bursts, and visual function will be tested in the laboratory. The bursts are separated by two 

at-home electroencephalogram (EEG) recordings each night. Circadian phase and amplitude 

will be determined during the bursts from hair follicles, and habitual melatonin onset will be 

derived through saliva sampling. Environmental parameters (bedroom temperature, humidity, 

and air pressure) will be recorded continuously.  
Ethics and dissemination. The Ethics Committee of the Technical University of Munich 

approved this study (#2023-653-S-SB). We adhere to research standards including the 

Declaration of Helsinki and open science principles. Results will be made available as future 

peer-reviewed publications and contributions to conferences.  

 

Keywords: sleep variability, sleep architecture, season, photoperiod, individual sleep 

differences, naturalistic conditions, prospective cohort study  
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Article summary – Strengths and Limitations 
 

● This study investigates human sleep in the natural environment across 12 months 

incorporating multi-domain sleep determinants to understand their combined contribution 

to the subsequent sleep episode. 

● The study integrates novel and state-of-the art data collection methods, including wearable 

at-home EEG, continuous glucose measurement (CGM) and personalised light logging, 

as well as hair follicle-derived circadian amplitude and phase. 

● The study focuses on longitudinal and high-resolution intra-individual data (N = 12) going 

beyond sparse resolution. Assessments include home-based EEG recordings twice per 

month, monthly circadian phase and amplitude assessment, 3-days of four daily ecological 

momentary assessment per month, and continuous actimetry, continuous light logging and 

continuous bedroom temperature/humidity/air pressure monitoring. 

● Due to the lack of experimental manipulations, drawing direct causal inferences from the 

data will not be possible. 

● The participant burden to generate the within-subject data is high due to the intensive 

sampling and long participation duration.  
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Introduction 
Human sleep is influenced by a variety of factors including life events, mood, physical activity, 

diet and alcohol intake, light exposure and photoperiod, or temperature (as summarised in an 

umbrella review by Philippens and colleagues [1]). The impact of these sleep determinants on 

a given individual’s sleep quantity and quality is subject to inter-individual differences [1]. In 

contrast to the real world, it is possible to isolate specific sleep determinants to study them in-

depth under well-controlled laboratory conditions to determine causality by sacrificing 

ecological validity. To understand human sleep in situ, it is crucial to study how these 

determinants in combination instead of in isolation contribute to individual’s sleep episode. 

Current sleep hygiene recommendations to maintain healthy sleep or improve sleep are mostly 

generic and vague, and only sometimes prove successful because they are misunderstood or 

applied wrongly (e.g., blocking blue light at the wrong internal time or mistiming/misdosing 

melatonin intake) or do not target the individual needs and situations of the person [1–3]. Since 

healthy sleep and entrained circadian rhythms are essential for maintaining health to prevent 

disease [4,5], identifying individual determinants and their respective weight is crucial for 

informing future personalised prevention programs and interventions [1]. The more we 

understand how various factors and responses are connected, the better we can target unique 

individual needs [1,6]. To achieve this goal, more knowledge about the day-to-day variability 

of sleep and circadian rhythms on an individual is needed.  

Sleep also changes throughout the year. Since exposure to light not only shapes sleep 

architecture, entrains circadian rhythms and influences melatonin production [7–11], the 

change in relative abundance and timing of light over the year (photoperiodical changes) in 

locations further away from the equator could have an impact on sleep and circadian-related 

variables. However, evidence on seasonal effects is very mixed and unclear (as summarised 

by Mattingly et al. [12] on sleep duration and timing). Only a handful of laboratory-based studies 

with small sample sizes have explicitly assessed seasonal changes in sleep duration and 

timing and even less on architecture. 

For example, Wehr and colleagues manipulated photoperiod under controlled conditions and 

showed longer sleep under shorter photoperiods (i.e., mimicking winter conditions in the 

Northern hemisphere) together with longer nocturnal melatonin secretion mainly driven by later 

melatonin offset rather than onset in healthy participants (N = 8) [13]. In another study by the 

same group, however, adult men aged 20-50 years (N = 21) recorded light exposure and sleep 

three days before coming to the laboratory where their body temperature was assessed and 

hormone samples were taken both during winter and summer [14]. While light exposure was 
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different, no difference in sleep duration or melatonin secretion was found between summer 

and winter. Van Dongen and colleagues [15] followed healthy participants (N = 6) over 12 

months and assessed their sleep EEG and rectal temperature while controlling for temperature 

in a climate chamber under laboratory conditions once per month. They found no phase angle 

difference between rectal temperature and slow-wave sleep (SWS) across the year, and SWS 

did not vary across season (corresponding to a photoperiod change of 4h between summer 

and winter). However, there was an indication of seasonal variation for the onset of the main 

