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Abstract: 

Background: Acute pain is a common and debilitating symptom experienced by oral cavity and 

oropharyngeal cancer (OC/OPC) patients undergoing radiation therapy (RT). Uncontrolled pain 

can result in opioid overuse and increased risks of long-term opioid dependence. The specific aim 

of this exploratory analysis was the prediction of severe acute pain and opioid use in the acute 

on-treatment setting, to develop risk-stratification models for pragmatic clinical trials. 

Materials and Methods: A retrospective study was conducted on 900 OC/OPC patients treated 

with RT during 2017 to 2023. Clinical data including demographics, tumor data, pain scores and 

medication data were extracted from patient records. On-treatment pain intensity scores were 

assessed using a numeric rating scale (0-none, 10-worst) and total opioid doses were calculated 

using morphine equivalent daily dose (MEDD) conversion factors. Analgesics efficacy was 

assessed based on the combined pain intensity and the total required MEDD. ML models, 

including Logistic Regression (LR), Support Vector Machine (SVM), Random Forest (RF), and 

Gradient Boosting Model (GBM) were developed and validated using ten-fold cross-validation. 

Performance of models were evaluated using discrimination and calibration metrics. Feature 

importance was investigated using bootstrap and permutation techniques. 

Results: For predicting acute pain intensity, the GBM demonstrated superior area under the 

receiver operating curve (AUC) (0.71), recall (0.39), and F1 score (0.48). For predicting the total 

MEDD, LR outperformed other models in the AUC (0.67). For predicting the analgesics efficacy, 

SVM achieved the highest specificity (0.97), and best calibration (ECE of 0.06), while RF and 

GBM achieved the same highest AUC, 0.68. RF model emerged as the best calibrated model 

with ECE of 0.02 for pain intensity prediction and 0.05 for MEDD prediction. Baseline pain scores 

and vital signs demonstrated the most contributed features for the different predictive models. 

Conclusion: These ML models are promising in predicting end-of-treatment acute pain and 

opioid requirements and analgesics efficacy in OC/OPC patients undergoing RT. Baseline pain 

score, vital sign changes were identified as crucial predictors. Implementation of these models in 
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clinical practice could facilitate early risk stratification and personalized pain management. 

Prospective multicentric studies and external validation are essential for further refinement and 

generalizability. 
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Introduction: 

Acute pain is one of the most common debilitating symptoms that develops during Radiation 

Therapy (RT), in oral cavity and oropharyngeal (OC/OPC) cancers. For OC/OPC, the standard 

RT is given in multiple fractions per day, for 5-7 weeks of RT alone or with concurrent 

chemotherapy [1-4]. Despite the improved OC/OPC patients’ outcome with the implementation 

of advanced adaptive RT techniques, several acute adverse symptoms are often reported during 

and after RT [5]. These adverse symptoms have a negative impact on the patients’ quality of life 

(QoL) [6]. Acute mouth/throat pain has been reported to affect over 90% of OC/OPC patients, 

with up to 80% requiring an opioid prescription to manage cancer and/or treatment-associated 

pain [7, 8]. 

Despite the availability of the World Health Organization's (WHO) "analgesic ladder" guideline 
designed for pain relief [9-11], managing pain, particularly in patients undergoing RT for head and 
neck cancers (HNC), remains a significant challenge for healthcare providers, with nearly one-
third of HNC patients continuing to experience severe, uncontrolled pain [12-14]. The challenge 
in the control of RT-induced acute pain is potentially related to the complex nature of pain, the 
multifactorial etiology of pain and the different response rates of individuals to pain treatment [5, 
15]. Most healthcare professionals prescribe opioids for pain control during RT in OC/OPCs [8, 
12, 16]. The escalated doses of opioids for acute pain management during RT contribute to 
heightened rates of morbidity and raises concerns about potential opioids’ side effects and 
substance abuse [17]. These challenges in pain management not only complicate care but also 
have a detrimental impact on the QoL for the survivors within this cancer population.  
Approximately 45% of long-term HNC survivors report chronic pain, with more than 10% exhibiting 

severe chronic pain with chronic opioid usage [18]. The long-term opioid usage raises the risks 

of opioid dependence and drug addiction which may lead to patient death [19-21]. The overuse 
of high doses of opioids to address acute pain during RT adds to the complexity of the patients' 
care and poses risks that may exacerbate their overall health outcomes and well-being [22]. 
 
