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Abstract1

Differential diagnosis of dementia remains a challenge in neurology due to symptom overlap across etiolo-2

gies, yet it is crucial for formulating early, personalized management strategies. Here, we present an AI3

model that harnesses a broad array of data, including demographics, individual and family medical history,4

medication use, neuropsychological assessments, functional evaluations, and multimodal neuroimaging, to5

identify the etiologies contributing to dementia in individuals. The study, drawing on 51, 269 participants6

across 9 independent, geographically diverse datasets, facilitated the identification of 10 distinct dementia7

etiologies. It aligns diagnoses with similar management strategies, ensuring robust predictions even with8

incomplete data. Our model achieved a micro-averaged area under the receiver operating characteristic9

curve (AUROC) of 0.94 in classifying individuals with normal cognition, mild cognitive impairment and10

dementia. Also, the micro-averaged AUROC was 0.96 in differentiating the dementia etiologies. Our model11

demonstrated proficiency in addressing mixed dementia cases, with a mean AUROC of 0.78 for two co-12

occurring pathologies. In a randomly selected subset of 100 cases, the AUROC of neurologist assessments13

augmented by our AI model exceeded neurologist-only evaluations by 26.25%. Furthermore, our model14

predictions aligned with biomarker evidence and its associations with different proteinopathies were sub-15

stantiated through postmortem findings. Our framework has the potential to be integrated as a screening16

tool for dementia in various clinical settings and drug trials, with promising implications for person-level17

management.18
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Dementia is one of the most pressing health challenges of our time. With nearly 10 million new1

cases reported annually, this syndrome, characterized by a progressive decline in cognitive function severe2

enough to impede daily life activities, continues to present considerable clinical and socioeconomic chal-3

lenges. In 2017, the World Health Organization’s global action plan highlighted the need for prompt and4

precise diagnosis of dementia as a pivotal strategic objective in response to the growing number of dementia5

worldwide.1, 2 As such, diagnostic precision in the varied landscape of dementia remains a critical, yet unmet6

need, particularly as the global population ages and the demand for more accurate participant screening in7

drug trials increases.3 This challenge primarily stems from the overlapping clinical presentation of different8

dementia types, which is further complicated by the heterogeneity in findings on magnetic resonance imag-9

ing (MRI) scans.4, 5 The necessity for improvements in the field becomes ever more pressing considering the10

projected shortage of specialists including neurologists, neuropsychologists and geriatric care providers,6–8
11

emphasizing the urgency to innovate and evolve our diagnostic tools.12

Accurate differential diagnosis of dementia is pivotal for prescribing targeted therapeutic interven-13

tions, enhancing treatment efficacy and slowing symptom progression. While Alzheimer’s disease (AD) is14

a leading cause, other forms such as vascular dementia (VD), Lewy body dementia (LBD), and frontotem-15

poral dementia (FTD) are also prevalent.9–11 These etiologies can often coexist, as marked by symptom16

overlap and variable symptom intensity, which further complicate the diagnostic process.12 Importantly,17

diagnostic errors are prevalent among older adults, particularly those with comorbid conditions.13 These18

misdiagnoses can translate into inappropriate medication use and adverse health outcomes.14 For example,19

while patients with early-stage AD may be candidates for anti-amyloid therapies,15–17 the coexistence of20

pathology from other etiologies, such as vascular dementia, can increase the risk of amyloid-related imag-21

ing abnormalities.18 This highlights the critical need for accurately assessing the full spectrum of etiological22

factors contributing to dementia to inform appropriate therapeutic strategies and optimize patient care.19
23

The imperative for scalable diagnostic tools in AD and related dementias is becoming increasingly24

urgent, given the significant challenges in accessing gold-standard testing. Recent regulatory approvals have25

facilitated the transition of cerebrospinal fluid (CSF) and positron emission tomography (PET) biomarkers26

from research environments to clinical settings. While promising, the clinical integration of accurate blood-27

based biomarkers remains an area of active research.20–22 Despite these advancements, accessibility to these28

diagnostic tools is still constrained, not only in remote and economically developing regions but also in29

urban healthcare centers, as exemplified by prolonged waiting periods for specialist consultations.23 This30

challenge is compounded by a global shortage of specialists, such as behavioral neurologists and neuropsy-31

chologists, leading to an overreliance on cognitive assessments that may not be culturally appropriate due to32

the lack of formal training programs in neuropsychology in many parts of the world.24, 25 Although conven-33

tional methods like clinical evaluations, neuropsychological testing, and MRI remain central to antemortem34

differential dementia diagnosis, their effectiveness relies on a diminishing pool of specialist clinicians. This35

underscores an urgent need for healthcare systems to evolve and adapt to the rapidly changing dynamics of36

dementia diagnosis and treatment.37

Machine learning (ML) has the potential to enhance the accuracy and efficiency of dementia diagnosis.26–28
38

Previous ML methods have largely focused on leveraging neuroimaging data to distinguish cognitively nor-39

mal (NC) individuals from those with mild cognitive impairment (MCI) and dementia (DE), with AD being40

the main etiology given its ubiquity in dementia diagnosis.29, 30 A few studies have attempted to discern41

neuroimaging signatures unique to AD by contrasting them with other dementia types31–40 However, this42

primary emphasis on AD can have limited practical implications given the prevalence and co-occurrence43
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of other etiologies. In addition, a focus on imaging data alone can be insufficient in providing a holistic44

understanding of an individual’s neurological condition. Recently, we proposed a novel approach to stratify45

individuals based on cognitive status and discern likely AD cases from non-AD dementia types by incor-46

porating imaging with non-imaging data such as demographics, medical histories, and neuropsychological47

assessments.39 These investigations have begun to illuminate the complex matrix of factors contributing to48

dementia. However, for ML models to be adopted into clinical practice, they must be able to accommodate49

the intricacies of mixed etiologies, as well as the inclusion or exclusion of different data modalities that may50

or may not be available. Therefore, the development of AI methodologies capable of harnessing multimodal51

data facilitates the accurate quantification of diverse dementia etiologies, irrespective of clinical resources,52

thereby aligning treatment strategies with individual patient profiles.53

In this study, we propose a multimodal machine learning framework that harnesses a diverse array54

of data, including demographics, personal and family medical history, medication use, neuropsycholog-55

ical assessments, functional evaluations, and multimodal neuroimaging to perform differential dementia56

diagnosis. Our model, designed to mirror real-world scenarios, aligns diagnoses with similar management57

strategies and outputs probabilities for each etiology. This approach is intended to mimic clinical reasoning58

and aid practitioners in dementia screening and treatment planning. The model’s robustness is demonstrated59

through validation on independent, geographically diverse datasets. In comparative analyses, we found60

that AI-augmented clinician assessments achieved superior diagnostic accuracy compared to clinician-only61

assessments. By validating our model against gold-standard biomarker and postmortem data for different62

etiologies, we further emphasize our model’s ability to dissect the intricate pathophysiology underlying de-63

mentia. Our algorithmic framework demonstrates the potential to enhance dementia screening in various64

clinical settings, illustrating AI’s capacity to improve healthcare outcomes.65
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Results1

Glossary 1
Acronym Description
NC Normal cognition
MCI Mild cognitive impairment
DE Dementia
AD Alzheimer’s disease
LBD Lewy body dementia including dementia with Lewy bodies and Parkinson’s disease

dementia
VD Vascular dementia, vascular brain injury, and vascular dementia including stroke
PRD Prion disease including Creutzfeldt-Jakob disease
FTD Frontotemporal lobar degeneration and its variants, including primary progressive

aphasia, corticobasal degeneration and progressive supranuclear palsy, and with or
without amyotrophic lateral sclerosis

NPH Normal pressure hydrocephalus
SEF Systemic and environmental factors including infectious diseases (HIV included),

metabolic, substance abuse / alcohol, medications, systemic disease, and delirium
PSY Psychiatric conditions including schizophrenia, depression, bipolar disorder, anxi-

ety, and post-traumatic stress disorder
TBI Moderate/severe traumatic brain injury, repetitive head injury, and chronic trau-

matic encephalopathy
ODE Other dementia conditions including neoplasms, Down syndrome, multiple systems

atrophy, Huntington’s disease, seizures, etc.

