
Mechanistic models of humoral kinetics following

COVID-19 vaccination

Daniel Stocks MEng1*, Dr Amy Thomas BSc, PhD2†,
Prof Adam Finn MA, BM, BCh, PhD2, Dr Leon Danon MSci,

MSc, PhD1†, Prof Ellen Brooks-Pollock MSci, PhD2†

1School of Engineering Mathematics and Technology, University of
Bristol, Tankard’s Close, Bristol, BS8 1TW, United Kingdom.

2Population Health Sciences, Bristol Medical School, University of
Bristol, Oakfield Grove, Bristol, BS8 2BN, United Kingdom.

*Corresponding author(s). E-mail(s): ds17060@bristol.ac.uk;
Contributing authors: amy.thomas@bristol.ac.uk;
Adam.Finn@bristol.ac.uk; l.danon@bristol.ac.uk;

ellen.brooks-pollock@bristol.ac.uk;
†These authors contributed equally to this work.

Abstract

Introduction: Future COVID-19 vaccine programmes need to take into account
the variable responses elicited by different vaccines and their waning protection
over time. Existing descriptions of antibody response to COVID-19 vaccination
convey limited information about the mechanisms of antibody production and
maintenance.

Methods: We describe the antibody dynamics elicited by COVID-19 vaccination
with two biologically-motivated mathematical models of antibody production by
plasma cells and subsequent decay. We fit the models using Markov Chain Monte
Carlo to seroprevalence data from 14,602 uninfected individuals collected via the
primary care network in England between May 2020 and September 2022. We
ensure our models are structurally and practically identifiable when using anti-
body data alone. We analyse the effect of age, vaccine type, number of doses, and
the interval between doses on antibody production and longevity of response.

Results: We find evidence that individuals over 35 years of age who received a
second dose of ChAdOx1-S generate a persistent antibody response suggestive

1

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 12, 2024. ; https://doi.org/10.1101/2024.02.08.24302502doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2024.02.08.24302502
http://creativecommons.org/licenses/by/4.0/


of long-lived plasma cell induction, while individuals that receive two doses of
BNT162b2, or one dose of either vaccine do not. We also find that plasamblast
productive capacity, the likely driver of short-term antibody responses, is greater
in younger people than older people (≤ 4.5 fold change in point estimates), peo-
ple vaccinated with two doses than people vaccinated with one dose (≤ 12 fold
change), and people vaccinated with BNT162b2 than people vaccinated with
ChAdOx1-S (≤ 440 fold change). The effect of age on antibody dynamics is more
pronounced in people vaccinated with BNT162b2 than people vaccinated with
ChAdOx1-S. We find the half-life of an antibody to be between 23 – 106 days.

Conclusion: Routinely-collected seroprevalence data are a valuable source of
information for characterising within-host mechanisms of antibody production
and persistence. Extended sampling and linking seroprevalence data to outcomes
would allow for powerful conclusions about how humoral kinetics protect against
disease.

Keywords: Within-host Model, SARS-CoV-2, Vaccination, Antibody Response,
Short- and Long-lived Plasma Cell Kinetics

Introduction

Vaccination against COVID-19 is now
routinely used to maintain levels of popu-
lation immunity. It is important to under-
stand how the immune response elicited
by vaccination will change with time. The
antibody response to vaccination varies
with age (1; 2; 3; 4), peaking within a
couple of weeks and subsequently wan-
ing over the course of six months (4;
5; 6). The mRNA Pfizer-BioNTech vac-
cine (BNT162b2) elicits a stronger anti-
body response than the adenoviral vector
AstraZeneca vaccine (ChAdOx1-S) after
the first dose and up to two weeks after
the second dose (7), with the response to
the second dose being more than an order
of magnitude greater than the response
to the first dose (7; 8; 9; 10).

Mathematical models can be used
to help understand underlying mecha-
nisms of the response, explain differences
between age and vaccines, and predict
future antibody levels. Previous mod-
elling of SARS-CoV-2 specific antibody

levels used statistical, single-phase expo-
nential decay models often implemented
through linear regressions (11; 12; 13;
14; 15; 16). These models convey limited
mechanistic information because they are
not biologically motivated and are con-
strained by the inherent assumptions in
their structure.