Artificial Intelligence and machine learning (AI/ML) models are currently being explored for their 

potential use in risk stratifying patients according to various risks, especially in the domain of pain 

medicine and opioid usage [23]. These models aim to optimize pain management and assist in 

personalized treatments through risk stratification and decision-making [23]. For example, Chao 

et al, used ML algorithms to identify chest wall pain induced by RT in non-small cell lung cancer 

(NSCLC) patients treated with Stereotactic Body Radiation Therapy (SBRT) [24] and Olling et al., 

generated ML predictive models for predicting pain while swallowing (odynophagia) during RT in 
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NSCLC [25].  While approximately 44 studies exploring ML models to predict cancer pain, no 

studies investigated the role of ML models in pain prediction in head and neck cancers (HNC) 

and how they can aid in guiding decisions related to the use of opioids in these individuals.  

The primary objective of the ongoing study is to address this gap in knowledge by a) comparing 

the performance of various ML algorithms as predictive models for predicting acute pain levels, 

b) projecting opioid doses at the end of RT in OC/OPC patients and c) identifying the importance 

of relevant clinical predictors in classifying acute pain and predicting the required opioid dosages.  

Materials and Methods: 

Patient data: 

A retrospective study was conducted using a cohort of oral cavity, oropharyngeal cancer and 

unknown primary cancer patients treated with RT at our institution from 2017 to 2023. The study 

has been approved by The University of Texas MD Anderson Cancer Center (MDACC) 

Institutional Review Board (IRB) (2024-0002). Since most unknown primary cancers end up being 

oropharyngeal cancer (OPC) or oral cavity cancer (OC), they were included in our study. 

Eligible OC/OPC patients for inclusion included those with a pathologic diagnosis of squamous 

cell carcinoma (SCC) treated with RT or chemoradiation therapy (CRT). RT modalities included 

photons (e.g., intensity-modulated radiotherapy (IMRT), volumetric modulated arc therapy 

(VMAT)) and proton therapy (i.e., IMPT).  

Predictors: 

Clinical data extracted from the electronic health record system included patient demographics, 

exposure/social history (smoking, alcohol, drug abuse), tumor and staging characteristics, cancer 

therapy details (systemic therapy, surgery, RT), vital signs (weight and heart rate), medications, 

and baseline and last on-treatment visit [i.e., weekly see visit (VSV)] acute pain scores. Delta 

changes in weight were calculated using the equation: [(last WSV weight-baseline 

weight)/baseline weight] *100. Categorical encoding was applied to the relevant variables and 

robust scaler normalization of normally distributed continuous variables was implemented. 

Outcome: 

Desired output variables for the ML models included end-of-RT pain scores and opioid usage, the 

latter defined as the total morphine equivalent daily dose (MEDD). Pain intensity was documented 

during nursing visits using a numerical scale from 0 (none) to 10 (as bad as you can imagine). 