SWS episode with a modelled peak in March (+40 min) compared to the modelled trough in 

September, and a general trend of later SWS in winter than summer months. The rectal 

temperature as a proxy for circadian rhythms and the onset of main SWS episode reached 

earliest phase values in summer, latest phase values were shown in winter, with a range of 

seasonal variation of 45 min for rectal temperature and 40 min for the onset of SWS. Honma 

et al. [16] studied male participants aged 20-28 (N = 10) who stayed in conditioned laboratories 

for four days in each of the four seasons and showed phase delays of rectal temperature and 

sleep episode of 83 and 88 min respectively in winter, in addition to plasma melatonin phase 

delay of 95 min compared to summer. No difference in sleep duration but earlier sleep onset 

and offset were found in winter. Photoperiod effects might have augmented the responses 

since participants were exposed to natural daylight which was not the case in the study by van 

Dongen. In a cross-sectional study by Askenasy and Goldstein [17] who studied male 

participants (N = 615)  referred to the sleep medicine centre, REM sleep duration and percent 

were higher and REM latency was shorter in winter/spring compared to summer and autumn, 

which could not be replicated by Herer and Lavie [18] who studies male sleep apnea patients 

(N = 706). In  patients with disturbed sleep (N = 292), Seidler and colleagues found total sleep 

time (TST) to be longer during winter than summer, REM-sleep latency to be shorter during 

autumn than spring, REM-sleep duration longer during winter than spring and SWS to be stable 

across seasons except for a marked drop in autumn [19]. However, these results might be 

different in healthy participants and longitudinal studies. 

Outside of laboratory conditions, there is also mixed evidence on the influence or association 

of season/time of year/photoperiod on sleep [12,20]. This may be  due to differences in study 

designs, data sets (either assessed objectively with actimetry or wearables, self-reported 

through diaries or using large-scale mobile application data or phone usage data), small effect 

sizes,  and consideration of potential moderating variables (e.g., actual temperature and 

weather data at time of assessment instead of only the categorical variable season) [12]. 

Another limitation is that many studies compare only a few data points sampled per season 

(an exception is the lab-based study by van Dongen and colleagues [15], or actimetry/wearable 

studies such as Mattingly and colleagues [12] with continuous wearable monitoring over 12 
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months). Self-reported data and evidence from data repositories have larger sample sizes, 

and tend to support the existence of seasonal differences in sleep for specific groups but they 

often lack data on sleep timing [12]. Clear influences/associations of season and sleep timing 

and duration are thus mostly found in larger-scale studies when assessed with wearables or 

actimetry [12]. These tend to show longer sleep in winter and shorter sleep in summer with 

effects strongest in children or elderly people, in preindustrial societies or without electric light. 

The last finding supports a confounding role of electric light but its effects in combination with 

photoperiodic changes seems to be unclear. These trends also seem to be challenged by 

school or work demands such that one study found that children for example were reported to 

sleep longer during school breaks in the summer [12,21].  

The least evidence exists for seasonal variation in EEG micro-and macro architecture of 

healthy participants in field studies. Some polysomnography studies were carried in Antarctica 

(see review [22]) with reports varying from heavily disturbed sleep architecture [23] to 

supposedly normal sleep [24] with sleep disturbances being worse during the Antarctic winter 

(constant darkness) potentially due to delayed melatonin secretion. However, Antarctica 

represents an extreme environment to human sleep thus serving only as an outlier example of 

challenging environments not typical to most people. 

The role of changing natural light throughout the year and its interaction with electrical light 

thus highlights the need of high-quality longitudinal light exposure data measured with precise 

and accurate  light logging devices to understand its impact on sleep in combination with the 

changing photoperiod [25]. While the pathways underlying the impact of light on sleep and 

circadian physiology have been illuminated, with the melanopsin-containing intrinsically 

photosensitive retinal ganglion cells (ipRGCs) playing the primary role [26], clear evidence for 

a link between day-to-day light exposure is lacking. Due to a scarcity of high-quality light 

loggers, most research on light exposure has focused on light sensors integrated in actimeters 

which cannot measure light exposure at eye-level. In addition, photopic illuminance, which 

most prior studies used, is irrelevant for the ipRGC pathways. Only recently, the 

physiologically-relevant melanopic equivalent daylight illuminance (mEDI) [27] has been 

standardised, allowing to estimate the retinal stimulus available to the ipRGCs. 