Analysis of the immune response
is challenging because there are many
unobserved components. Quantification
of serum antibody concentrations offers a
viable window into the dynamics of the
humoral system (17; 18; 19). Serum anti-
body concentrations can be quantified by
taking blood samples, and mucosal anti-
bodies can be quantified in saliva or other
mucosal samples, while plasma cells that
reside in the bone marrow (20; 21; 22; 23)
and their precursors, B cells, that differ-
entiate in lymph nodes are much harder
to accurately quantify without invasive
procedures. It is therefore of interest to
see whether information about the under-
lying kinetics of antibody production can
be extracted from data on antibody level
alone.
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Binding antibody titers have been
correlated with COVID-19 vaccine effi-
cacy (24; 25), suggesting antibody titers
are important for preventing the devel-
opment of serious disease and reinfec-
tion (26). Similarly, antibody levels on
admission to hospital are inversely corre-
lated with in-hospital mortality (27).

Maintenance of a persistent
immune response

Biological mechanisms that maintain the
humoral response after exposure (natu-
ral infection or vaccination) have been
investigated (28). However, hypotheses
that persisting antibody levels are a
result of memory B cells being continu-
ously stimulated through chronic infec-
tion, re-exposure, persistent antigen, or
bystander T cells are not consistent
with observations. The re-exposure and
bystander T cell hypotheses (28) rely on
pathogens being endemic and therefore
cannot explain persisting antibodies in
the absence of local outbreaks (29; 30;
31). The persistent antigen hypothesis is
based on evidence that follicular dendritic
cells (FDCs) sequester antigen in later
stages of infection and, over time, display
it to memory B cells to encourage a con-
tinued humoral immune response in the
absence of infection (32; 33; 34). How-
ever, the decay of antigen retained by
FDCs in mice is too fast to explain stable
antibody production (35) although, per-
sistent antigen could be important early
in the memory response.

Other hypotheses explain persistent
antibody levels with independently reg-
ulated plasma cells, instead of memory
B cells. It has been shown that plasma
cell populations and antibody levels per-
sist in the absence of memory B cells (29;
36; 37; 38; 39; 40). One hypothesis that
links plasma cell populations to antibody

levels is competition between newly pro-
duced plasmablasts and residing, long-
lived plasma cells for niches in the bone
marrow (20; 21; 22; 23; 41). However,
this hypothesis predicts a faster decline
in long-term antibody levels in older
people, which is not observed (29). A
different hypothesis (the ‘imprinted lifes-
pan’ hypothesis) proposed in (28) is that
plasma cells are imprinted with a short or
a long lifespan upon differentiation from
B cells. B cells that differentiate with-
out interaction with CD4+ T cells (T
cell independent) and are cross-linked by
repetitive foreign antigen become short-
lived plasma cells (plasmablasts) (28).
Whereas, a lifespan of years or decades
is thought to be achieved by B cells that
are cross-linked by a non-repetitive for-
eign antigen and interact with CD4+ T
cell (T cell dependent) (28). To acquire
even longer lifespans (potentially as long
as the person themselves) B cells must be
cross-linked by repetitive foreign antigen
and interact with CD4+ T cells (28).

Following a mathematical formulation
of the ‘imprinted lifespan’ hypothesis pro-
posed in (18) we analyse two mathemati-
cal models. One model includes long-lived
plasma cells, the other does not. Figure 1
shows a qualitative description of the
modelled humoral dynamics, similar to
those observed in vivo (42). We impose
the requirement that models are struc-
turally identifiable and then ensure that
they are practically identifiable, i.e. that
observed outputs can only be generated
by a single parameter set (a different
parameter set would generate a different
output) (43; 44; 45), and that the data
contain enough information to inform the
parameters.

We assess parameter identifiability to
understand which model describes the
kinetics of the humoral response after one
and two doses of COVID-19 vaccination
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Fig. 1 A schematic of modelled humoral
dynamics. A persistent antibody response is
dependent on the generation of long-lived plasma
cells. In contrast, early antibody dynamics and
peak serum antibody concentrations are driven
by short-lived plasma cells (plasmablasts).

for different ages and vaccine schedules.
From our analysis, we draw conclusions
on which groups show evidence of long-
term antibody responses, how age and
vaccine schedule impact antibody levels,
and the importance of a second dose.

Results

Antibody dynamics by age
and vaccine type

We split the data on antibody level
into age groups (16 – 34, 35 – 54, 55
– 74, 75+), vaccine type (BNT162b2,
ChAdOx1-S), and number of doses (one
or two), prior to model fitting. Using two
models of antibody dynamics, derived
from biologically motivated equations
of humoral kinetics (equation (2) and
equation (3)), we are able to describe the
SARS-CoV-2 specific antibody response
of 7 of the 8 first dose groups and 8
of the 16 second dose groups, and make
predictions about future antibody levels.
Table 2 contains the groups we are able to
model. A group can be modeled if using

its data, all the parameters of one of the
models are identifiable (i.e. the model is
identifiable).