Our output pain intensity variable was dichotomized into two classes, non-severe pain (0-6) and 

severe pain (7-10). This cutoff was used based on available literature [5, 26, 27] and current 

physician considerations of a pain score of 7 or greater representing high risks for uncontrolled 

pain that need readdressing of applied pain control regimens [28, 29]. The other endpoint (MEDD) 

at the last WSV was calculated using the Centers for Disease Control and Prevention (CDC) 

guidelines [30-32]. The total MEDD was calculated as follows: the unit dose of all opioids (i.e., 

tramadol, hydrocodone, oxycodone, morphine, methadone, transdermal fentanyl) prescribed 

during the last WSV were collected and multiplied by the prescribed frequency (i.e., twice per day) 

and their CDC-based MEDD conversion factors  (hydrocodone= 1, hydromorphone= 4, 

morphine= 1, oxycodone= 1.5, tramadol= 0.1, transdermal fentanyl= 2.4 and methadone 

according to the dose (1-20 mg/day=4, 21-40 mg/day=8, 41-60 mg/day= 10 and >=61-80 mg/day 

=12)). The total MEDD was then calculated by summing all opioid specific MEDDs. As a desired 
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output variable, total MEDD was dichotomized into two classes, low MEDD (total MEDD <50 

mg/day) and high MEDD (total MEDD >=50 mg/day). We selected 50 mg/day as a cut off given 

the mean total MEDD of our cohort (52mg) and based on CDC guidelines [23-25]. The third 

endpoint considered was the status of analgesic efficacy based on the pain intensity and the total 

MEDD at the end of RT. Analgesic efficacy variable was dichotomized into two classes: analgesic 

efficacy (non-severe pain <7 and low total MEDD <50) and analgesic inefficacy (severe pain >=7 

and high total MEDD >=50). Severe pain and high doses of opioids showed increased disability 

risks, poor outcomes and low QOL, thus it is essential to identify analgesic efficacy in head and 

neck cancer patients pre-emptively for better management of these patients during RT [19, 20, 

29].  

Descriptive Statistics: 

Differences in patient characteristics between pain classes and total MEDD were compared using 

the Chi-square test (the Likelihood Ratio) for categorical variables and Wilcoxon test for numeric 

variables. A 2-sided P-value less than 0.05 was considered statistically significant. 

Classification models: 

The full dataset was randomly split after stratification, into training dataset (70%) and testing 

dataset (30%). Pre-processing of training dataset was conducted separately from the testing 

dataset. Pre-processing included: 1) categorical variables elements were converted into 

numerical values. 2) Patients with any missing value were dropped from the dataset, the number 

of missing data was calculated for each variable (if a variable has > 10% missing data, the variable 

would be excluded). 3) Normalization of numeric variables using robust scaler if normal 

distribution of the variable and there are outliers [33]. 

Model training 

Fifteen features were used to build the models as input variables. Four ML classification models 

were trained and included Logistic Regression (LR), Support Vector Machine (SVM), Random 

Forest (RF), and Gradient Boosting Models (GBM). Hyper-parameter optimization was performed 

with manual grid search. The LR model was initialized with default settings, using scikit-learn 

function of Logistic Regression: sklearn.linear_model.LogisticRegression. (penalty='l2', C=1.0, 

solver='lbfgs', max_iter=100, fit_intercept=True, random_state=None). The RF model, comprised 

of 100 decision trees, the function used was: sklearn.ensemble.RandomForestClassifier 

(n_estimators=100, random_state=10). For predicting MEDD, this python function was used 

RandomForestClassifier(n_estimators=100, random_state=10, max_depth=3, 

min_samples_leaf=3). For building the GBM, we used scikit-learn function:  

sklearn.ensemble.GradientBoostingClassifier (n_estimators=100, learning_rate=0.1, 

max_depth=2, random_state=12) and for predicting total MEDD, we used scikit-learn  function:  

GradientBoostingClassifier (n_estimators=100, learning_rate=0.1, max_depth=2, 

random_state=12, min_samples_split=3).  