Overall, there is a gap of high-resolution and longitudinal sleep architecture and circadian data 

collected from healthy participants across the year and studies that also incorporate many 

sleep determinants in addition to light exposure, bedroom temperature conditions, and 

photoperiod data. Within the Ecology of Human Sleep (EcoSleep) project, we address this 

research gap through a longitudinal cohort study with a measurement-burst design focusing 

on the sleep variability of a small cohort of healthy young adults (N=12) across time with a 
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high-resolution sampling frequency of two EEG nights per month and continuous actimetry 

recording and light logging for a duration of 12 months in total. We also include measures for 

circadian variables and bedroom temperature environment and enrich this with weather data 

available from local weather station in Munich operated by the Meteorological Institute from 

the Ludwig Maximilian University, Munich, Germany. To our knowledge, this is the first study 

to include such as rich set of variables and sensors with high-resolution sampling over an 

extensive period. 

Research questions 

The EcoSleep Study will address the following research questions (RQs): 

• RQ1a: What is the contribution of individual daytime sleep determinants (including light 

exposure) on the timing, quality, and architecture of the subsequent sleep episode for the 

individual? 

• RQ1b: How does the unique influence of each sleep determinant differ across individuals? 

• RQ2: Can photoperiod/time of year predict intra-individual variation in outcome variables 

of interest (i.e., sleep-, circadian-, non-parametric circadian related variables)? 
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Methods and analysis 

Study Design and Timeline 

Design, sample size and recruitment 

Overall design 

To understand the fine-grained relationships between daily life variables on subsequent sleep 

episodes (RQ1) and to observe variability in sleep architecture over time (RQ2), we will use 

measurement burst design [28] focusing on naturally occurring changes during the year 

(observational study, no intervention). We will examine both short-term variability in sleep 

determinants by using four daily ecological assessments and EEG sleep recordings (= bursts) 

delivered through mobile phones and long-term changes using repeated bursts over time 

across the year. To avoid sparse sampling of the phenotype of interest, as is often the case in 

longitudinal studies [28], the study will run over 12 months with measurement bursts occurring 

once every four week for three consecutive days (see Figure 1 for an overview). We will run 

the study for 12 months to incorporate seasonal changes. The study will take place in Munich, 

Germany (48°10’50.4”N, 11°32’46.5“E). We previously tested the study in a short-term 

feasibility trial and collected quantitative and qualitative feedback. The current protocol was 

adapted based on the feedback we received. 

Sample size 
We will recruit a total of 12 participants (target 50% female). Since this is the first observational 

study of its kind, there is no principled basis for sample size calculations. We expect a dropout 

of 30%, leading to an expected final sample of n = 8. The choice of 12 participants is given by 

resource constraints. We believe that high-resolution longitudinal data of 12 months duration 

of eight participants will be informative due to the rich and high-resolution within-subjects data. 

Recruitment 
Various recruitment strategies will be used, including fliers and posters placed in and around 

the Technical University of Munich, the TUM intranet and via mailing lists. Additionally, 

participants will be recruited through the TUM Experiment Participant Recruiting System Sona 

Systems and on social media using fliers, a promotion video and word of mouth. 

Inclusion and exclusion criteria 

We apply stringent inclusion and exclusion criteria to control for additional influences that are 

either well known (e.g., alcohol, age) and/or are very strong determinants of sleep (e.g., sleep 
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or other disorders) but less likely to change daily. To be included in the study, participants need 

to be physically, and mentally healthy adults aged 18-35 with a score ≥4 on the Big Five 

Inventory (BFI-44) subscale for conscientiousness to increase the chance of recruiting 

participants likely to commit to the 12-month-long study. See Table 1 for the inclusion criteria. 

 

We will exclude participants who have any known sleep, neurological, metabolic, endocrine, 

mental, or other physical or mental disorders (including bruxism since this increases signal 

noise in EEG recordings). We also exclude participants who are under- or overweight, take 

medication, persons with extreme chronotypes, smokers, who are not good sleepers, who are 

on a therapeutic diet (including intermittent fasting), who work rotating or night shifts, are 

regular video gamers, or sleep in a noisy environment. Pregnant women or persons who are 

breastfeeding cannot participate in the study. Participants becoming pregnant during the 

recording period will be retained subsequently. See Table 2 for the exclusion criteria. 

 

Timeline 

The entire study will take place over a total of 12 months, with a total of 144 repeated bursts. 