2

Leveraging the power of multimodal data obtained from various cohorts (Tables 1 & S1 - S6), our3

model adopts a nuanced approach to differential dementia diagnosis (Fig. 1). Our framework assigns in-4

dividuals to one or more of thirteen diagnostic categories (refer to Glossary 1), which were meticulously5

defined through consensus among a team of expert neurologists. This practical categorization is designed6

with clinical management pathways in mind, thereby echoing real-world scenarios. For instance, we have7

grouped dementia with Lewy bodies and Parkinson’s disease dementia under the comprehensive category8

of Lewy body dementia (LBD). This classification stems from an understanding that the care for these con-9

ditions often follows a similar path, typically overseen by a multidisciplinary team of movement disorder10

specialists. In the context of vascular dementia (VD), we included individuals who exhibited symptoms of a11

stroke, possible or probable VD, or vascular brain injury. This encompassed cases with symptomatic stroke,12

cystic infarct in cognitive networks, extensive white matter hyperintensity, and/or executive dysfunction as13

the primary contributors to the observed cognitive impairment. The inclusion criteria were based on the ex-14

pectation that such patients would typically receive care from clinicians specializing in stroke and vascular15

diseases. Likewise, we have considered various psychiatric conditions, such as schizophrenia, depression,16

bipolar disorders, anxiety, and post-traumatic stress disorder, under one category (PSY), acknowledging that17

their management predominantly falls within the realm of psychiatric care providers. By aligning diagnostic18

categories with clinical care pathways, our model serves not only to classify an individual’s condition but19

5

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 26, 2024. ; https://doi.org/10.1101/2024.02.08.24302531doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.08.24302531
http://creativecommons.org/licenses/by/4.0/


also to direct appropriate clinical management strategies.20

Model performance on NC, MCI and DE We first sought to evaluate the performance of the model21

on test cases comprising individuals along the cognitive spectrum of NC, MCI and DE. The receiver op-22

erating characteristic (ROC) and precision-recall (PR) curves reflected strong model performance across23

different averaging methods (Figs. 2a & 2b). In the test set, comprising the NACC dataset unused in train-24

ing, the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and the Framingham Heart Study (FHS) data,25

our model demonstrated robust classification abilities for NC, MCI, and DE, achieving a micro-averaged26

AUROC of 0.94 and a micro-averaged AUPR of 0.90. Additionally, the macro-averaged metrics showed27

an AUROC of 0.93 and an AUPR value of 0.84. The weighted-average AUROC and AUPR values further28

demonstrated the model’s efficacy, standing at 0.94 and 0.87, respectively. Detailed model performance met-29

rics across the three test cohorts are provided in Table S7. We also evaluated our model’s effectiveness by30

benchmarking it against a baseline machine learning algorithm, CatBoost,41 using identical case sets. This31

comparison was executed over two feature subsets, revealing that our model and CatBoost exhibited simi-32

lar performances on the NACC dataset. Conversely, on the ADNI and FHS datasets, our model surpassed33

CatBoost, achieving higher AUROC and AUPR scores across all diagnostic categories with improvements34

ranging from 0.02 to 0.21 for AUROC and 0.03 to 0.17 for AUPR, as detailed in Table S8. This compar-35

ison highlights the improved generalizability of our model over traditional machine learning approaches in36

diagnostic tasks.37

Model performance on incomplete data To evaluate the model’s resilience to incomplete data, we38

artificially introduced varying levels of data missingness in the NACC cohort and assessed the impact on39

its predictive performance by selectively removing portions of the data to simulate different constraints.40

As depicted in the chord diagram (Fig. 2c), even when confronted with missing features, whether it be41

MRIs, UPDRS, GDS, NPI-Q, FAQ, NP tests or other parameters, our model consistently produced reliable42

scores. This reinforces not only its predictive stability, but also its potential applicability in various clinical43

scenarios where complete datasets are generally unattainable. Examples of this are found in our results on44

ADNI and FHS, which we used as external testing datasets (Tables S4 & S5). The ADNI cohort exhibited45

approximately 69% missing data compared to NACC, yet model predictions achieved a weighted-average46

AUROC of 0.91 and AUPR of 0.86 for NC, MCI, and DE categories. Similarly, with 94% fewer features47

than NACC, the model’s performance on FHS data also resulted in weighted-average AUROC and AUPR48

scores of 0.68 and 0.53 for NC, MCI, and DE categories, respectively.49

Model alignment with prodromal disease We aimed to evaluate the model’s efficacy in identifying50

MCI individuals with an etiological diagnosis of AD, comparing the model’s predicted AD probabilities,51

P (AD), between MCI cases with AD as either a primary or contributing cause of their impairment and an52

etiological diagnosis of AD. Despite the fact that our model was trained on identifying AD dementia rather53

than prodromal AD, we found that it consistently assigned higher P (AD) to cases with MCI due to AD,54

compared to those with MCI due to other factors (Fig. 2d & Table S9). These results highlight our model’s55

clinical relevance in facilitating early disease detection and aiding clinicians in making informed decisions.56

Specifically, our findings support a therapeutic strategy of preemptive intervention in the AD continuum.57
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Model alignment with clinical dementia ratings We conducted a comparison between the model’s58

predicted DE probability scores, P (DE), and the clinical dementia ratings (CDR) available for all partici-59

pants in the NACC testing, and ADNI cohorts (Figs. 2d & 2e, Table S10). Despite not incorporating CDR as60

input during model training, our predictions exhibited a strong correlation with CDR scores. In our analysis61

of the NACC dataset, we observed that P (DE) progressively increased with higher CDR scores, with statis-62

tically significant differences manifest across the spectrum of cognitive impairment (p < 0.0001). However,63

this pattern did not hold between CDR scores of 2.0 and 3.0, where no significant statistical difference was64

discerned. In the ADNI dataset, we found a statistically significant demarcation (p < 0.0001) in P (DE)65

between the baseline CDR rating and higher gradations. This points to the model’s sensitivity to incremental66

impairment in clinical dementia assessments. In the FHS dataset (Fig. 2f), which substitutes a consensus67

panel’s diagnostic categorization (normal, impaired, and dementia) for CDR scores, a marked statistical sig-68

nificance (p < 0.0001) was evident in P (DE) across these diagnostic strata, with the exception of normal69

versus impaired. This indicates a challenge for the model in distinguishing the early stages of cognitive70

decline when relying on a limited set of features. Such limitations are likely due to the community-based71

nature of the FHS cohort and the specificities of consensus panel ratings at FHS (Table S4). Collectively,72

these findings illuminate the model’s robust capacity to delineate differential cognitive states, showcasing73

its potential as a tool for identifying levels of cognitive impairment across datasets.74

Evaluation of single and co-occurring dementias We evaluated our model’s diagnostic ability75

across ten distinct dementia etiologies. The ROC and PR curves in (Fig. 3a-b) reflect strong model per-76

formance on the model’s overall assessment on identifying dementia etiologies across different averaging77

methods, attaining micro-averaged AUROC and AUPR values of 0.96 and 0.70, respectively. In macro-78

averaged terms, the AUROC and AUPR stood at 0.91 and 0.36. Moreover, the weighted-average values79

for AUROC and AUPR were 0.94 and 0.73, respectively. The model’s performance, characterized by80

high micro-averaged and weighted-average AUROC and AUPR scores, underscores its diagnostic accu-81

racy across a broad spectrum of dementia etiologies. While the lower macro-average AUPR scores indicate82

that our model may perform better on certain diagnoses relative to others, the weighted-average scores, ad-83

justing for the prevalence of each dementia type, support the model’s effectiveness in a real-world clinical84

setting, where some dementia types are more common than others.85

To further assess the model performance on co-occurring dementias, we adopted a maximum variance86

threshold of 0.01 for AUROC calculations.42 This selection aimed to balance the sensitivity and specificity87

of the model, enabling it to discern subtle diagnostic differences. This resulted in a minimum positive sam-88

ple size of 25. In instances where two dementias co-occurred (Fig. 3c), the model’s AUROC scores varied89

from 0.63 to 0.97, reflecting a spectrum of diagnostic accuracy, with the LBD and PSY combination achiev-90

ing the highest AUROC. AUPR scores ranged from 0.08 to 0.60, again with the conjunction of LBD and91

PSY recording the highest AUPR value. In the case of AD occurring with two other etiologies (VD & PSY),92

the AUROC score was 0.73 and the AUPR was 0.48. While our model demonstrated robust diagnostic dis-93

crimination, as evidenced by high AUROC values, the variability in AUPR scores may reflect challenges in94

consistently identifying less prevalent or more complex dementia etiologies within the dataset. Importantly,95

a similar pattern was found in subsequent analyses of expert neurologists’ performance for conditions such96

as SEF and TBI (Table S15). Additional performance metrics and visualizations that illustrate our model’s97

ability to assess single and co-occurring dementias are presented in the Supplement (Table S7 & Fig. S1).98
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Model validation with biomarkers Model-predicted probabilities for AD, FTD, and LBD were aligned99

with the presence of respective biomarkers, as demonstrated in the raincloud plots in Fig. 4 & Table S11.100

For AD, P (AD) correlated with Aβ, tau, and FDG PET biomarkers across the NACC and ADNI cohorts,101

indicating statistically significant differences between biomarker-negative and positive groups (p < 0.0001).102

Notably, P (AD) was consistently higher in Aβ, tau, and FDG PET positive groups, demonstrating that our103

framework’s diagnostic process aligns well with the current amyloid, tau, and neurodegeneration (ATN)104

criteria for AD diagnosis.43 Within the NACC cohort, FTD probabilities, P (FTD), were significantly as-105

sociated with MRI and FDG PET biomarkers, with the biomarker positive groups having higher P (FTD).106

This result corroborates the capability of our model to detect FTD in alignment with observed patterns107

of fronto-temporal hypometabolism and atrophy.44 Finally, LBD probabilities, P (LBD), also displayed a108

clear differentiation when analyzed in relation to DaTscan evidence for LBD,45 with the DaTscan positive109

group exhibiting higher probabilities of LBD. Taken together, these findings validate the model’s effec-110

tiveness in capturing the pathophysiological underpinnings of prevalent dementia types in addition to the111

clinical syndrome, offering etiology-specific probability scores that closely match respective biomarker pro-112

files. This alignment not only substantiates the model’s predictive validity, but also highlights its relevance113

to contemporary clinical practice as its mechanism for differential diagnosis of dementia reflects established114

biomarker criteria.115

Model validation with neuropathological evidence In cases with postmortem data (Table S12),116

we validated our model’s etiology-specific probability scores against neuropathological markers of common117

dementia types (Fig. 5 & Table S13). The composite violin and box plots indicate that, with increasing118

pathological severity, there is a corresponding elevation in the model-predicted likelihood of the etiology.119