Model evaluation 

The dataset was split into a training (70%) and a test dataset (30%) with stratified sampling using 

a ten-fold cross-validation (CV) approach. Model performance was assessed on the test dataset 

in terms of discrimination performance and model calibration. The discriminative ability was 

measured using the following metrics: area under the receiver operating curve (AUC), recall, 
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precision, and F1 score. Differences in AUC scores between models were assessed using the 

DeLong test, R pROc package was used for the DeLong test  [34, 35]. Calibration performance 

was assessed with the calibration curve, which visually depicts the relationship between the 

predicted probabilities of the positive class and the observed fraction of positive instances. This 

curve allows for a qualitative assessment of how well the predicted probabilities align with the true 

outcomes. Additionally, the Expected Calibration Error (ECE) was computed for each model [36, 

37]. ECE quantifies the average discrepancy between the predicted probabilities and the 

observed frequencies, providing a scalar measure of calibration performance. Specifically, ECE 

was calculated as the mean absolute difference between the observed and predicted probabilities 

across predefined bins. A lower ECE value indicates better calibration [36].  

Feature importance 

The determination of feature importance for the highest performing model (i.e., the highest AUC) 

was computed differently according to the model, to elucidate the individual contributions of each 

predictor variable to the model’s overall performance. For the GBM and RF models, feature 

importance was calculated through bootstrapped resampling and the calculation of both mean 

and standard deviation across 100 runs. The mean importance reflected the average contribution 

of each feature, while the standard deviation (SD) provided insights into the variability and 

uncertainty associated with these contributions. For the LR and the SVM classifiers, evaluation of 

feature importance was conducted through the application of permutation feature importance 

analysis. The resulting feature importance values were then sorted and visualized using a boxplot, 

providing a comprehensive view of the distribution of feature importance.  

Scikit-learn packages were used for ML modeling, validation, and evaluation. All statistical 

analyses were performed by python 3.12, JMP PRO 15 and R studio version 4.0.5. 

Results: 

Patients Characteristics: 

A total of 900 patients with OC (n=100, 11%), OPC (n=772, 86%) or unknown primary (n=28, 3%) 

were included in our study Characteristics. Table 1 provides a summary of the cohort 

characteristics and the results of the Chi-square and Wilcoxon tests. 

 

 

Table 1: Patients characteristics stratified by acute pain intensity and total MEDD. 

  n SD / 
% 

None-
Severe 

pain 

Severe 
pain 

P-
value 

Low 
MEDD 

High 
MEDD 

P-
value 

Total 900        

Age (SD) 60.6
5 

9.8   0.000
4* 

  0.008* 

Sex (%)                 
0.27 

   
0.009* Males 766 (85%

%) 
459 

(51%) 
307 

(34%) 
416 

(46%) 
350 

(39%) 
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Females 134 (15%) 87 (10%) 47 (5%) 89 
(10%) 

45 
(5%) 

Race (%)      
0.3 

   
0.9 White or 

Caucasian 
814 (90%) 497 

(55%) 
317 

(35%) 
459 

(51%) 
355 

(39%) 

Black or African 
American 

25 (3%) 10 (1%) 15 (2%) 15 
(2%) 

10 
(1%) 

Asian 16 (2%) 12 
(1.3%) 

4 
(0.7%) 

8 (1%) 8 (1%) 

American Indian or 
Alaskan Native 

4 (0.4%) 2 (0.2%) 2 
(0.2%) 

2 
(0.2%) 

2 
(0.2%) 

Other/unknown 41 (4.6%) 25 
(2.7%) 

16 
(1.3%) 

21 
(2.3%) 

20 
(2.3%) 

Smoking (%)      
0.95 

   
0.17 Current smoker 76 (8.4%) 46 

(5.1%) 
30 

(3.3%) 
41 

(4.6%) 
35 

(3.8%) 

Former smoker 352 (39.2
%) 

216 
(24.1%) 

136 
(15.1%) 

185 
(20.6
%) 

167 
(18.6
%) 

Never smoker 471 (52.3
%) 

284 
(31.5%) 

187 
(20.8%) 

278 
(30.9
%) 

193 
(21.4
%) 

NA 1 (0.1)     

Alcohol (%)      
0.67 

   
0.175 Yes 618 (69.4

%) 
371 

(41.6%) 
247 

(27.7%) 
354 

(39.8
%) 