The antibody dynamics of all mod-
elled first dose groups can be described
by the single cell model, while the
asymptotic model only describes 35 –
54 year-olds vaccinated with one dose
of BNT162b2. However, the single cell
model is a better predictor of the data
collected from this group than the asymp-
totic model. Bayes’ Factor is 159,000 for
the single cell model over the asymptotic
model.

We are able to model seven of the
second dose groups (see table 2). The
antibody dynamics of 35 – 54 year-olds
and 55 – 74 year-olds, and 75+ year-olds
vaccinated with two doses of ChAdOx1-S
is better described (measured by Bayes’
Factor) or can only be described by the
asymptotic model. Data collected from 55
— 74 year-olds who received two doses of
ChAdOx1-S greater than 77 days apart
were better predicted by the asymptotic
model, with a Bayes’ Factor of 63.0 for
the asymptotic model over the single cell
model. The antibody dynamics of 75+
year-olds vaccinated with two doses of
BNT162b2 can only be described by the
single cell model. Data collected from 16
— 34 year-olds who received two doses
of BNT162b2 at most 77 days apart
was better predicted by the asymptotic
model, with a Bayes’ Factor of 12.1 for
the asymptotic model over the single cell
model.

Figure 2 shows the dynamics of the
modelled groups given in table 2. For
the first dose the models are initialised
at zero (A0 = 0). It is assumed in the
asymptotic and single cell models that
the initial population of plasma cells is
the full population that then decays. This
assumption results in an immediate sharp
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rise in antibody levels. This sharp rise
does not reflect what we observe in the
data for the antibody response to the first
dose but does for the response to the
second dose.

Age has a greater impact on the
magnitude of the antibody response for
people vaccinated with BNT162b2 than
those vaccinated with ChAdOx1-S. After
both the first and second dose, younger
people vaccinated with BNT162b2 have
higher antibody levels than older peo-
ple vaccinated with BNT162b2 at all
time points and our models predict this
trend will continue into the future. While
for those vaccinated with ChAdOx1-S
there is little discrepancy between the age
groups, especially after the second dose.

We also find that those vaccinated
with one dose of BNT162b2 have higher
antibody levels than the same age group
vaccinated with one dose of ChAdOx1-
S in the short-term but lower levels in
the long-term. The length of time those
vaccinated with BNT162b2 have higher
antibody levels than the same age group
vaccinated one dose of ChAdOx1-S is age
dependent. Younger people vaccinated
BNT162b2 have higher antibody levels
than the same age group vaccinated with
ChAdOx1-S for longer than older people.
The time of cross-over is 113.4 days, 90.0
days, and 33.4 days, for 34 – 35 year-
olds, 55 – 74 year-olds, and 75+ year-olds,
respectively. However, the 95% HPD CrIs
of the means overlap for the whole time-
frame of the first dose data (215 days
post vaccination), so we cannot say with
confidence that a cross-over occurs in the
timeframe of these data. We do not have a
comparison for 16 – 34 year-olds because
the data on this age group’s response to
one dose of ChAdOx1-S were insufficient
to identify a model.

We also find that people vaccinated
with two doses of BNT162b2 will have

higher antibody levels than those vac-
cinated with ChAdOx1-S for approxi-
mately nine months after receiving their
second dose. However, our models pre-
dict that after nine months the levels will
be similar and in the long-term, those
vaccinated with ChAdOx1-S will have
higher antibody levels. A possible excep-
tion is 16 – 34 year-olds vaccinated with
BNT162b2. This group is best described
by the asymptotic model. However, the
95% HDP CrI for the group’s antibody
dynamics includes decaying to zero in the
long-term. So, we cannot be confident 16
– 34 year-olds vaccinated with two doses
of BNT162b2 will have persisting anti-
bodies. This wide interval is probably due
to the small sample size of the group
(n = 25).

Estimates of Humoral
Response Parameters

Even though only 14 of the 24 groups we
investigate can identify all the parameters
of at least one of the proposed models and
are therefore the only groups we can say
the models describe, we can still extract
information about individual, identifiable
parameters from all groups. Figure 3
shows the mode and 95% HPD CrI of
the posterior distribution of parameters
for groups whose data are able to identify
them.