The first three plots (Figs. 5a-c) compare AD probabilities against three key AD pathological markers with120

progressive stages: Thal phases of Aβ plaques, Braak stages of neurofibrillary degeneration, and Con-121

sortium to Establish a Registry for Alzheimer’s Disease (CERAD) density scores of neocortical neuritic122

plaques, denoted by A1-A3, B1-B3 and C1-C3, respectively. Each demonstrated an upward shift in the123

median probability of AD and an expansion of the interquartile range as the stages advanced, with statistical124

significance (p < 0.001 for Thal stage and p < 0.0001 for Braak and CERAD stages, respectively). We fur-125

ther evaluated our model’s predicted probabilities against cerebral amyloid angiopathy (CAA), a common126

pathological finding in AD confirmed postmortem cases. Similarly, we observed that our model predicted127

significantly higher AD probabilities in individuals with mild, moderate or severe CAA relative to those128

without CAA. Collectively, these plots illustrate a clear trend where advancing stages of AD-related pathol-129

ogy are associated with increased P (AD). Finally, significant differences were observed in P (FTD) and130

P (V D) based on their respective pathological markers: P (FTD) differed significantly between cases with131

and without TDP-43 pathology (p < 0.01) and tauopathy (p < 0.05), P (V D) varied between cases with132

and without old microinfarcts (p < 0.001) and arteriolosclerosis (p < 0.001) (Figs. 5e-h). The results are133

consistent with the well-documented association between TDP-43 protein aggregation and its prevalence in134

FTD.46, 47 Additionally, the clear linkage between cerebrovascular pathologies and the incidence of VD is135

reinforced by our data. Crucially, these outcomes highlight the capability of our AI-driven framework to136

align model-generated probability scores with a range of neuropathological states beyond AD, supporting137

its potential utility in the evaluation of broader neurodegenerative diseases.138

AI-augmented clinician assessments We aimed to assess whether our AI framework can compare to,139

and significantly enhance differential diagnosis of dementia performed by expert clinicians. To this end,140

we compared our model predicted probabilities with clinicians’ diagnoses, which were made in the form of141
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confidence scores (0 to 100 scale). Neurologists reviewed 100 randomly selected cases, including various142

dementia subtypes, with comprehensive data including demographics, medical history, neuropsychological143

tests, and multi-sequence MRI scans. We observed that, in instances where the diagnosis was confirmed144

(true positives), the neurologists’ confidence scores across NC, MCI, DE, AD, LBD, VD, FTD, NPH, and145

PSY were higher in comparison to cases deemed non-diagnostic (true negatives) (p < 0.01) (Fig. S2a).146

In contrast, for the same 100 cases, our model’s predicted probabilities on true positive cases for all cat-147

egories other than ODE were higher than the predicted probabilities for true negative cases (p < 0.01),148

indicating an enhanced ability for our model to detect true positives across more conditions (Fig. S2a). We149

then analyzed pairwise Pearson correlation coefficients to assess inter-rater agreement for each diagnostic150

category, both among neurologists’ confidence scores, and between the neurologists’ confidence scores and151

our model’s predicted probabilities (Fig. S3a). Among clinicians’ assessments, we found the most robust,152

consistent associations within the NC and DE groups, followed by modest associations between assessments153

of MCI, AD, LBD, VD, FTD and PSY. In contrast, PRD, NPH, SEF, TBI and ODE demonstrated the least154

consistency between neurologists’ assessments. This analysis shed light on dementia types that are rela-155

tively more challenging to diagnose, as evidenced by the variability in diagnostic confidence among expert156

clinicians. When comparing neurologists’ confidence scores with our model’s predicted probabilities, we157

found that the assessments provided by our model were generally consistent with those provided by the158

neurologists for NC, MCI, DE, AD, and LBD, as indicated by Pearson correlation coefficients that exceeded159

0.7 (Fig. S3b). Associations were modest for VD, FTD, PSY, where mean Pearson correlation coefficients160

were approximately 0.5, while associations were less consistent for PRD, NPH, SEF, TBI, and ODE. The161

lower correlations observed here reflect the complex nature of these conditions, compounded by a lack of162

necessary features to tease out their unique signatures.163

To determine whether our model could augment the assessments provided by neurologists, we com-164

puted AI-assisted neurologist confidence scores, which was defined as the mean of the neurologists’ con-165

fidence scores and our model’s predicted probabilities. We then compared the diagnostic performance of166

individual neurologist assessments with that of AI-augmented neurologist assessments (Figs. 6a-b & Ta-167

bles S14 & S15). We consistently found significant increases in AUROC and AUPR for all etiologies168

(p < 0.05). There was a mean percent increase in AUROC of 26.25% and a mean percent increase in AUPR169

of 73.23% across all categories. The greatest improvement in diagnostic performance was for PRD and TBI,170

where there was a percent increase in mean AUROC of 73% and 72%, respectively, and a percent increase171

in mean AUPR of 242% and 257%, respectively. In a separate assessment, neuroradiologists evaluated a172

randomly selected set of 70 clinically diagnosed dementia cases, and were provided with multi-sequence173

MRIs, as well as demographic information. For these 70 cases, we assessed the diagnostic performance of174

radiologists and AI-augmented radiologists, which was defined as the mean of the radiologists’ confidence175

scores and our model’s probabilities (Figs. 6c-d & Tables S14 & S15). Across various dementia etiologies,176

we observed an average increase of 17.22% in AUROC and 42.17% in AUPR. A significant enhancement in177

AUROC (p < 0.05) was noted across all etiologies, with PRD showing the highest mean AUROC improve-178

ment at 68%. AUPR also displayed improvements, most markedly in PRD, where the mean AUPR surged179

by 190%.180
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Discussion1

We present an AI model designed for differential dementia diagnosis by processing a range of multimodal2

data. Unlike our previous work,39, 48 our model addresses the clinical challenge of distinguishing between3

various dementia etiologies, including but not limited to AD, VD, and LBD. Such differentiation is crucial4

for the precise identification of the multi-factorial nature of dementia, which is linked to the optimization5

of personalized therapeutic interventions and patient management strategies. The model’s robustness was6

established through its training and validation across a diverse set of independent cohorts. Additionally,7

our model predictions on various etiologies were corroborated by their validation on a subset of cases for8

which biomarker and postmortem data were available. In a randomly selected subset of cases, our model’s9

predictions, when combined with neurologist assessments, outperformed the assessments conducted by neu-10

rologists alone. These results underscore our model’s potential in enhancing the efficacy of diagnosing11

dementia-related disorders.12

Our model is designed to address the complex nature of mixed dementias by providing probability13

scores for each contributing etiology. This approach is significant as it enables clinicians to systematically14

prioritize possible drivers of cognitive impairment based on available data. The model effectively captures15

the multi-factorial and overlapping characteristics of various dementia types, offering a clear framework to16

guide clinical decision-making. For example, misdiagnoses in the initial stages of dementia are frequent,17

often due to symptom misattribution to psychiatric disorders, a situation further complicated by the pres-18

ence of multiple co-pathologies.49, 50 Specifically, LBD has historically been difficult to diagnose as early19

symptoms often resemble those of AD and PSY. The co-occurrence of LBD and AD further complicates20

diagnosis and tends to be missed entirely until post-mortem evaluation. 51 Our model demonstrated no-21

table performance, particularly in identifying the AD and LBD combination, highlighting its capability in22

detecting mixed dementias that are commonly recognized only through postmortem analysis.4, 52, 53 This ca-23

pability is crucial, given that a significant portion of dementia cases are linked to modifiable risk factors.54
24