264 
(29.6
%) 

No 273 (30.6
%) 

168 
(18.9%) 

105 
(11.8%) 

143 
(16%) 

130 
(14.6
%) 

NA 9 (1%)     

Drug abuse (%)      
<0.00
01* 

   
0.007* Yes 204 (22.7

%) 
93 

(10.3%) 
111 

(12.4%) 
97 

(10.7
%) 

107 
(12%) 

No 686 (76.2
%) 

445 
(49.9%) 

241(27.
1%) 

400 
(44.2
%) 

286 
(32%) 

NA 10 (1.1%)     

Clinical-T stage 
(%) 

     
0.111 

   
0.319 

   Tx 10 (1%) 10(1%) 0(0%) 7(0.7
%) 

3(0.3
%) 

   T0 53 (6%) 33 (4%) 20 (2%) 34 
(4%) 

19 
(2%) 

   T1 279 (31%) 170 
(19%) 

109 
(12%) 

164 
(18%) 

115 
(13%) 

   T2 297 (33%) 176 
(19.6%) 

121 
(13.4%) 

166 
(18%) 

131 
(15%) 
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   T3 147 (16%) 89 (10%) 58 (6%) 72 
(8%) 

75 
(8%) 

   T4 113 (13%) 68 (8%) 45 (5%) 61 
(7%) 

52 
(6%) 

Clinical-N stage 
(%) 

     
0.63 

   
0.663 

   NX 4 (0.4%) 2 (0.2%) 2 
(0.2%) 

2 
(0.2%) 

2 
(0.2%) 

   N0 134 (15%) 85 (10%) 49 (5%) 83 
(9%) 

51 
(6%) 

   N1 445 (49.4
%) 

259 
(28.8%) 

189 
(20.6%) 

246 
(27.2
%) 

199 
(22.2
%) 

   N2 286 (32%) 181 
(20%) 

105 
(12%) 

158 
(18%) 

128 
(14%) 

   N3 31 (3.2%) 19 
(2.1%) 

12 
(1.1%) 

16 
(1.6%) 

15 
(1.6%) 

Primary tumor 
type (%) 

     
0.049* 

   
0.328 

Oral cavity 100 (11%) 70 
(7.7%) 

30 
(3.3%) 

63 
(7%) 

37 
(4%) 

Oropharynx 772 (86%) 456 
(51%) 

35%) 427 
(47%) 

345 
(39%) 

Unknown primary 28 (3%) 20 
(2.2%) 

8 
(0.8%) 

15 
(1.6%) 

13 
(1.4%) 

Chemotherapy 
(%) 

     
0.024* 

   
0.481 

Yes 641 (71%) 374 
(41.6%) 

267 
(29.4%) 

355 
(39%) 

286 
(32%) 

No 259 (29%) 172 
(19%) 

87 
(10%) 

150 
(17%) 

109 
(12% 

Surgery (%)      
0.000

3* 

   
0.002*   Yes                                                             283 (31%) 196 

(21%) 
87 

(10%) 
180 

(20%) 
103 

(11%) 

  No 617 (69%) 350 
(39%) 

267 
(30%) 

325 
(36%) 

292 
(32%) 

Proton therapy 
(%) 

     
0.28 

   
1.3 

  Yes                                                             143 (16%) 81 (9%) 62 (7%) 74 
(8%) 

69 
(8%) 

  No 757 (84%) 465 
(52%) 

292 
(32%) 

431 
(48%) 

326 
(36%) 

Pre-RT pain 
(mean, SD) 

2.2 2.8   <0.00
01* 

  <0.00
01* 

Change in weight 
(mean%, SD) 

-6.6 5.8   0.13   0.002* 

Change in pulse 
(mean, SD) 

13.8 17.3   0.001*   0.29 

Total MEDD 
(mean, SD) 

52 46   <0.00
01* 
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Last week Pain 
score (mean, SD) 