Before inclusion, participants will be screened for suitability of participation. Upon inclusion, 

participants give informed consent to participate in the data collection and fill in a baseline 

questionnaire which will be repeated at the end of each month. The baseline questionnaire 

asks about different determinants of sleep including biological, behavioural, environmental, 

and personal/socioeconomic determinants. At enrolment, participants can decide between two 

options of participation (see also Figure 1 and Figure 2): 

Arm 1: All participants will continuously wear two actimeters (one activity tracker worn on the 

wrist from ActTrust Condor and one activity tracker from FibionSENS at their thigh) and log 

their light exposure by wearing a small light logger in the form of a pendant fixed on a lanyard 

throughout the study period of 52 weeks. Additionally, a small temperature logger will be 

placed next to their bed on their bedside table which constantly monitors bedroom 

temperature, humidity, and air pressure. Once per month for three consecutive days (so called 

“measurement sessions”) which last from Monday through Wednesday, participants will 

complete ecological momentary assessments (EMA) four times a day after waking, at ~13:00 

local time, at ~17:00 local time, and prior to going to bed using the custom-made momenTUM 

app. The EMA questionnaires take about 10-15 minutes each and ask about sleep timing and 

quality, physical and mental wellbeing, emotional and mood states, food and drink intake, and 

any important life events and activities on that time of day. They also include the Karolinska 

Sleepiness Scale (KSS) that probes for current sleepiness levels and ask for first day of the 
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current menstrual cycle. Prior to the EMA questions, participants will also complete a 

psychomotor vigilance task (PVT) which is a simple reaction time task which should take no 

longer than six minutes (40 trials). During the two nights of these sessions (i.e., Monday to 

Tuesday night and Tuesday to Wednesday night), electroencephalogram recordings (EEG) 

will be obtained at participant homes. For this, participants will come to the laboratory Monday 

morning to collect their EEG device and return it on Thursday morning. When they are at the 

laboratory, we will measure their body weight, visual functions, and conduct pupillometry (~30 

minutes in total). Throughout the three-day measurement sessions, participants’ distal-

proximal skin temperature gradient (DPG) will be measured by means of two iButtons (coin-

sized temperature loggers) placed on a distal (lower leg) and proximal (collar bone) body 

position and fixed with adhesive tape. They will collect these devices when they come to the 

laboratory. Additionally, participants will collect 12 scalp hair follicle samples at three time 

points: Tuesday afternoon, Tuesday evening and Wednesday morning. On Tuesday 

afternoon, they will also take saliva samples using Salivettes every 30 minutes for eleven time 

points before their planned sleep onset and four time points after waking up on Wednesday 

morning. Both at-home hair and saliva collection are guided by a clear instruction sheet 

discussed with the participants. 

Arm 2: A subgroup of participants (n = 6) only wear one type of actimeter (ActTrust2 from 

Condor) and continuously monitor their glucose levels in the interstitial fluid using FreeStyle 

Libre. This glucose sensor is placed at the upper arm and inserted underneath the skin. The 

sensor can stay attached for up to 2 weeks after which they have to be replaced. Figure 3 is 

an overview of body sensors and loggers and their wearing position. 

At the end of the study, participants will also fill in an evaluation form to evaluate the suitability 

of the different sensors and the study design. We will interview participants and record their 

answers to facilitate transcription and content analysis. After transcription audio files will be 

deleted. 

Measurement modalities 
All wearable devices, sensors and loggers are shown in detail in Figure 3. Light loggers 

(ActLumus) from Condor Instruments measure melanopic light exposure at a sample rate of 

30 sec and are continuously worn around the neck in the form of a pendant for the duration of 

the study period of 2 months. Glucose sensors (Freestyle Libre) are from Abbott and measure 

continuous interstitial fluid concentration of glucose (CGM) for 12 months at a sample rate of 

1 minute and are placed at the upper arm (opt-in: participation Arm 2). The actimeters 

(ActTrust2) are from Condor Instruments (São Paulo, Brazil) sample triaxial acceleration 

(x,y,z) at a sample rate of 30 sec and are worn on the non-dominant wrist. Activity trackers 
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from FibionSENS (Jyväskylä, Finland) also sample triaxial acceleration at a rate of 30 sec and 

are worn on the thigh. Both types of actimeters are worn continuously for 12 months. Hair 

follicles from scalp hair are sampled by the participant at 3 time points spaced by ~8 h during 

monthly measurement sessions (i.e., 3 x 12 months = 36 samples in total) using a kit to 

estimate circadian phase and amplitude. At each time point, 12 hair follicles are collected from 

the scalp, placed in a container filled with RNA stabilizing solution, and sent to the laboratory 

immediately after each monthly measurement session. The expression of clock and clock-

controlled genes is analysed using NanoString technology, and circadian phase and amplitude 

are determined similar to as described in [29]. EEG recordings will be conducted at 2 nights 

during monthly measurements sessions using an ambulatory EEG system (Mentalab Explore, 

Model EX8M) from Mentalab (Munich, Germany) to derive brain activity data for sleep 

architecture variables. Saliva samples will be taken during the monthly measurement sessions 

(15 samples every 30 minutes prior to habitual bedtime and four samples every 30 minutes 

the next morning after wake-up) using Salivettes (see Figure 3) to determine circadian phase 

and cortisol awakening response. Lastly, two temperature sensors in the form of iButtons® 

are placed at a proximal (collar bone) and distal (lower leg) position to log skin temperature 

continuously during the monthly measurement session. 