The insights provided by our model could therefore inform early intervention strategies, potentially altering25

the disease course and enhancing patient outcomes. Notably, our model represents a significant step forward26

in the field, surpassing previous machine learning approaches in detecting mixed dementia, thereby offering27

a valuable tool for refining diagnostic accuracy in clinical practice.28

Powered by a transformer architecture as the backbone, the utility of our modeling framework is29

founded on its robust processing of diverse input types and its adept handling of incomplete datasets. These30

properties are essential for clinicians requiring immediate and accurate diagnostic information in environ-31

ments with variable data availability. For example, when a general practitioner records clinical observations32

and cognitive test results for an elderly person with possible cognitive decline, our model can calculate a33

probability score indicative of MCI or DE. This function facilitates early medical intervention and more34

informed decisions regarding specialist referrals. At a specialized memory clinic, the addition of exten-35

sive neuroimaging data and in-depth neuropsychological battery to the model may increase the precision of36

the diagnosis, which, in turn, enhances the formulation of individual management strategies with a revised37

probability score. Such capacity to tailor its output to the scope of input data exemplifies our modeling38

framework’s role in different healthcare settings, including those where swift and resource-efficient diag-39

nosis is paramount. The generation of specific, quantifiable probability scores by the model augments its40

utility, establishing it as a useful component in the healthcare delivery process. Displaying diagnostic ac-41

curacy using varied training data — ranging from demographic information to clinical signs, neuroimaging42

findings, and neurological test results — the model’s versatility facilitates its adaptation to varied clinical43
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operations without necessitating a fundamental overhaul of existing workflows. Consequently, our model44

fosters a seamless transition across the different levels of dementia care, enabling general practitioners to45

perform preliminary cognitive screenings and specialists to conduct thorough examinations. Its inclusive46

functionality assures an accessible and comprehensive tool ensuring fail-safe operation in early detection,47

continuous monitoring, and the fine-tuning of differential diagnoses, thereby elevating the standard of de-48

mentia care.49

While our study has the potential to advance the field of differential dementia diagnosis, it does have50

certain limitations that warrant consideration. Our model was developed and validated on 9 distinct cohorts51

but its full generalizability across diverse populations and clinical settings remains to be determined. Mov-52

ing forward, we see potential in evaluating the model’s efficacy across the care continuum, encompassing53

primary care facilities, geriatric and general neurology practices, family medicine, and specialized clinics54

in tertiary medical centers. Furthermore, AI models like ours possess the capability to enhance the patient55

screening procedures for clinical trial recruitment.55 Our study’s datasets primarily consist of AD cases,56

and while AD is the most common type of dementia, this could potentially skew our model towards im-57

proved recognition of this specific subtype, introducing a bias. Although we incorporated various dementia58

etiologies, the imbalanced representation might affect the model’s generalizability and sensitivity towards59

less frequent types. It is important to note that, beyond data imbalance, certain diseases were inherently60

more challenging to diagnose given the provided feature set, as exemplified by the lower performance met-61

rics of expert neurologists in conditions such as SEF and TBI (Tables S14, S15). Additionally, we chose62

to amalgamate mild, moderate, and severe dementia cases into a single category. We acknowledge that63

this categorization method might not completely reflect the nuanced individual staging practiced in specific64

healthcare settings, where varying degrees of dementia severity carry distinct implications for treatment and65

management strategies. Our focus was primarily on differential diagnosis rather than disease staging, which66

motivated this decision. Future enhancements to our model could potentially include disease staging as an67

additional dimension, thereby augmenting its granularity and relevance. Finally, our study does not fully ad-68

dress the considerable heterogeneity inherent in AD, which is characterized by diverse clinical presentations69

and pathological features.56, 57
70

The evidence collected from this study signals a convergence between advanced computational meth-71

ods and the nuanced task of differential dementia diagnosis, crucial for scenarios with scarce resources72

and the multifaceted realm of mixed dementia, a condition frequently encountered yet diagnostically com-73

plex. Our model efficiently integrates multimodal data, showing strong performance across diverse settings.74

Future validations, encompassing a wider demographic and geographical expanse, will be pivotal to substan-75

tiate the model’s robustness and enhance its diagnostic utility in dementia care. Our pragmatic investigation76

accentuates the potential of neural networks to refine the granularity of diagnostic evaluations in neurocog-77

nitive disorders.78

11

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 26, 2024. ; https://doi.org/10.1101/2024.02.08.24302531doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.08.24302531
http://creativecommons.org/licenses/by/4.0/


Methods1

Study population We collected demographics, personal and family history, laboratory results, findings2

from the physical/neurological exams, medications, neuropsychological tests, and functional assessments as3

well as multi-sequence magnetic resonance imaging (MRI) scans from 9 distinct cohorts, totaling 51, 2694

participants. There were 19, 849 participants with normal cognition (NC), 9, 357 participants with mild5

cognitive impairment (MCI), and 22, 063 participants with dementia (DE). We further identified 10 primary6

and contributing causes of dementia: 17, 346 participants with Alzheimer’s disease (AD), 2, 003 partici-7

pants with dementia with Lewy bodies and Parkinson’s disease dementia (LBD), 2, 032 participants with8

vascular brain injury or vascular dementia including stroke (VD), 114 participants with Prion disease in-9

cluding Creutzfeldt-Jakob disease (PRD), 3, 076 participants with frontotemporal lobar degeneration and its10

variants, which includes corticobasal degeneration (CBD) and progressive supranuclear palsy (PSP), and11

with or without amyotrophic lateral sclerosis (FTD), 138 participants with normal pressure hydrocephalus12

(NPH), 808 participants suffering from dementia due to infections, metabolic disorders, substance abuse13

including alcohol, medications, delirium and systemic disease - a category termed as systemic and external14

factors (SEF), 2, 700 participants suffering from psychiatric diseases including schizophrenia, depression,15

bipolar disorder, anxiety, and post-traumatic stress disorder (PSY), 265 participants with dementia due to16

traumatic brain injury (TBI), and 1, 234 participants with dementia due to other causes which include neo-17

plasms, multiple systems atrophy, essential tremor, Huntington’s disease, Down syndrome, and seizures18

(ODE).19

The cohorts include the National Alzheimer’s Coordinating Center (NACC) dataset (n = 45, 349),58
20

the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset (n = 2, 404),59 the frontotemporal lo-21

bar degeneration neuroimaging initiative (NIFD) dataset (n = 253),60 the Parkinson’s Progression Marker22

Initiative (PPMI) dataset (n = 198),61 the Australian Imaging, Biomarker and Lifestyle Flagship Study23

of Ageing (AIBL) dataset (n = 661),62 the Open Access Series of Imaging Studies-3 (OASIS) dataset24

(n = 491),63 the 4 Repeat Tauopathy Neuroimaging Initiative (4RTNI) dataset (n = 80),64 and three25

in-house datasets maintained by the Lewy Body Dementia Center for Excellence at Stanford University26

(LBDSU) (n = 182),65 and the Framingham Heart Study (FHS) (n = 1, 651).66 Since its inception in 1948,27

FHS has been dedicated to identifying factors contributing to cardiovascular disease, monitoring multiple28

generations from Framingham, Massachusetts. Over time, the study has pinpointed major cardiovascular29

disease risk factors and explored their effects, while also investigating risk factors for conditions like de-30

mentia and analyzing the relationship between physical traits and genetics. Additional details on the study31

population are presented in Tables 1 & S1.32

Inclusion and exclusion criterion Individuals from each cohort were eligible for study inclusion if33

they were diagnosed with normal cognition (NC), mild cognitive impairment (MCI), or dementia (DE). We34

used the National Alzheimer’s Coordinating Center (NACC) dataset,58 which is based on the Uniform Data35

Set (UDS) 3.0 dictionary,67 as the baseline for our study. To ensure data consistency, we organized the data36

from the other cohorts according to the UDS dictionary. For individuals from the NACC cohort who had37

multiple clinical visits, we initially prioritized the visits at which the person received the diagnostic label38

of dementia. We then selected the visit with the most data features available prioritizing the availability of39

neuroimaging information. If multiple visits met all the above criteria, we chose the most recent visit among40

them. This approach maximized the sample sizes of dementia cases, as well as ensured that each individual41

had the latest record included in the study while maximizing the utilization of available neuroimaging and42
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non-imaging data. We included participants from the 4RTNI dataset64 with frontotemporal lobar degenera-43

tion (FTD)-related disorders like progressive supranuclear palsy (PSP) or corticobasal syndrome (CBS). For44

other cohorts (NIFD,60 PPMI,61 LBDSU,65 AIBL,62 ADNI,59 and OASIS63), participants were included if45

they had at least one MRI scan within 6 months of an officially documented diagnosis. From the FHS,66 we46

utilized data from the Original Cohort (Gen 1) enrolled in 1948, and the Offspring Cohort (Gen 2) enrolled47

in 1971. For these participants, we selected available data including demographics, history, clinical exam48

scores, neuropsychological test scores, and MRI within 6 months of the date of diagnosis. We did not ex-49

clude cases based on the absence of features (including imaging) or diagnostic labels. Instead, we employed50

our innovative model training approach to address missing features or labels (See below).51

Data processing and training strategy Various non-imaging features (n=391) corresponding to sub-52

ject demographics, medical history, laboratory results, medications, neuropsychological tests, and functional53

assessments were included in our study. We combined data from 4RTNI, AIBL, LBDSU, NACC, NIFD,54

OASIS, and PPMI to train the model. We used a portion of the NACC dataset for internal testing, while the55

ADNI and FHS cohorts served for external validation (Tables 1, S1–S5). We used a series of steps such as56

standardizing the data across all cohorts and formatting the features into numerical or categorical variables57

before using them for model training. We used stratified sampling at the person-level to create the train-58

ing, validation, and testing splits. As we pooled the data from multiple cohorts, we encountered challenges59

related to missing features and labels. To address these issues and enhance the robustness of our model60

against data unavailability, we incorporated several strategies such as random feature masking and masking61

of missing labels (see below).62

MRI processing Our investigation harnessed the potential of multi-sequence magnetic resonance imag-63

ing (MRI) volumetric scans sourced from diverse cohorts (Table S6). The majority of these scans encom-64

passed T1-weighted (T1w), T2-weighted (T2w), diffusion-weighted (DWI), susceptibility-weighted (SWI),65

and fluid-attenuated inversion recovery (FLAIR) sequences. The collected imaging data were stored in the66