A common pattern for both mod-
els after both doses is that the value
of Φs (the antibody production capac-
ity of short-lived plasma cells) decreases
with age and is greater for those who
received BNT162b2 than those who
received ChAdOx1-S. This result explains
the higher peak antibody response after
vaccination in younger people and peo-
ple vaccinated BNT162b2 observed in
figure 2. Similarly, comparing the esti-
mates of Φs between the first and second

5

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 12, 2024. ; https://doi.org/10.1101/2024.02.08.24302502doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.08.24302502
http://creativecommons.org/licenses/by/4.0/


1

10

100

1000

10000

100000

0 100 200 300 400

Days Since First Vaccination

A
n
tib

o
d
y 

le
ve

l (
U

/m
l)

Vaccine

BNT162b2

ChAdOx1-S

Age

16-34

35-54

55-74

75+

Dose

1ˢᵗ

2ⁿᵈ

Fig. 2 The antibody data and best fitting model of the group whose data could identify a model
(the groups in table 2). The models for people who have received two doses ChAdOx1-S are the
asymptotic model, and all others models are the single cell model. For the first dose we initialise the
models at zero (A0 = 0). All parameter estimates are given in table 2. The shaded regions are defined
by the 95% HPD CrI of the parameter estimates.

doses, we see that both models estimate
an increase of 10- to 100- and 70- to 440-
fold in Φs when people receive their sec-
ond dose of ChAdOx1-S and BNT162b2,
respectively. These increases explain the
higher peaks after two doses observed in
figure 2.

A weak distinction between the group
estimates of µs and µa (short-lived
plasma cell decay rate and antibody
decay rate respectively) in the first dose
groups is found by both models. The
model fitting suggests people 35 and older
who received BNT162b2 have faster rates
of plasma cell and antibody decay than
those who received ChAdOx1-S. This
explains why people vaccinated with one
dose of ChAdOx1-S maintain a high anti-
body level than the same age group who
received one dose of BNT162b2, observed
in figure 2. However, this pattern is not
found after the second dose.

For there to be evidence of a long-term
antibody response in a group Φl (the anti-
body production capacity of long-lived
plasma cells) must be greater than zero.
Only people 35 and older who received

two doses of ChAdOx1-S were found to
show strong evidence of a long-term anti-
body response. For 35-54 year-olds this
is only true if they received their doses
more than 77 days apart and for peo-
ple 75 and older this is only true if they
received their doses less than 77 days
apart. The data collected from 16 – 34
years-olds and 35 – 54 year-olds vacci-
nated with one BNT162b2, and 16 – 34
years-olds vaccinated with two doses of
BNT162b2 was able to identify Φl, sug-
gesting these groups could have mounted
a long-lived immune response. However,
the 95% HDP CrI are [0–5.24], [0–2.23],
[0–59.4], and [0–40.6] respectively, all
include zero and therefore we cannot be
confident long-lived plasma are induced.

Taken together these observations
provide quantifiable explanations for
observed difference in antibody dynam-
ics between vaccine types and age groups.
They show that we only find evidence
of a persisting antibody response and
thus likely induction of long-lived plasma
cells in people vaccinated with two
doses of ChAdOx1-S. They also explain

6

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 12, 2024. ; https://doi.org/10.1101/2024.02.08.24302502doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.08.24302502
http://creativecommons.org/licenses/by/4.0/


greater peak antibody response observed
in younger people than older people, peo-
ple who receive one dose than people who
receive two, and people vaccinated with
BNT162b2 than people vaccinated with
ChAdOx1-S, by more productive short-
lived plasma cell (plasmablast) popula-
tions.

Methods and Materials

Antibody Data

We use SARS-CoV-2 specific antibody
data collected from 355,019 routine blood
tests between May 2020 and Septem-
ber 2022 collected and validated by the
Oxford-Royal College of General Practi-
tioners (RCGP) (see figure 2) (46). This
dataset contains vaccination dates and
level of total antibody (sum of IgG, IgA,
IgM) against the SARS-CoV-2 receptor
binding domain (RBD) on the spike (S)
protein, measured in units per milliliter
(U/ml) at various times after one, two,
three or four doses. Due to the sparsity of
data after three and four doses, we only
use the data after one and two doses.