Data analysis plan 

The study includes several variables, including sleep determinants and sleep -and circadian-

related outcome variables. 

Sleep determinants 

In RQ1, we aim to understand which individual sleep determinants (=predictors of sleep) prior 

to the sleep episode (i.e., factors on day 1; listed in Table 3) influence our main sleep and 

circadian outcome variables as listed in detail in Table 4. To achieve this, we will collect 

biological, behavioural, (physical) environment and personal/socio-economic (Table 3) sleep 

determinants as outlined by the Public Health Classifications Project for Determinants of 

Health [1]. Please note that we decided against collecting data on ethnicity due to the small 

sample size and complex categories of ethnicity that are difficult to assess in the German 

population. For RQ2, we are mainly interested in observing changes in our primary outcome 

measures across time of year and within an individual.   
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Primary outcome variables 

Our primary outcome variables are a diverse set of sleep outcomes, circadian related 

outcomes, such as phase and amplitude, as well as cortisol awakening response as listed in 

Table 4. Sleep outcomes include sleep onset, offset, duration and midsleep, social jetlag, 

subjective sleep quality, wake after sleep onset (WASO), sleep architecture including % and 

duration of sleep stages (N1-N3, REM), sleep onset latency and REM sleep latency, sleep 

efficiency and total sleep time. Circadian variables include amplitude and phase, habitual 

salivary melatonin onset and offset, and timing and magnitude of the cortisol awakening 

response. Non-parametric variables of circadian rhythms include intradaily variability, interdaily 

stability, L5 and M10. For definitions and calculation see Table 4. 

Data pre-processing 

Within three months after starting data collection a pre-processing timeline will be formulated 

depending on data quality and participants’ adherence to the study design. Light exposure can 

be quantified in various metrics which are listed in Supplementary Table 1. Quantification of 

the remaining sleep determinants as listed in Table 3 (e.g., physical activity, mood etc.) will 

also be done. Pre-processing steps will include determining data quality cut-offs, adequate (if 

necessary) aggregation levels of both sleep determinants and outcome variables, and 

deciding on exclusion/imputation methods (e.g., trimming vs winzorizing) and on detrending 

the data. Detrending is necessary if dynamic models (e.g., cross-lagged models or continuous 

time models) will be employed. Diagnostic tools to ensure model residuals are white noise 

(random errors) could include residual plots and QQ plots. We will also test and account for 

collinearity of variables (e.g., light exposure might not be independent of time of year) within 

all models using the variance inflation factor (VIF).   

If data collection falls within daylight savings time (DST) transitions, data will be analysed both 

in relation to local time (clock time) and photoperiod (sun time). Data from transitions periods 

might be disregarded or analysed separately given that DST changes have shown to influence 

sleep (as for example reviewed by Harrison [30]). Categorised season is defined following 

standard meteorological definitions for the Northern hemisphere as follows: spring (from 1 

March to 31 May), summer (from 1 June to 31 August), autumn (from 1 September to 30 

November), winter (from 1 December to 28 February). Seasonal and time of year information 

can be entered as a categorical variable (winter, spring, summer, autumn), or numeric 

(photoperiod length or time of year in day number). This has to be further explored based on 

data quality and structure. 

Data will be processed using software packages provided by the manufacturers of the devices 

and open access Python or R based packages. These include ActStudio (version 1.0.23) for 
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ActTrust (actimeter) and ActLumus (light logger) from Condor Instruments, and Fibion SENS 

App (version 3.7.0-240111) for the Fibion device (actimeter). Future versions for these 

software packages may be used and will be named in future publications on these data. 

 

Statistical analyses 

Statistical analyses will be using R (version 2023-10-31), R Studio (version 2023.12.1+402) 

and python (version 3.12.1) or future version if available at the time of analysis. Particular R 

packages that are planned to be used, among others, include ctsem  [31,32] or forecast [33] 

for continuous time dynamic modelling and autoregressive models, lme4 [34] for linear mixed 

models, lavaan for structural equational modelling [35], car [36] for testing collinearity, effects 

[37] for tabular and graphical effects display, ggplot2 [38] for visualising data, tidyverse [39] 

for data wrangling, and LightLogR [40] for processing and calculating light data and variables. 