NIFTI file format, categorized by participant and the date of their visit. The MRI scans underwent a series of67

pre-processing steps involving skull stripping, linear registration to the MNI space, and intensity normaliza-68

tion. Skull stripping was performed using SynthStrip,68 a computational tool designed for extracting brain69

voxels from various image types. Then, the MRI scans were registered using FSL’s ‘flirt’ tool for linear reg-70

istration of whole brain images,69 based on the MNI152 atlas.70 Prior to linear registration to the MNI space,71

we utilized the ‘fslorient2std’ function within FSL to standardize the orientation across all scans to match72

the MNI template’s axis order. As a result, the registered scans followed the dimensions of the MNI15273

template, which are 182× 218× 182. Finally, all MRI scans underwent intensity normalization to the range74

[0,1] to increase the homogeneity of the data. To ensure the purity of the dataset, we excluded calibration,75

localizer, and 2D scans from the downloaded data before initiating model training.76

Backbone architecture Our modeling framework harnesses the power of the transformer architecture77

to interpret and process a vast array of diagnostic parameters, including person-level demographics, medical78

history, neuroimaging, functional assessments, and neuropsychological test scores. Each of these distinct79

features is initially transformed into a fixed-length vector using a modality-specific strategy, forming the80

initial layer of input for the transformer model. Following this, the transformer acts to aggregate these81

vector inputs, decoding them into a series of predictions. A distinguishing strength of this framework lies82
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in its integration of the transformer’s masking mechanism,71, 72 strategically deployed to emulate missing83

features. This capability enhances the model’s robustness and predictive power, allowing it to adeptly handle84

real-world scenarios characterized by incomplete data.85

Multimodal data embeddings Transformers use a uniform representation for all input tokens, typi-86

cally in the form of fixed-length vectors. However, the inherent complexity of medical data, with its variety87

of modalities, poses a challenge to this requirement. Therefore, medical data needs to be adapted into a88

unified embedding that our transformer model can process. The data we accessed falls into three primary89

categories: numerical data, categorical data, and imaging data. Each category requires a specific method of90

embedding. Numerical data typically encompasses those data types where values are defined in an ordinal91

manner that holds distinct real-world implications. For instance, chronological age fits into this category, as92

it serves as an indicator of the aging process. To project numerical data into the input space of the trans-93

former, we employed a single linear layer to ensure an appropriate preservation of the structure inherent to94

the original data space. Categorical data encompasses those inputs that can be divided into distinct cate-95

gories yet lack any implicit order or priority. An example of this is gender, which can be categorized as96

‘male’or ‘female’. We utilized a lookup table to translate categorical inputs into corresponding embeddings.97

It is noteworthy that this approach is akin to a linear transformation when the data is one-hot vectorized,98

but is computationally efficient, particularly when dealing with a vast number of categories. Imaging data,99

which includes MRI scans in medical applications, can be seen as a special case of numerical data. How-100

ever, due to their high dimensionality and complexity, it is difficult to compress raw imaging data into a101

significantly lower-dimensionality vector using a linear transformation, while still retaining essential infor-102

mation. We leveraged the advanced capabilities of modern deep learning architectures to extract meaningful103

imaging embeddings (see below). Once these embeddings were generated, they were treated as numerical104

data, undergoing linear projection into vectors of suitable length, thus enabling their integration with other105

inputs to the transformer.106

Imaging feature extraction We harnessed the Swin UNETR (Fig. S4),73, 74 a three-dimensional (3D)107

transformer-based architecture, to extract embeddings from a multitude of brain MRI scans, encompassing108

various sequences including T1-weighted (T1w), T2-weighted (T2w), diffusion-weighted (DWI), susceptibility-109

weighted (SWI), and fluid-attenuated inversion recovery (FLAIR) imaging sequences. The Swin UNETR110

model consists of a Swin Transformer encoder, designed to operate on 3D patches, seamlessly connected111

to a convolutional neural network (CNN)-based decoder through multi-resolution skip connections. Com-112

mencing with an input volume X ∈ RH×W×D, the encoder segmented X into a sequence of 3D tokens113

with dimensions H
H′ × W

W ′ × D
D′ , and projected them into a C-dimensional space via an embedding layer.114

It employed a patch size of 2 × 2 × 2 with a feature dimension of 2 × 2 × 2 × 1 and an embedding space115

dimension of C = 48. The Swin UNETR encoder was subsequently interconnected with a CNN-based116

decoder at various resolutions through skip connections, collectively forming a ‘U-shaped’ network. This117

decoder amalgamated the encoder’s outputs at different resolutions, conducted upsampling via deconvolu-118

tions, ultimately generating a reconstruction of the initial input volume. The pre-trained weights were the119

product of self-supervised pre-training of the Swin UNETR encoder, primarily conducted on 3D volumes120

encompassing the chest, abdomen, and head/neck.73, 74
121

The process of obtaining imaging embeddings began with several transformations applied to the MRI122

scans. These transformations included resampling the scans to standardized pixel dimensions, foreground123
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cropping, and spatial resizing, resulting in the creation of sub-volumes with dimensions of 128 × 128 ×124

128. Subsequently, these sub-volumes were input into the Swin UNETR model, which in turn extracted125

encoder outputs sized at 768 × 4 × 4 × 4. These extracted embeddings underwent downsampling via a126

learnable embedding module, consisting of four convolutional blocks, to align with the input token size of127

the downstream transformer. As a result, the MRI scans were effectively embedded into one-dimensional128

vectors, each of size 256. These vectors were then combined with non-imaging features and directed into129

the downstream transformer for further processing. The entire process utilized a dataset comprising 8, 155130

MRI volumes, which were allocated for model training, validation, and testing (Table S6).131

Random feature masking To enhance the robustness of the backbone transformer in handling data132

incompleteness, we leveraged the masking mechanism71, 72 to emulate arbitrary missing features during133

training. The masking mechanism, when paired with the attention mechanism, effectively halts the informa-134

tion flow from a given set of input tokens, ensuring that certain features are concealed during prediction. A135

practical challenge arises when considering the potential combinations of input features, which increase ex-136

ponentially. With hundreds of features in play, capturing every potential combination is intractable. Inspired137

by the definition of Shapley values, we deployed an efficient strategy for feature dropout. Given a sample138

with feature set S, S is randomly permuted as σ; simultaneously, an integer i is selected independently from139

the range [1, |S|]. Subsequent to this, the features σi+1, σi+2, . . . , σ|S| are masked out from the backbone140

transformer. It’s noteworthy that the dropout process was applied afresh across different training batches or141

epochs to ensure that the model gets exposed to a diverse array of missing information even within a single142

sample.143

Handling missing labels The backbone transformer was trained by amalgamating data from multiple144

different cohorts, each focused on distinct etiologies, which introduced the challenge of missing labels145

in the dataset. While most conventional approaches involve discarding records with incomplete output146

labels during training, we chose a more inclusive strategy to maximize the utility of the available data.147

Our approach framed the task as a multi-label classification problem, introducing thirteen separate binary148

heads, one for each target label. With this design, for every training sample, we generated a binary mask149

indicating the absence of each label. We then masked the loss associated with samples lacking specific150

labels before backpropagation. This method ensured optimal utilization of the dataset, irrespective of label151

availability. The primary advantage of this approach lies in its adaptability. By implementing this label-152

masking strategy, our model can be evaluated against datasets with varying degrees of label availability,153

granting us the flexibility to address a wide spectrum of real-world scenarios.154

Loss function Our backbone model was trained by minimizing the loss function (L) composed of two155

loss terms: “Focal Loss (FL)” 75 (LFL) and “Ranking Loss (RL)” (LRL), along with the standard L2 regu-156

larization term. FL is a variant of standard cross-entropy loss that addresses the issue of class imbalance. It157

assigns low weight to easy (well-classified) instances and employs a balance parameter. This loss function158

was used for each of the diagnostic categories (a total of 13, see Glossary 1). Therefore, our LFL term was:159

LFL =
1

N

N∑
k=1

13∑
i=1

−yk,iαi(1− pk,i)
γ log(pk,i)− (1− yk,i)(1− αi)(pk,i)

γ log(1− pk,i),
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where N was the batch size (i.e., N = 128), and other parameters and variables were as defined. The160

focusing parameter γ was set to 2, which had been reported to work well in most of the experiments in the161

original paper.75 Moreover, αi ∈ [0, 1] was the balancing parameter that influenced the weights of positive162

and negative instances. It was set as the square of the complement of the fraction of samples labeled as 1,163

varying for each i due to the differing level of class imbalance across diagnostic categories (refer to Table 1).164

The FL term did not take inter-class relationships into account. To address these relationships in our overall165

loss function, we also incorporated the RL term that induced loss if the sigmoid outputs for diagnostic166

categories labeled as 0 were not lower than those labeled as 1 by a predefined margin of ϵ, for any training167

sample k. We defined the RL term for any pair of diagnostic categories i and j, as follows:168

L(i,j)
RL (pk,yk) = max(0, (pk,i − pk,j)(yk,j − yk,i) + ϵ),

Overall, the RL term was:169

LRL =
1

N

N∑
k=1

13∑
i=1

13∑
j=i+1

L(i,j)
RL (pk,yk).