Previous infection with SARS-CoV-2
can be distinguished from vaccination by
seeing whether an individual’s antibod-
ies bind to nucleocapsid (N) protein as
well as spike (S) protein. This has been
recorded in the data alongside an indi-
vidual’s vaccine type, number of doses,
interval between doses, and age. These
factors are used to stratify the population
into groups. We assume that the anti-
body dynamics of the people within a
group are the same, therefore individu-
als’ one-off samples can be interpreted as
longitudinal data for the group. As we
are investigating the effects of vaccina-
tion on antibody levels, we remove anyone
who has evidence of previous infection

i.e., antibodies that bind to N protein (N
positive).

Individuals are categorised by age: 16
– 34 years, 35 – 54 years, 55 – 74 years and
75+ years. We included the BNT162b2
and ChAdOx1-S vaccines and one and
two doses and whether the doses were
administered less than or equal to 77
days apart or more than 77 days apart
(two dose intervals used in the United
Kingdom). As we have set four age cat-
egories, two vaccine categories, and two
dose interval categories, there are 8 pos-
sible groups for the first dose and 32 pos-
sible groups for the second dose. We have
adequate data (i.e. as many time points as
parameters for our largest model) for all
first dose groups but only 16 of the second
dose groups. We do not have adequate
data for people who were heterologously
vaccinated.

Mathematical Models

The general model proposed in (18) is the
‘complete’ exponential model, that cap-
tures the kinetics of short-lived plasma
cells Ps, long-lived plasma cells Pl, and
antibodies A:

dPs

dt
= −µsPs, (1a)

dPl

dt
= −µlPl, (1b)

dA

dt
= ϕsPs + ϕlPl − µaA, (1c)

where µs, µl and µa denote the decay
rate of short-lived plasma cells, long-lived
plasma cells, and antibodies respectively,
and ϕs and ϕl denote the rate short- and
long-lived plasma cells secretes antibod-
ies, respectively. However, it was found
in (18) that assuming µl = 0 best
describes longitudinal data on hepatitis A
specific antibodies with samples taken up
to 114 months after vaccination. Hence,
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Fig. 3 The mode and 95% HDP CrI of the parameter’s posterior distribution for both doses and
models, when the parameter is identifiable. The line type is used to distinguish between dosing
interval, with dashed and dotted lines used for people who received their second dose > 77 days or
≤ 77 days after their first dose respectively, and solid lines are used for groups without a specified
dose interval. A dose interval is not specified for first dose groups and when we do not split the data
for the dose. Colours are used distinguish between the vaccines. For the second dose only one vaccine
is specified for the groups because we only have adequate data for homologously vaccinated people
(e.g. someone who received ChAdOx1-S for their second dose also received it for their first dose).
Red is used for ChAdOx1-S, green for BNT162b2, and blue for when we do not split the data by
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we set µl = 0, implicitly assuming long-
lived plasma cells live forever, and solve
the system of equations (1) with the
initial conditions Ps(0) = P 0

s , Pl(0) =
P 0
l , and A(0) = A0 to obtain,

A(t) =
Φl

µa
+

Φs

µa − µs
e−µst

+

(
A0 −

Φl

µa
− Φs

µa − µs

)
e−µat, (2)

where Φs = ϕsP
0
s and Φl = ϕlP

0
l .

The new parameters Φs and Φl repre-
sent the maximum antibody production
of the respective plasma cells populations
and are defined so that equation (2) is
structurally identifiable. We will refer to
Φs and Φl as the productive capacity
of short-live and long-lived plasma cells,
respectively.
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We also consider a related model (the
single cell model) that assumes long-lived
plasma cells are not induced (Φl = 0).

A(t) =
Φs

µa − µs

(
e−µst − e−µat

)
+A0e

−µat. (3)

Model Fitting

We use a Bayesian framework to fit our
models (equation (2) and equation (3))
to the data, implemented in R with
the rstan package (available at: https:
//mc-stan.org/). A Markov Chain Monte
Carlo (MCMC) algorithm is used to esti-
mate the joint posterior distribution of
the parameters.

To obtain a likelihood function we
assume that the log of the antibody lev-
els can be modelled as a random variable,
X(t), drawn from a normal distribution
with a mean defined our model, A(t, θ),
and a standard deviation σ.

X(t) ∼ N
(
A(t, θ), σ

)
,

P (X(t) = x|θ) = 1

σ
√
2π

e−
(x−A(t,θ))2

2σ2 .