5.3 2.7      <0.00
01* 

Abbreviations: n: number, SD: 
Standard Deviation 
*Significant difference <0.05 

      

 

Models’ development and comparison for predicting acute pain intensity at the end of RT 

in OC/OPC: 

A total of 838 patients, non-severe pain (n= 502, 60%), severe pain (n=336, 40%), were included 

in this analysis after dropping patients with missing data. Results of discrimination metrics were 

summarized in Table 2. The results of the four ML models for predicting pain intensity by the end 

of RT showed that Gradient Boosting model had the highest, AUC (0.71) Recall (0.39) and F1 

score (0.48), indicating that GB, with its well-rounded performance across multiple metrics, 

appears particularly promising for risk stratification and prediction of acute pain intensity by the 

end of RT in OC/OPC. The AUC of RF, SVM and LR models were 0.69, 0.65 and 0.64 

respectively. However, no significant difference was detected in AUC scores between different 

models (Figure 1.a). DeLong test results were summarized in Supplementary Table S1. 

 SVM classifier demonstrated the highest precision (0.95) but falls behind in sensitivity (0.23) and 

overall F1 Score (0.35).  The calibration evaluated in the testing dataset demonstrated that the 

RF model exhibits the lowest ECE at 0.0228, suggesting that its predicted probabilities are well-

calibrated and closely reflect the true event probabilities. The SVM follows closely with an ECE of 

0.0342, indicating good calibration as well. LR also performs well with an ECE of 0.0436, while 

Gradient Boosting shows a slightly higher ECE at 0.0589. These results suggest that the RF is 

particularly reliable in providing well-calibrated probability estimates, making them potentially 

more accurate in capturing the true uncertainty associated with predictions compared to the other 

models. Calibration plots of the four models are illustrated in (Figure 1.b). 

 

Table 2: Discrimination metrics and the performance of the models predicting acute pain intensity 

by the end of RT. 

Model AUC Recall Precision F1 Score 

Logistic Regression 
(LR) 

0.6442 0.3366 0.7881 0.4072 

Random Forest (RF) 0.6895 0.3762 0.8411 0.4663 

Gradient Boosting 
(GB) 

0.7085 0.3861 0.8609 0.4845 

Support Vector 
Machine (SVM) 

0.6536 0.2277 0.9470 0.3485 
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The feature importance analysis from the GBM Classifier was demonstrated in Figure 2, revealed 

key factors influencing the prediction of the pain intensity by the end of RT. Baseline pre-

radiotherapy pain score and changes in weight emerged as the most crucial contributors, 

emphasizing the significance of the initial pain levels and weight alterations in predicting acute 

pain by the end of RT (mean importance: 0.244 ± 0.038 and 0.214 ± 0.031, respectively). 

Additionally, changes in heart rate (i.e., pulse) (mean 0.147 ± 0.028), age (mean 0.123 ± 0.026), 

and drug abuse (mean 0.055 ± 0.018), exhibit considerable importance. Tumor stage, as 

represented by clinical T and N, also contribute moderately to the prediction, with mean 

importance 0.036 ± 0.013 and 0.041 ± 0.016 respectively. The type of primary cancer, treatment 

approach (i.e., receipt of systemic therapy, surgery), had a moderate impact compared to the 

sociodemographic factors (race, smoking, alcohol, sex) show lower degrees of importance, (see 

Figurer 2). 

 

Figure 1: Comparison of the four prediction models (Logistic regression, Random Forest, 

Gradient Boosting and Support Victor Machine (SVM)) for acute pain intensity prediction. a. 

receiver operating curve, area under the curve (AUC) values for the four models in testing dataset. 

b. calibration curve to compare the mean predicted probability and the fraction of positives for the 

four models. 

a. b. 
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Models’ development and comparison for predicting total morphine equivalent daily dose 

(MEDD) at the end of RT in OC/OPC: 

A total of 838 patients [low MEDD (n= 458, 55%), high MEDD (n=380, 45%)] were included in this 

analysis after dropping patients with missing data.  Results of the discrimination metrics were 

summarized in Table 3. 