Combining all terms, our overall loss function (L) was:170

L = LFL + λLRL + β∥w∥2,

where λ and β were the weights that controlled the importance of LRL and the L2 regularization terms,171

respectively. The training was done using the mini-batch strategy with the AdamW optimizer,76 an improved172

version of the Adam optimizer,77 with a learning rate of 0.001 for a total of 256 epochs. Additionally, we173

utilized a cosine learning rate scheduler with warm restarts,78 initiating the first restart after 64 epochs and174

extending the restart period by a factor of 2 for each subsequent restart. The values of ϵ, λ, and β were175

determined to be ϵ = 0.25, λ = 0.005, and β = 0.0005, respectively, based on an evaluation of the overall176

model performance on the validation set. During training, the model performance was evaluated on the177

validation set at the end of each epoch, and the model with the highest performance was selected.178

Traditional machine learning models To assess our model’s ability to classify NC, MCI and DE179

cases, we compared its performance with the CatBoost model, a tree-based classification framework.39, 41
180

Given the variability in available features across the test cohorts, we divided the data into two feature subsets,181

as detailed in Tables S2, S4 and S5. This stratification enabled a comparison with CatBoost, offering insights182

into our model’s performance using a range of parameters. The first feature subset consisted of variables183

common across all cohorts, including demographics, MMSE, and Boston Naming Test scores. The second184

subset expanded on this by incorporating additional neuropsychological measures found in the NACC and185

ADNI cohorts, such as trail making tests A and B, logical memory IIA delayed recall, MoCA scores, and186

digit span forward and backward tests. We trained separate CatBoost models for each feature set but applied187

our model to both subsets without retraining, allowing for a consistent evaluation across different feature188

configurations.189

Biomarker validation The predicted probabilities of the model for various etiologies were cross-validated190

with established gold-standard biomarkers pertinent to each respective etiology. Both the NACC and ADNI191

test cohorts were used in AD biomarker analyses, while only NACC data were used for FTD and LBD due192

to biomarker availability. In the NACC dataset, binary UDS variables were used to define positivity for193
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amyloid β (Aβ), tau and fluorodeoxyglucose F18 (FDG) PET biomarkers for AD due to varying PET pro-194

cessing methods across centers. Binary UDS variables were also used to define FDG and MRI evidence for195

FTD, and dopamine transporter scan (DATscan) as evidence for LBD. In ADNI, the University of Califor-196

nia, Berkeley (UCB) Aβ PET processing pipeline yields Freesurfer-defined cortical summary and reference197

regions, as well as centiloids (CL). A cut-off value of 20 CL was chosen to define positivity.79 For tau, The198

UCB processing pipeline yields standardized uptake value ratios (SUVr) in Freesurfer-defined regions. A199

meta-temporal region of interest (ROI) was constructed following established standards.80 A Gaussian mix-200

ture model (GMM) with two components identified 1.74 SUVr as the optimal threshold to separate the two201

distributions, where values greater than 1.74 indicated tau PET positivity. Finally, the UCB FDG PET pro-202

cessing pipeline yields a meta-ROI, on which a GMM with two components identified 1.21 SUVr as the best203

threshold, where values less than 1.21 indicating positivity for neurodegeneration. Information regarding204

the PET processing protocols can be found in the summaries of UCB amyloid, tau, and FDG PET methods205

available on the LONI Image Data Archive website.81
206

Neuropathologic validation The model’s predictive capacity for various dementia etiologies was sub-207

stantiated through alignment with neuropathological evaluations sourced from the NACC, FHS and ADNI208

cohorts (Table S12). We included participants who conformed to the study’s inclusion criteria, had un-209

dergone MRI scans no more than three years prior to death, and for whom neuropathological data were210

available. Standardization of data was conducted in accordance with the Neuropathology Data Form Ver-211

sion 10 protocols from the National Institute on Aging.82 We pinpointed neuropathological indicators that212

influence the pathological signature of each dementia etiology, such as arteriolosclerosis, the presence of213

neurofibrillary tangles and amyloid plaques, cerebral amyloid angiopathy (CAA), and markers of tauopa-214

thy. These indicators were carefully chosen to reflect the complex pathological terrain that defines each215

form of dementia. To examine the Thal phase for amyloid plaques (A score), subjects were categorized into216

two groups: one encompassing Phase 0, indicative of no amyloid plaque presence, and a composite group217

merging Phases 1-5, reflecting varying degrees of amyloid pathology. The model’s predictive performance218

was then compared across these groupings. For the Braak stage of neurofibrillary degeneration (B score),219

we consolidated stages I-VI into a single collective, representing the presence of AD-type neurofibrillary220

pathology, whereas stage 0 was designated for cases devoid of AD-type neurofibrillary degeneration. With221

respect to the density of neocortical neuritic plaques, assessed by the (CERAD or C score), individuals222

without neuritic plaques constituted one group, while those with any manifestation of neuritic plaques —223

sparse, moderate, or frequent (C1-C3) — were aggregated into a separate group for comparative analysis224

of the model’s predictive outcomes. To evaluate model alignment with the severity of CAA, subjects were225

classified into two groups: one representing the absence of CAA, and another encapsulating all stages of226

CAA severity, ranging from mild to severe. Furthermore, to evaluate the model’s concordance with non-227

AD pathologies, we analyzed the association between the model-generated probabilities of FTD with the228

presence of TDP-43 pathology and tauopathy, and VD with the presence of old microinfarcts and arteri-229

olosclerosis.230

AI-augmented clinician assessments We aimed to ascertain if our model could bolster the diagnostic231

prowess of clinicians specializing in dementia care and diagnosis. To this end, a group of 12 neurologists232

and 7 neuroradiologists were invited to participate in diagnostic tasks on a subset of NACC cases (see ‘Data233

processing and training strategy’). Neurologists were presented with 100 cases, which included 15 cases234

each of NC and MCI, and 7 cases for each of the dementia etiologies. The data encompassed person-level235

demographics, medical history, social history, neuropsychological tests, functional assessments, and multi-236
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sequence MRI scans where possible (i.e., T1-weighted, T2-weighted, FLAIR, DWI and SWI sequences).237

They were asked to provide their diagnostic impressions, as well as a confidence score ranging from 0 to238

100 for the diagnosis of each of the 13 labels. These confidence scores quantitatively reflect the clinician’s239

certainty in their diagnosis, with higher scores indicating greater certainty. This scoring system facilitated240

a quantitative comparison between the clinicians’ diagnostic certainty and the predictive probabilities gen-241

erated by our model. Similarly, neuroradiologists were provided with the same multi-sequence MRI scans242

used by our model, along with information on age, gender, race, and education status from 70 clinically243

diagnosed DE cases. They were also tasked with providing diagnostic impressions, as well as confidence244

scores concerning the origin of dementia (Refer to Glossary 1). To evaluate the potential enhancement of245

clinical judgments by our model, we calculated AI-augmented confidence scores by averaging the clinicians’246

confidence scores with our model’s predicted probabilities. We then assessed the diagnostic accuracy of the247

clinicians’ original and AI-augmented confidence scores using AUROC and AUPR metrics. The specifics248

of the case samples and questionnaires provided to the neurologists and neuroradiologists are detailed in the249

Supplementary Information.250

Statistical analysis We used one-way ANOVA and the χ2 test for continuous and categorical variables,251

respectively to assess the overall differences in the population characteristics between the diagnostic groups252

across the study cohorts. We applied the Kruskal-Wallis H-test for independent samples and subsequently253

conducted post-hoc Dunn’s testing with Bonferroni correction to evaluate the relationship between clinical254

dementia rating (CDR) scores and the model-predicted probabilities, as well as between neuropathologic255

scores and the model-predicted probabilities. We used the two-sample Kolmogorov-Smirnov (K-S) test to256

compare model predicted AD probabilities, P (AD), between MCI cases with an etiological diagnosis of257

AD and MCI cases without one. We opted for non-parametric tests because the Shapiro-Wilk test indi-258

cated significant deviations from normality. In order to assess whether the model’s predicted probabilities259

for AD, FTD and LBD were significantly higher for their respective biomarker positive cases compared to260

biomarker negative ones, a one-sided Mann-Whitney U test was conducted when the Shapiro-Wilk test indi-261

cated significant deviations from normality. ADNI’s Aβ groups did not significantly deviate from normality262

and were therefore compared using the one-sided independent samples t-test. To compare model predic-263

tions with expert-driven assessments, we used the Brunner Munzel test to identify statistically significant264

increases in the mean disease probability scores between the levels of scoring categories. We conducted265

a Shapiro-Wilk test on the distributions of the true negative and true positive cases for each etiology. The266