Initial conditions and prior
distributions

When modelling the first dose response
we set the initial antibody level, A0, to
zero (as we assume people have not been
exposed to SARS-CoV-2) and for the
response to the second dose we assume
A0 is log-normally distributed with mean
µA0

and standard deviation σA0
. The val-

ues of µA0
and σA0

are estimated from the
antibody levels of people recorded after
their first dose. As the data are cross-
sectional, we cannot know what each
individual’s antibody level was when they
were given their second dose. Hence, we

sample the log-transformed serum anti-
body concentrations after the first dose
on the days when the people recorded
after their second dose were vaccinated.
The mean and standard deviation of this
normally distributed sample are used as
µA0 and σA0 respectively.

For the decay parameters, µs and µa,
we use the same log-normal prior for
both. A log-normal prior is used because
we expect the values of µs and µa to
be small (30; 36; 47; 48; 49; 50; 51;
52; 53), but greater than zero. We cali-
brate the prior by setting its 2.5% and
97.5% quantiles to 0.01 and 0.1 respec-
tively (equivalent to assuming there is a
95% probability that the true parame-
ter value lies between these values). This
reflects the belief that the expected half-
lives of antibodies and short-lived plasma
cells are in the tens of days (30; 36; 47;
48; 49; 50; 51; 52; 53).

The production capacity parameters,
Φs and Φl are more difficult to inform
from literature as they are artificial. How-
ever, Φl can still be informed through
assumptions about the long-term dynam-
ics of the model. The resting antibody
level at t∞ is predicted by the asymp-
totic model (equation 2) to be Φl

µa
, so

Φl will be equal to the product of µa

and the resting antibody level, which
we denote lAb∞. We have assumed that
both the antibody data and µa are log-
normally distributed. The product of two
log-normal distributions is log-normally
distributed. If we say the mean and stan-
dard deviation of the prior for µa is µdecay

and σdecay respectively, and the mean and
standard deviation of the resting anti-
body level is µ∞ and σ∞ respectively, the
prior for Φl will have the mean and stan-
dard deviation µΦl

= µdecay + µ∞ and
σΦl

= σ2
decay + σ2

∞ − 2σdecayσ∞. We
calculate µ∞ and σ∞ through assuming
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the 2.5% and 97.5% quantiles of the dis-
tribution. After the first dose we assume
the 2.5% and 97.5% quantiles of the log-
transformed resting antibody level will
be 2 and 7 respectively and after the
second dose the 3 and 8, respectively.
These quantiles are informed by the data
we have on earlier time points, therefore
not violating the principle of prior belief
being ignorant to data, as we do not have
data for long-time.

The final parameter is the produc-
tion capacity of short-lived plasma cells,
Φs. There is not the same intuitive inter-
pretation for Φs in the dynamics of the
model as there is for Φl so we use a trun-
cated normal distribution with the 2.5%
and 97.5% quantiles 1 and 5 respectively
for the first dose and 50 to 1000 respec-
tively for the second dose. These quantiles
were calibrated through prior predictive
checks.

To summarise, the prior distributions
are,

Φs ∼ Truncnormal(µΦs , σΦs), (4a)

Φl ∼ Lognormal(µΦl
, σΦl

), (4b)

µs ∼ Lognormal(µdecay, σdecay), (4c)

µa ∼ Lognormal(µdecay, σdecay), (4d)

A0 ∼ Lognormal(µA0
, σA0

). (4e)

Parameter Identifiability

We use the STRIKE GOLDD Matlab
package (54) (available at https://github.
com/afvillaverde/strike-goldd) to deter-
mine whether our models are structurally
identifiable. We use STRIKE GOLDD
because it considers initial condition as
parameters and has tools for reparame-
terization in the case of structural non-
identifiability.

The true value of a structural identifi-
able parameter is theoretically possible to
find, given noise-free data. It may not be

possible to determine the true value of a
structurally identifiable parameter when
fitting to noisy or sparse data. Practi-
cal identifiability, defined as the ability
to define finite bounds around an esti-
mate (55), determines whether the data
contain enough information to estimate
the parameter value with confidence.

An established method of defining
confidence intervals is with the pro-
file likelihood method (55), by assuming
values of the parameter and maximis-
ing the likelihood function with respect
to the remaining parameters (the ‘nui-
sance’ parameters) (55; 56; 57). The
simplest implementation of maximisa-
tion uses maximum likelihood estimation
(MLE) and gradient decent methods (55;
57). Though the methodology of the pro-
file likelihood method is well defined it
can be fragile when likelihood spaces are
complex and difficult to navigate by gra-
dient decent.