Python packages include pyActigraphy [41] for actimetry data analysis, and YASA [42] 

algorithm for sleep determining sleep stages from EEG data.  

Descriptive statistics 
Standard descriptive statistics, e.g., mean, standard deviation, minimum and maximum, 

skewness and curtosis will be reported for all metric variables, both within-persons and 

between persons. If normality is violated, or for non-numeric variables, we will use robust 

descriptive measures (median, interquartile range). Frequencies and percentages will be 

reported for categorical variables. Pearson correlations are used for computing numerical 

correlations, Spearman’s Rank Correlations are used for ordinal data. Correlation matrices will 

be reported on a group and individual level to determine correlation of variables. Trends in 

time series data throughout the year will be graphically represented for key outcomes of 

interest. 

Modelling 
For RQ1a (i.e., the influence of sleep determinants on sleep outcome variables and vice versa) 

and if data quality allows (see section on Data pre-processing), we plan to use descriptive 

summary statistics and potentially correlation matrices for group and individual analyses as 

described above (see Descriptive statistics). For modelling, our focus will lie on both discrete-

time and continuous-time dynamic modelling methods. These will be utilized to delve into and 

test the temporal interplay between sleep outcome variables, as listed in Table 4, and sleep 

determinants, as outlined in Table 3. This approach is aimed at a comprehensive examination 

of the dynamic relationships between these key sleep-related factors. Autocorrelation function 

(ACF) and plots will be employed to examine autocorrelation at different lags and explore 
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trajectories to decide on a set of potential models which are subsequently tested against each 

other. Model fits will be assessed using Chi-Square (χ2) tests (with a significance level of 

α = .05) along with descriptive model fit indices, such as the root mean square error of 

approximation (RMSEA) and the comparative fit index (CFI), provided they are feasible to 

calculate. 

 

To address RQ1b (i.e., the unique influence of each sleep determinant per person), we will 

use models with between-person random cross-lagged effects, as implemented in Bayesian 

frameworks, as for example described in [31]. 

 

For RQ2 (i.e., seasonal variation in outcome variables), we will mainly use descriptive 

summary statistics to describe intra- and interindividual variability of our outcome variables (as 

outlined in Table 4) across time of year/season/photoperiod including time-series plots. In 

addition, we consider time series and trend analyses as for RQ1. We will also employ 

regression-based analyses, including linear mixed modelling, to predict outcome variables by 

time of year/photoperiod. Note that we generally expect highest differences in outcome 

variables between summer and winter.  

 

Model comparisons. For comparing models, we intend to use Likelihood Ratio Tests (LRT; 

with a significance level of α = .05) for nested models, Information Criteria, or Bayes factors. 
 

Expected problems and limitations. Given the anticipated small sample size of individuals, 

conducting between-person statistical analyses may be limited and may not be feasible 

depending on data quality. In such instances, greater emphasis will be placed on descriptive 

and individual-level n-of-1 analyses. In general, further explorative analyses are likely to be 

conducted depending on data quality and availability. 
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Ethics and dissemination 

Ethical approval 
A feasibility trial of this study was reviewed and approved by the Ethics Committee of the 

Technical University of Munich on 14 November 2022 under #2022-578-S-KH. The current 

protocol includes major changes to the feasibility trial which were reviewed and positively 

evaluated by the Ethics Committee of the Technical University of Munich on 1 February 2024 

under #2023-653-S-SB. 

Data collection and management 
The collected and saved data will be classified as health data under the "very high" protection 

level. Data will be collected pseudonymised using a study ID for each participant. Only 

authorised study personal will have access to a list de-identifying participant ID and study ID 

of the respective person. All data that we can assess independently will be stored securely on 

our internal TUM server. We adhere to EU General Data Protection Regulations. 

Data from Fibion SENS (actimeter data) transmitted via Bluetooth and stored on their server 

(server location in Frankfurt, Germany), processed, and provided for download on a webpage 

to which only authorised personnel have access to. Glucose levels in interstitial fluid will be 

read using a reader and App from Freestyle Libre Abbott and stored on their server (AWS). 

We will ensure additional pseudonymisation to meet data security concerns (different study ID 

to their original study ID) in this case. 

Dissemination 
Our findings will be presented at regional, national, and international scientific conferences 

and workshops and submitted for publication in peer-reviewed journals. We also adhere to 

open science principles, including this open protocol. We will publish code under the MIT 

License, and materials and data under the Creative Commons (CC-BY) license on GitHub. 