The performance evaluation results across the four models reveal varying strengths and trade-

offs (Table 4). The LR outperformed others in terms of AUC (0.67), indicating its effectiveness in 

overall predictive performance for predicting the total MEDD at the end of RT (Figure 3.a).  RF 

showed AUC score of (0.63). GBM showed a better balance between precision (0.52) and recall 

(0.42) while the lowest AUC (0.58). The SVM model achieved the highest precision (0.73) but at 

the cost of lower recall (0.19). Significant difference in AUC scores was found between LR model 

Figure 2: The box plot visually summarizes the distribution of feature importance obtained from 

a GBM. Pre-RT_painscore: pre-RT pain score; changewt: change in weight; changepulse: 

change in pulse (HR), Drugs (drug abuse history), primaryCancer_Type: primary cancer type 

(OC, OPC or unknown primary); Chemo Plan Y/N: chemotherapy plan Yes/No; T value: clinical 

T stage, N value: clinical N stage, Y/N: Yes or No. 
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and GBM (P=0.007, 95% CI 0.02 to 0.128); AUC-SVM and AUC-GBM (P=0.02, 95% CI -0.126 to 

-0.011); and AUC-RF and AUC-GBM (P=0.019, 95% CI -0.09 to -0.008), while no significant 

difference was detected between the AUC scores of other models. DeLong test results were 

summarized in Supplementary Table S2. 

The calibration analysis of the models revealed notable differences in their ability to provide well-

calibrated probability estimates. The RF model emerged as the top-performing model with the 

lowest Expected Calibration Error (ECE) of 0.0569, indicating a highly accurate alignment 

between predicted probabilities and actual outcomes. GBM model followed closely with an ECE 

of 0.0790, revealing good calibration performance. The SVM model exhibits a higher ECE of 

0.1588, suggesting a less precise calibration. LR fell in between, with an ECE of 0.0795. These 

findings highlight the importance of assessing calibration in addition to traditional performance 

metrics, emphasizing RF as a particularly reliable model in providing well-calibrated probability 

estimates for the classification task at hand. Calibration plots of the four models were illustrated 

in (Figure 3.b) 

 

Table 3: Discrimination metrics and the performance of the models predicting total MEDD by the 

end of RT. 

Model AUC Recall Precision F1 Score 

Logistic Regression 0.6693 0.5000 0.6196 0.5534 

Random Forest 0.6295 0.2456 0.6512 0.3567 

Gradient Boosting 0.5847 0.4211 0.5217 0.4660 

Support Vector Machine 0.6066 0.1930 0.7333 0.3056 
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Feature importance results from the logistic regression model permutation analysis, 

demonstrated in Figure 4, revealed that the most influential features include the “baseline pre-RT 

pain score” (mean 0.066 ± 0.021), demonstrating a substantial positive association with the target 

variable. Other positively impactful features, such as clinical T stage (0.01 ± 0.013) and sex (0.009 

± 0.01) contribute positively to the model's predictions. Conversely, features like drug abuse (-

0.009 ± 0.011), alcohol (-0.005 ± 0.01) and age (-0.004 ± 0.014) exhibited negative associations, 

indicating their potential role in decreasing the likelihood of the target outcome. 