Brunner-Munzel test was then used to compare the expert and model confidence scores for the true negative267

and true positive cases for each etiology. To evaluate the inter-rater reliability of label-specific confidence268

scores, we performed pairwise Pearson correlation analyses between clinicians’ scores and those generated269

by the model.83 We calculated the average correlation coefficient across pairs and determined its 95% con-270

fidence interval. In addition, we estimated the mean Pearson correlation coefficient between the confidence271

score of neurologists and the model’s score for each diagnostic label using a bootstrapping approach. Pair-272

wise statistical comparisons of AI-augmented clinician diagnostic performance (AUROC and AUPR) and273

clinicians only diagnostic performance were performed with the one-sided Wilcoxon signed rank test. All274

statistical analyses were conducted at a significance level of 0.05.275

Performance metrics We generated receiver operating characteristic (ROC) and precision-recall (PR)276

curves from predictions on both the NACC test data and other datasets. From each ROC and PR curve,277

we further derived the area under the curve values (AUC and AUPR, respectively). Further, we computed278

micro-, macro- and weighted-average AUC and AUPR values. Of note, the micro-average approach con-279
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solidates true positives, true negatives, false positives, and false negatives from all classes into a unified280

curve, providing a global performance metric. In contrast, the macro-average calculates individual ROC/PR281

curves for each class before computing their unweighted mean, disregarding potential class imbalances. The282

weighted-average, while similar in approach to macro-averaging, assigns a weight to each class’s ROC/PR283

curve proportionate to its representation in the dataset, thereby acknowledging class prevalence. We also284

evaluated the model’s accuracy, sensitivity, specificity, and Matthews correlation coefficient, with the latter285

being a balanced measure of quality for classes of varying sizes in a binary classifier.286

Computational hardware and software All MRI and non-imaging data were processed on a work-287

station equipped with an Intel i9 14-core 3.3 GHz processor and 4 NVIDIA RTX 2080Ti GPUs. Our soft-288

ware development utilized Python (version 3.11.7) and the models were developed using PyTorch (version289

2.1.0). We used several other Python libraries to support data analysis, including pandas (version 1.5.3),290

scipy (version 1.10.1), tensorboardX (version 2.6.2), torchvision (version 0.15), and scikit-learn (version291

1.2.2). Training the model on a single Quadro RTX8000 GPU on a shared computing cluster had an average292

runtime of 7 minutes per epoch, while the inference task took less than a minute per instance. All clinicians293

reviewed MRIs using 3D Slicer (version 4.10.2) and logged their findings in REDCap (version 11.1.3).294

Data and code availability Data from ADNI, AIBL, NACC, NIFD, OASIS, PPMI and 4RTNI can be295

downloaded from publicly available resources. Data from FHS and LBDSU can be obtained upon request,296

subject to institutional approval. Details on our model can be found on the Kolachalama Laboratory’s297

GitHub page (https://github.com/vkola-lab).298
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Dataset (group) Age
mean ± std

Male gender
(percentage)

Education in years
mean ± std

Race (White; Black; Asian; American
Indian; Pacific; Multi-race)

CDR
mean ± std

NACC
NC [n = 17242] 71.25 ± 11.16 6009, 34.85% 15.83 ± 2.98ˆ (13266, 2541, 528, 109, 10, 575)ˆ 0.05 ± 0.15
MCI [n = 7582] 73.72 ± 9.81 3615, 47.68% 15.16 ± 3.45ˆ (5708, 1185, 231, 53, 5, 276)ˆ 0.45 ± 0.18
AD [n = 16131] 76.0 ± 10.31 7234, 44.85% 14.52 ± 3.74ˆ (13161, 1702, 354, 92, 10, 458)ˆ 1.2 ± 0.73
LBD [n = 1913] 75.01 ± 8.55 1365, 71.35% 15.12 ± 3.63ˆ (1659, 128, 39, 17, 0, 37)ˆ 1.29 ± 0.78
VD [n = 1919] 80.32 ± 8.76 947, 49.35% 14.15 ± 4.22ˆ (1394, 332, 67, 2, 1, 68)ˆ 1.22 ± 0.74
PRD [n = 114] 60.07 ± 10.36 62, 54.39% 14.8 ± 3.33ˆ (93, 5, 5, 0, 1, 1)ˆ 1.95 ± 0.95
FTD [n = 2898] 65.86 ± 9.36 1603, 55.31% 15.45 ± 3.09ˆ (2664, 69, 73, 4, 5, 39)ˆ 1.2 ± 0.83
NPH [n = 138] 79.1 ± 9.24 69, 50.0% 15.0 ± 3.28ˆ (119, 10, 4, 0, 0, 4)ˆ 1.18 ± 0.71
SEF [n = 808] 76.3 ± 11.15 413, 51.11% 14.6 ± 3.77ˆ (646, 95, 15, 5, 2, 31)ˆ 1.11 ± 0.7
PSY [n = 2700] 73.74 ± 10.78 1102, 40.81% 14.13 ± 4.12ˆ (2163, 238, 59, 14, 5, 87)ˆ 1.1 ± 0.64
TBI [n = 265] 72.87 ± 11.23 192, 72.45% 14.42 ± 4.13ˆ (212, 27, 3, 2, 1, 11)ˆ 1.11 ± 0.69
ODE [n = 1234] 72.94 ± 12.14 654, 53.0% 14.5 ± 3.78ˆ (1046, 93, 28, 5, 4, 36)ˆ 1.2 ± 0.76
p-value <1.0e-200 <1.0e-200 <1.0e-200 8.341e-145 <1.0e-200

NIFD
NC [n = 124] 63.21 ± 7.27 56, 45.16% 17.48 ± 1.87ˆ (89, 0, 0, 0, 0, 3)ˆ 0.03 ± 0.12ˆ
FTD [n = 129] 63.66 ± 7.33 75, 58.14% 16.18 ± 3.29ˆ (109, 1, 1, 0, 0, 4)ˆ 0.82 ± 0.54ˆ
p-value 6.266e-01 5.246e-02 2.606e-04 6.531e-01 4.333e-28

PPMI
NC [n = 171] 62.74 ± 10.12 109, 63.74% 15.82 ± 2.93 (163, 3, 2, 0, 0, 1)ˆ N.A.
MCI [n = 27] 68.04 ± 7.32 22, 81.48% 15.52 ± 3.08 (24, 1, 1, 0, 0, 1) N.A.
p-value 1.006e-02 1.115e-01 6.194e-01 2.910e-01 N.A.

AIBL
NC [n = 480] 72.45 ± 6.22 203, 42.29% N.A. N.A. 0.03 ± 0.12
MCI [n = 102] 74.73 ± 7.11 53, 51.96% N.A. N.A. 0.47 ± 0.14
AD [n = 79] 73.34 ± 7.77 33, 41.77% N.A. N.A. 0.93 ± 0.54
p-value 5.521e-03 1.887e-01 N.A. N.A. 4.542e-158

OASIS
NC [n = 424] 71.34 ± 9.43 164, 38.68% 15.79 ± 2.62ˆ (53, 18, 1, 0, 0, 0)ˆ 0.0 ± 0.02
MCI [n = 27] 75.04 ± 7.25 14, 51.85% 15.19 ± 2.76 (4, 1, 0, 0, 0, 0)ˆ 0.52 ± 0.09
AD [n = 32] 77.44 ± 7.42 20, 62.5% 15.19 ± 2.8 (8, 1, 0, 0, 0, 0)ˆ 0.86 ± 0.44
LBD [n = 4] 74.75 ± 5.67 4, 100.0% 16.0 ± 2.83 N.A. 1.0 ± 0.0
FTD [n = 4] 64.25 ± 8.61 3, 75.0% 16.5 ± 2.96 (4, 0, 0, 0, 0, 0) 1.25 ± 0.75
p-value 7.789e-04 3.239e-03 5.507e-01 8.735e-01 2.855e-169

LBDSU
NC [n = 134] 68.77 ± 7.62 61, 45.52% 17.27 ± 2.47ˆ N.A. N.A.
MCI [n = 35] 70.16 ± 8.41 26, 74.29% 16.6 ± 2.58 N.A. N.A.
LBD [n = 13] 73.42 ± 7.81 8, 61.54% 16.77 ± 2.15 N.A. N.A.
p-value 1.033e-01 7.863e-03 3.243e-01 N.A. N.A.

4RTNI
NC [n = 12] 68.08 ± 4.92 5, 41.67% 15.45 ± 2.57ˆ (12, 0, 0, 0, 0, 0) 0.0 ± 0.0
MCI [n = 31] 67.61 ± 7.0 11, 35.48% 16.68 ± 4.02 (25, 1, 2, 0, 1, 1)ˆ 0.55 ± 0.15
FTD [n = 37] 69.14 ± 7.43 20, 54.05% 16.46 ± 4.21 (31, 1, 0, 0, 1, 2)ˆ 1.27 ± 0.55
p-value 6.691e-01 2.992e-01 6.843e-01 7.620e-01 5.700e-16

ADNI
NC [n = 868] 72.7 ± 6.57 383, 44.12% 16.51 ± 2.52 (730, 92, 28, 2, 0, 12)ˆ 0.0 ± 0.04ˆ
MCI [n = 1119] 72.77 ± 7.65 648, 57.91% 15.97 ± 2.75 (1023, 56, 17, 2, 2, 13)ˆ 0.5 ± 0.06
AD [n = 417] 74.99 ± 7.78 232, 55.64% 15.25 ± 2.92 (383, 20, 10, 0, 0, 4) 0.77 ± 0.27
p-value 8.911e-08 3.090e-09 2.869e-14 2.828e-05 <1.0e-200