The study's results could also inform future interventions using eHealth and other digital 

methods. 

We also plan to present results of the study in non-scientific contexts to inform the public 

through outreach events and public engagement formats. Study participants will receive a 

summary of their data in simplified language to help them understand their own (sleep) data, 

including sleep hygiene behaviour, light exposure and chronotype.  
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Figures and Tables 
 

 

Figure 1. Timeline of the study. Panel A shows the entire 12-month measurement timeline. 

Panel B depicts a session in detail, consisting of three consecutive measurement days. 
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Figure 2. Timeline of onboarding steps and measurements. Participation in Arm 2 includes 

the same measurements as Arm 1 except that participants only wear one type of actimeter 

and instead additionally measure their glucose levels continuously (GCM). BMI, Body mass 

index; EEG, electroencephalography; EMA, ecological momentary assessment. 
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Figure 3. Overview of measurements and sensor and device placements. 
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Domain Criterion Assessment method 
Age ≥18, ≤35 years of age Self-report 

Physical health Good physical health Self-report 
Mental health Good mental health Self-report 

Personality Highly conscientious, score ≥4 Self-report (BFI-44 – subscale 
conscientiousness) 

Table 1. Inclusion criteria. BFI-44, Big Five Inventory 44 item version [43]. 

 

Domain Criterion Assessment method 

BMI Underweight or overweight, <18.5, >25 Calculation from self-
reported height and weight 

Medication use Any use of medications including hormonal 
supplements/treatment Self-report 

Pregnancy or breast 
feeding Current pregnancy or currently breast feeding Self-report 

Bruxism History of current bruxism Pintado et al. (1997) 
questionnaire [44] 

Smoking Habitual smoking Self-report 

Epilepsy Diagnosis of epilepsy Self-report 

Health condition Diagnosis of any neurological, psychological, or 
psychosomatic conditions Self-report 

Long Covid Diagnosis of Long Covid Self-report 

Ocular disease Diagnosis of any ocular disease or altered colour 
vision Self-report 

Substance abuse Excessive alcohol use, score ≥8 AUDIT 

Sleep Poor sleep quality, score >5 PSQI 

Chronotype Extreme early or late chronotype,  
MSFsc <1:30h or >6:00 MCTQ 

Gaming behaviour Extensive gaming behaviour or addiction, score ≥21 IGDS9-SF 

Intermittent fasting or 
other diet Current intermittent fasting Self-report 

Sleep environment Noise disturbances at sleep environment, score >10 ASE 

Table 2. Exclusion criteria. Audit, Alcohol Use Disorders Identification Test [45]; PSQI, 

Pittsburgh Sleep Quality Index [46]; MCTQ, Munich Chronotype Questionnaire [47]; IGDS9-
SF, Internet Gaming Disorder Scale 9 items short form [48]; ASE, Assessment of Sleep 

Environment [49]. 
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Biological 
determinants 

Behavioural 
determinants 

Environmental 
determinants 

Personal & socio-
economic determinants Assessed at 

Age* Alcohol & caffeine 
intake* Noise* Personality* & 

attachment style 

Baseline Sex & Gender Gaming behaviour* 
Natural disasters 

Ethnicity^ 

Chronotype* Intermittent fasting* Socio-economic status 

 

Exercise  Psychological disposition EMA 
(once per month 

4x daily, 

for 3 consecutive 
days) 

Meditational physical 
activities Light exposure 

behaviour 

Mood 

Psycho-social stress 

Music listening Social relations 

 

Physical 
activity/Sedentary 
behaviour 

 

Bedroom 
temperature, 
humidity, air 
pressure 

  
Continuously 

  Light exposure  

Table 3. Overview of included sleep determinants and time of assessment. Note that 

natural disasters, major political events, and other events of public life will be recorded by the 

study team if relevant during the recording period. EMA, ecological momentary assessment. 

*, Part of the exclusion criteria to control for this determinant; ^, Not assessed due to small 

sample size and inadequate ethnic categories for Germany. 
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Outcome Abbreviation Format 
Computation with 
software or 
formula 

Assessed 
with 

Assessed 
at 

SLEEP VARIABLES 

Sleep onset Son hh:mm  
(local time) 

– Sleep diary EMA 

ActStudio  
(Condor 
Instruments) 

Actimetry 
Continuously  
(30s 
resolution) 

Sleep offset Soff hh:mm  
(local time) 

– Sleep diary EMA 

ActStudio  
(Condor 
Instruments) 

Actimetry 
Continuously  
(30s 
resolution) 

Sleep duration Sdur Numeric 
(minutes) 

– Sleep diary EMA 

ActStudio  
(Condor 
Instruments) 