To mitigate the fragility of the like-
lihood profile method we use a Monte
Carlo Markov Chain (MCMC) algorithm
to explore the parameter space more com-
pletely and generate posterior distribu-
tions of parameter values. We determine a
parameter to be practically identifiable if
the 95% highest posterior density credible
interval (HPD CrI) of the posterior dis-
tribution is constrained to a single biolog-
ically meaningful set and is not sensitive
to prior assumptions. We say the param-
eter is not identifiable when the 95%
HPD CrI is made up of multiple separate
regions because this implies the data do
not contain enough information to con-
strain the parameter estimate around the
true value. Similarly, if the 95% HPD
CrI is sensitive to prior assumptions this
implies the data do not contain enough
information to inform the parameter.
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Sensitivity analysis

We conduct the sensitivity analysis by
expanding the quantiles of the prior dis-
tributions of Φs, µs, µa, lAb∞, and dou-
bling the standard deviation calculated
for a particular group, shown in table 1.
To determine whether a 95% HPD CrI
is sensitive to the priors we check two
things: whether the inclusion of zero in
the HPD CrI has changed, and whether
the modes of both posteriors are included
within the HPD CrI of both posteriors. If
the inclusion of zero in HPD CrI changes,
so does the conclusion about whether the
effect of the parameter can be detected in
the data. This is a fundamental change,
and we say the posteriors are too sensi-
tive to the prior in this case. Checking if
the modes of the posteriors are included
within the HPD CrI of the other posterior
is to test for agreement in the estimates.
If there is agreement, we say the posterior
is not too sensitive to the priors.

Discussion

We have proposed and analysed two
mechanistic and identifiable models of
SARS-CoV-2 specific antibody dynamics
that link cross-sectional seroprevalence
data to within-host antibody dynamics.
Our models relate peak antibody lev-
els to productive capacity of short-lived
plasma cells, explaining the observation
that individuals who received BNT162b2
have higher peak levels than those that
received ChAdOx1-S (7), as well as a
higher peak observed in younger people
than older people (4; 1; 2; 3). Persistent
antibody levels observed in people who
receive two doses of ChAdOx1-S are pre-
sumed to be explained by the induction
of long-lived plasma cells. We found no
effect of age on the apparent production
capacity of long-lived plasma cells.

The inability of mRNA COVID-19
vaccines to elicit long-lived plasma cells
after one and two doses has been dis-
cussed previously (58). However, long-
lived plasma cells in bone marrow,
and improved immunogenicity, have been
found in people vaccinated with three
and four doses of mRNA COVID-19 vac-
cines (59; 60), although this may be due
to infection.

Previous mathematical models of
SARS-CoV-2 antibody responses were
phenomenologically rather than biologi-
cally motivated, often due to data lim-
itations (11; 12; 13; 14; 15; 16). These
models considered a constant rate of anti-
body decay and do not account for the
production of antibodies by plasma cells.
Therefore, they cannot inform on the
mechanisms of antibody maintenance and
have limited power to predict future anti-
body levels. Our single cell and asymp-
totic models consider two and three time-
frames respectively, allowing them to dis-
tinguish separate phases of decay natu-
rally. When models only consider a single
phase of decay (11; 12; 13; 14; 15; 16)
model calibration is forced to compro-
mise between short-term forces (short-
lived plasma cells, antibody decay) and
long-term forces (long-lived plasma cells),
so parameter estimates and predicted
dynamics can be difficult to interpret.

Previous modelling estimated the
half-life of antibodies to be hundreds of
days (11; 12; 13) with wide confidence
intervals (11). In contrast, our model
explicitly captures the kinetics of anti-
body production and our point estimates
of the half-life of antibodies (23 – 116
days) are consistent with experimental
findings (47; 49; 50; 51; 52; 36) and previ-
ous estimates (15; 16). Our improved esti-
mates are due to our approach’s ability to
overcome the restrictions of single-phase
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Table 1 Prior distributions for the model parameters. For Φs, µs, µa, and lAb∞ we assume the
2.5% and 97.5% quantiles of the prior distributions. For A0 the assumptions are the mean and
standard deviation. Values are not given for the A0 assumptions as they vary between the groups.