FHS *
NC [n = 394] 74.9 ± 10.22ˆ 206, 52.28% N.A. (394, 0, 0, 0, 0, 0) 0.0 ± 0.0
MCI [n = 434] 79.92 ± 8.8ˆ 203, 46.77% N.A. (434, 0, 0, 0, 0, 0) 0.49 ± 0.07
AD [n = 687] 82.99 ± 7.87ˆ 211, 30.71% N.A. (687, 0, 0, 0, 0, 0) 2.04 ± 0.88
LBD [n = 73] 79.34 ± 9.37ˆ 46, 63.01% N.A. (73, 0, 0, 0, 0, 0) 1.84 ± 0.84
VD [n = 113] 81.74 ± 7.3ˆ 48, 42.48% N.A. (113, 0, 0, 0, 0, 0) 1.85 ± 0.8
FTD [n = 8] 85.67 ± 5.91ˆ 4, 50.0% N.A. (8, 0, 0, 0, 0, 0) 2.0 ± 0.87
p-value 1.316e-31 7.905e-14 N.A. 1.0 <1.0e-200

Table 1: Study population. Nine independent datasets were used for this study, including ADNI, NACC, NIFD, PPMI, OASIS, LBDSU, 4RTNI,
and FHS. Data from NACC, NIFD, PPMI, OASIS, LBDSU, and 4RTNI were used for model training. Data from ADNI, FHS, and a held-out set
from NACC were used for model testing. The p-value for each dataset indicates the statistical significance of inter-group differences per column.
We used one-way ANOVA and χ2 tests for continuous and categorical variables, respectively. Please refer to Glossary 1 for more information on
the acronyms. Here N.A. denotes not available. The symbol ˆ indicates that data was not available for some subjects.
∗ Due to the absence of CDR scores in the FHS dataset, we used the following definition: 0.0 - normal cognition, 0.5 - cognitive impairment, 1.0 -
mild dementia, 2.0 - moderate dementia, 3.0 - severe dementia.
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MRI scans
e.g. T1-, T2-, FLAIR, DWI, SWI 

Demographics
 e.g. age, gender, race, primary language

Health history
 e.g. family history, medication, hypertension

Physical
e.g. height, weight, BMI, blood pressure

Neurological tests
e.g. Unified Parkinson’s disease rating scale, 
geriatric depression scale, 
neuropsychiatric inventory questionnaire, 
neuropsychological battery

Training dataset
n = 38,319

NACC(36,454), AIBL, PPMI, NIFD, LBDSU, OASIS, 4RTNI

Testing dataset
n = 12,950

NACC*(8,895), ADNI, FHS

AI-augmented clinician
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Multimodal clinical data
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Figure 1: Data, model architecture and modeling strategy. (a) Our model for differential dementia diagnosis was developed using diverse
data modalities, including individual-level demographics, health history, neurological testing, physical/neurological exams, and multi-sequence
MRI scans. These data sources whenever available were aggregated from nine independent cohorts: 4RTNI, ADNI, AIBL, FHS, LBDSU, NACC,
NIFD, OASIS, and PPMI (Tables 1 & S1). For model training, we merged data from NACC, AIBL, PPMI, NIFD, LBDSU, OASIS and 4RTNI.
We employed a subset of the NACC dataset for internal testing. For external validation, we utilized the ADNI and FHS cohorts. (b) A transformer
served as the scaffold for the model. Each feature was processed into a fixed-length vector using a modality-specific embedding strategy and fed into
the transformer as input. A linear layer was used to connect the transformer with the output prediction layer. (c) A subset of the NACC dataset was
randomly chosen to conduct a comparative analysis between neurologists’ performance augmented with the AI model and their performance without
AI assistance. Similarly, we carried out comparative evaluations with practicing neuroradiologists, who were provided with a randomly selected
sample of confirmed dementia cases from the NACC testing cohort, to assess the impact of AI augmentation on their diagnostic performance. For
both these evaluations, the model and clinicians had access to the same set of multimodal data. Finally, we assessed the model’s predictions by
comparing them with biomarker profiles and pathology grades available from the NACC, ADNI, and FHS cohorts.
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Figure 2: Model performance on individuals along the cognitive spectrum. (a,b) Receiver operating characteristic (ROC) and precision-
recall (PR) curves, with their respective micro-average, macro-average, and weighted-average calculations based on the labels for NC, MCI, and
DE. These averaging techniques consolidated the model’s performance across the spectrum of cognitive states. Cases from the NACC testing, ADNI
and FHS were used. (c) Chord diagram indicating varied levels of model performance in the presence of missing data. The inner concentric circles
represent various scenarios in which particular test information was either omitted (masked) or included (unmasked). The three outer concentric
rings depict the model’s performance as measured by the area under the receiver operating characteristic curve (AUROC) for the NC, MCI and DE
labels. (d, e, f) Raincloud plots with violin and box diagrams are shown to denote the distribution of clinical dementia rating scores (x-axis) versus
model-predicted probability of dementia (y-axis), on the NACC, ADNI and FHS cohorts, respectively. (g) Raincloud plots are used to demonstrate
the model’s ability to distinguish between MCI cases in the NACC cohort where AD was a factor for cognitive impairment and those attributed
to non-AD etiologies. For plots (d-g), significance levels are denoted as ‘ns’ (not significant) for p ≥ 0.05; * for p < 0.05; ** for p < 0.01;
*** for p < 0.001; and **** for p < 0.0001 based on Kruskal-Wallis H-test for independent samples followed by post-hoc Dunn’s testing with
Bonferroni correction.
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Figure 3: Model assessment on single and co-occurring dementias. (a, b) Receiver operating characteristic (ROC) and precision-recall
(PR) curves are provided, utilizing micro-average, macro-average, and weighted-average methods across all the dementia diagnostic labels. These
averages were computed to synthesize the performance metrics across all dementia etiologies. (c) Heatmaps are used to depict the model’s per-
formance on co-occurring dementias. We considered all combinations where two or more etiologies co-occurred from the NACC testing cohort,
provided there were at least 25 positive samples. This ensured that the maximum variance of the AUROC calculation over all possible continuous
distributions was upper bounded by 0.01.42 The first row shows the AUROC values and the second row shows the AUPR values. The table also
displays the sample sizes for each case, with 1 representing a positive case and 0 indicating a negative sample.
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Figure 4: Biomarker-level validation. Raincloud plots representing model probabilities for dementia etiologies across their respective

biomarker negative (blue) and positive groups (pink). (a-c) Model predicted probabilities for Alzheimer’s disease (P (AD)) were analyzed in

relation to amyloid β (Aβ), tau, and fluorodeoxyglucose (FDG) PET biomarkers. Differences between Aβ negative and positive groups regarding

P (AD) were evaluated using a one-sided Mann-Whitney U test for the NACC cohort and a one-sided t-test for ADNI. Similar analyses for tau and

FDG PET biomarkers were conducted using one-sided Mann-Whitney U tests, with **** denoting p < 0.0001. (d-e) For frontotemporal lobar

degeneration (P (FTD)), probabilities were assessed across MRI and FDG PET biomarker groups in the NACC cohort, using a one-sided Mann-

Whitney U test, marked by **** for p < 0.0001. (f) Lewy body dementia (P (LBD)) probabilities were analyzed between DaTscan negative and

positive groups using a one-sided Mann-Whitney U test, with **** indicating p < 0.0001.
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Figure 5: Neuropathological validation. Array of violin plots with integrated box plots, delineating the probability distributions as predicted
by the model for different neuropathological grades. The analysis encompasses data from three distinct cohorts: the Framingham Heart Study
(FHS), the National Alzheimer’s Coordinating Center (NACC), and the Alzheimer’s Disease Neuroimaging Initiative (ADNI), each denoted by
unique markers (triangles, circles, and diamonds, respectively). Statistical significance is encoded using asterisks, determined by Dunn-Bonferroni
post-hoc test: one asterisk (*) for p < 0.05; two asterisks (**) for p < 0.01, three asterisks (***) for p < 0.001, and four asterisks (****) for
p < 0.0001, reflecting increasing levels of statistical significance. Table S13 presents more details on the statistics.
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Figure 6: AI-augmented clinician assessments. Comparison between the performance of the assessments provided by practicing clinicians

versus model-assisted clinicians is shown. (a-b) For the analysis, neurologists were given 100 randomly selected cases encompassing individual-

level demographics, health history, neurological tests, physical as well as neurological examinations, and multi-sequence MRI scans. The neurolo-

gists were then tasked with assigning confidence scores for NC, MCI, DE, and the 10 dementia etiologies: AD, LBD, VD, PRD, FTD, NPH, SEF,

PSY, TBI, and ODE (see Glossary 1). The boxplots show (a) AUROC and (b) AUPR for individual neurologist and model-assisted neurologist

performance (defined as the mean between model and neurologist confidence scores). Pairwise statistical comparisons were conducted using the

Wilcoxon signed-rank test and significance levels are denoted as: ns (not significant) for p ≥ 0.05; * for p < 0.05; ** for p < 0.01; *** for

p < 0.001; and **** for p < 0.0001. The percent increase in mean performance for each etiology is also presented above each statistical annota-

tion. (c-d) Similarly, in a separate analysis, radiologists were given 70 randomly selected cases with a confirmed dementia diagnosis encompassing

individual-level demographics and multi-sequence MRI scans. The radiologists were tasked with assigning confidence scores for the 10 dementia

etiologies, and the boxplots show (c) AUROC and (d) AUPR for individual radiologist and model-assisted radiologist performance for the 10 eti-

ologies. Statistical annotations and percent increase in mean performance with respect to each etiology are shown in a similar fashion.
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