Actimetry 
Continuously  
(30s 
resolution) 

Midsleep MS hh:mm  
(local time) 

- Sleep diary EMA 

ActStudio  
(Condor 
Instruments) 

Actimetry 
Continuously  
(30s 
resolution) 

Absolute Social 
Jetlag SJL hh:mm 

(local time) 

|Midsleep on free 
days – midsleep on 
weekdays|  

Actimetry 
Continuously  
(30s 
resolution) 

Subjective sleep 
quality SQ 11-point 

Likert scale – Sleep diary EMA 

Wake after sleep 
onset 
Objective sleep 
quality 
approximation 

WASO Numeric 
(minutes) 

Total time spent 
awake after sleep 
onset 
 
YASA algorithm [50] 

EEG 2 nights/ 
month 

Sleep architecture 
% and absolute 
duration of sleep 
stages (awake, N1, 
N2, N3, REM) 

Awake 
N1 
N2 
N3 
REM 

%, 
minutes 
 
 
 
 
 

(Time spent in sleep 
stage/total sleep 
time)*100 
 
YASA algorithm [50] 

EEG 2 nights/ 
month 

Sleep onset 
latency 
 SOL Numeric 

(minutes) 

Time from lights out 
to first epoch of any 
sleep  
 
YASA algorithm [50] 

EEG 2 nights/ 
month 

REM  
latency  
 

lat_REM Numeric 
(minutes) 

Time from start of 
recording to first 
REM sleep episode 
 
YASA algorithm [50] 

EEG 2 nights/ 
month 
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Sleep Efficiency SE % 

(Total sleep 
time/Time in 
bed)*100 
 
YASA algorithm [50] 

EEG 2 nights/ 
month 

Total sleep time TST Numeric 
(minutes) 

Sum of time spent in 
all sleep stages 
 
YASA algorithm [50] 

EEG 2 nights/ 
month 

CIRCADIAN VARIABLES 

Amplitude 
 
 

A 
 
 

Numeric 
 
 

Maximum-mesor (of 
best fitting cosine 
function) 
 

Actimetry 
Continuously  
(30s 
resolution) 

  

Scalp hair 
follicle  
(from mRNA) 
[29] 

1x/month  
(3 samples 
necessary) 

Phase ϕ 

hh:mm 
(local time) 

Time of highest 
activity values  Actimetry 

Continuously  
(30s 
resolution) 

  

Scalp hair 
follicle  
(from mRNA) 
[29] 

1x/month  
(3 samples 
necessary) 

Habitual melatonin 
onset mel_on 

hh:mm  
(local time) & 
AUC 

>3 pg/ml & 2 SD 
above the mean of 3 
baseline values [51] 
& hockey-stick 
algorithm [51] 

Saliva samples 
1x/month  
(15 samples 
necessary) 

Habitual melatonin 
offset mel_off 

hh:mm  
(local time) & 
AUC 

<3 pg/ml & hockey-
stick algorithm [51] Saliva samples 

1x/month  
(15 samples 
necessary) 

Cortisol 
awakening 
response 

CAR 

Mean cortisol 
increase 
after  wake & 
AUC, AUCG & 
AUCI [52,53] 

µg/dL Saliva samples 
1x/month  
(4 samples 
necessary) 

NONPARAMETRIC CIRCADIAN VARIABLES 

Intradaily 
variability 
= amount of 
fragmentation of the 
rhythm 

IV Numeric 
pyActigraphy [41] / 
ActStudio (Condor 
Instruments) 

Actimetry 
Continuously  
(30s 
resolution) 

Interdaily stability 
= relative strength 
of the circadian 
rhythm 

IS Numeric 
pyActigraphy [41]/ 
ActStudio (Condor 
Instruments) 

Actimetry 
Continuously  
(30s 
resolution) 

Nocturnal activity 
= average activity L5 Numeric pyActigraphy [41]/ 

ActStudio (Condor Actimetry Continuously  
(30s 
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during the least 
active 5-h period 

Instruments) resolution) 

Daytime activity  
= average activity 
during the most 
active 10-h period 

M10 Numeric 
pyActigraphy [41]/ 
ActStudio (Condor 
Instruments) 

Actimetry 
Continuously  
(30s 
resolution) 

Table 4. Overview of primary outcome variables. YASA, Yet Another Spindle Algorithm 

[42]; AUC, Area under the curve; AUCG, Area under the curve with respect to ground; AUCI, 

Area under the curve with respect to increase. 

 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 11, 2024. ; https://doi.org/10.1101/2024.02.09.24302573doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.09.24302573
http://creativecommons.org/licenses/by/4.0/