Dose Baseline Prior Assumptions
Φs µs µa lAb∞ A0

1st [1, 5] [0.01, 0.1] [0.01, 0.1] [2, 7] -
2nd [50, 1000] [0.01, 0.1] [0.01, 0.1] [3, 8] µA0 , σA0

Dose Sensitivity Analysis Prior Assumptions
Φs µs µa lAb∞ A0

1st [0.5, 10] [0.005, 0.1] [0.005, 0.1] [1, 8] -
2nd [50, 2000] [0.005, 0.1] [0.005, 0.1] [2, 9] µA0

, 2σA0

models with a description of antibody
dynamics that considers their produc-
tion. Single-phase models overestimate
the half-life of antibodies to compen-
sate for the lack of antibody renewal.
Half-life estimates of from single-phase
models can depend on how many doses a
person received (16). The change in esti-
mates following booster doses will likely
be due to the effects of memory B cells
that become dominant in the humoral
response, and the induction of long-lived
plasma cells, effects our model captures
and overcomes.

A limitation of our models is the
assumption that the initial population of
plasma cells is the full population that
decays over time. In actuality, after vac-
cination, antigen will be produced within
the host’s cells (61), presented to naive
and memory B cells within the lymph
nodes by follicular dendritic cells, which
then through various routes proliferate
and differentiate into plasma cells (62).
A more accurate model could include the
initial expansion of the plasma cell popu-
lation. Such a model would fit the initial
antibody response better and give infor-
mation on differences in plasma cell gen-
eration post vaccination between popula-
tion groups. The improved fitting would
be most pronounced for responses to the
first dose as that is when we would not

expect people to have SARS-CoV-2 spe-
cific plasma cells prior to vaccination.
However, such a model would require
data of other immune factors such as ger-
minal center B cells, which are not easy to
obtain. Another limitation is the length of
time over which the data were collected.
Data that continued further after each
dose would help clarify long-time dynam-
ics and help validate our predictions. Due
to identifiability issues, it is not possible
for our models to distinguish the plasma
cell number and rate of antibody pro-
duction from each other. So, we cannot
determine what combination of these two
factors is responsible for variation in the
overall production of antibodies between
groups.

Our models suggest that while
mRNA vaccines induce larger short term
responses which may have advantages for
rapid protection, the adenoviral vector
vaccines may have advantages in elicit-
ing persistent serum antibodies against
SARS-CoV-2, presumably through
induction of long-lived plasma cells. Vac-
cinating people who have only received
mRNA vaccines with adenoviral vector
vaccines, with priority given to older
people, may achieve persistently high
antibodies in all age groups. Clinical stud-
ies into the effectiveness of BNT162b2
and ChAdOx1-S against infection with
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SARS-CoV-2 and hospitalisation with
COVID-19 find that BNT162b2 and
ChAdOx1-S are comparable after one
dose, but BNT162b2 is more effective
after two doses (63; 64; 65; 66; 67; 68; 69).
However, comparisons of BNT162b2 and
ChAdOx1-S vaccine effectiveness are
usually short term, at most up to 30
weeks, whereas our models cover longer
timescales. Further, we cannot be certain
whether heterologous vaccination will
elicit the same humoral response and
effectiveness as homologous vaccination.
Clinical studies have found that heterol-
ogous vaccination is more effective than
homologous vaccination at protecting
against infection (70; 71; 72; 73). How-
ever, these findings are for adenoviral
vector-primed mRNA-boosted individ-
uals while we are discussing boosting
mRNA-primed individuals with adenovi-
ral vector vaccine. It has been found that
binding and neutralizing antibodies wane
less in individuals primed with mRNA
vaccine and boosted with adenoviral
vaccine than in individuals vaccinated
with other heterologous vaccination
regimes (74; 75), supporting mRNA
priming and adenoviral vector boosting
to achieve persistently high antibody
levels.

Conclusion

Routinely-collected seroprevalence data
are valuable for characterising within-
host mechanisms of antibody production
and persistence. Extended sampling and
linking seroprevalence data to outcomes
would allow for powerful conclusions on
the relationship between humoral kinet-
ics and protection against disease. With
added data on other immune factors,
such as serum memory B cell and plas-
mablasts, mathematical modelling can

give more accurate descriptions of the
complex kinetics of the humoral response.
Closer interaction between mathematical
modelers and immunologists on data col-
lection and model structure will equip
interdisciplinary groups with the neces-
sary information to describe population
immune responses more accurately, ben-
efiting the fields of immunology and epi-
demiology. With the current data we can
make projections of antibody responses
into the future and our results suggest
older people who have not received ade-
noviral vector vaccine may derive longer
lasting protection from a booster dose of
this vaccine type than from additional
mRNA vaccination.

Data availability

The United Kingdom Health and Secu-
rity Agency (UKHSA) dataset can be
accessed by researchers; approval is on a
project-by-project basis (https://orchid.
phc.ox.ac.uk/index.php/orchid-data/).
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