Figure 3: Comparison of the four prediction models (Logistic regression, Random Forest, 

Gradient Boosting and Support Victor Machine (SVM)) for the total MEDD prediction. a. receiver 

operating curve, area under the curve (AUC) values for the four models in testing dataset. b. 

calibration curve to compare the mean predicted probability and the fraction of positives for the 

four models. 

a. b. 
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Models’ development and comparison for predicting analgesic (i.e., opioid) efficacy at the 

end of RT in OC/OPC: 

A total of 548 patients [analgesic efficacy (n= 335, 61%), analgesic inefficacy (n=213, 39%)] were 

included in this analysis after dropping patients with missing data. Results of the discrimination 

metrics were summarized in Table 4. ROC curves and AUC scores were demonstrated in Figure 

5.  Analysis of the models’ evaluation results revealed that The LR model achieved an AUC score 

of 0.67, a sensitivity (recall) of 0.36, a specificity of 0.83, and an F1 score of 0.44. The RF model 

slightly edged out the other models in AUC score with an AUC of 0.68. It demonstrated better 

sensitivity (0.45) and maintained a high specificity of 0.83., resulting in an F1 score of 0.53. The 

GBM performed similarly well with an AUC of 0.68, a sensitivity of 0.44, a specificity of 0.85, and 

an F1 score of 0.52. The SVM model achieves an AUC of 0.66, a sensitivity of 0.31, a high 

specificity of 0.97, and an F1 score of 0.46. No significant difference in AUC scores was detected 

among the four models, (Supplementary Table S3).  

Figure 4: The box plot visually summarizes the distribution of LR permutation feature 

importance. Pre-RT_painscore: pre-RT pain score; changewt: change in weight; changepulse: 

change in pulse (HR), Drugs (drug abuse history), primaryCancer_Type: primary cancer type 

(OC, OPC or unknown primary); Chemo Plan Y/N: chemotherapy plan Yes/No; T value: clinical 

T stage, N value: clinical N stage, Y/N: Yes or No. 
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Analysis of calibration results revealed that the SVM model stood out with the lowest ECE of 

0.0636, suggesting highly accurate and well-calibrated probability predictions. The GBM followed 

closely with an ECE of 0.0684, indicating good calibration. Meanwhile, the LR and RF models 

exhibit slightly higher ECE values of 0.0715 and 0.0756, respectively, implying some room for 

improvement in their calibration performance. 

 

 

Table 4: Discrimination metrics and the performance of the models predicting analgesic efficacy 

by the end of RT. 

Model AUC Sensitivity Specificity F1 Score 

Logistic 
Regression 

0.6658 0.3594 0.8317 0.4423 

Random Forest 0.6832 0.4531 0.8317 0.5273 

Gradient Boosting 0.6802 0.4375 0.8515 0.5234 

SVM 0.6581 0.3125 0.9703 0.4598 
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The feature importance results obtained from the RFM, demonstrated in Figure 6, revealed the 

relative contribution of each feature in predicting the analgesic efficacy. The top features that 

influenced the model include Baseline pre-RT pain score (0.1696 ± 0.017), change in weight 

(0.1686 ± 0.01), and change in pulse (0.1565 ± 0.01), indicating their significant impact on the 

model's predictions. Other notable features include age (0.1439 ± 0.008), T Value (0.0665 ± 

0.005), and N Value (0.0545 ± 0.005). On the other hand, features like the primary cancer type' 

(0.0169 ± 0.003), sex (0.0175 ± 0.003), and race (0.0193 ± 0.003) exhibited lower importance.  

 

 

 

 

Figure 5: Comparison of the four prediction models (Logistic regression, Random Forest, 

Gradient Boosting and Support Victor Machine (SVM)) for the analgesic efficacy status. a. 

receiver operating curve, area under the curve (AUC) values for the four models in testing dataset. 

b. calibration curve to compare the mean predicted probability and the fraction of positives for the 

four models. 

a. b. 
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Discussion: 

Acute pain is a complex symptom experienced by OC/OPC patients receiving RT. Due to dose-

dependent progression of RT-associated toxicities (i.e., oral mucositis, dermatitis, dysphagia), the 

multifaceted nature of acute pain (i.e., inflammatory, nociceptive, neuropathic components), and 

lack of data-driven clinical decision support tools to guide pain management, effective pain control 

is difficult to achieve. This study addresses the existing critical gap in predicting acute pain and 

opioid usage in OC/OPC patients undergoing RT and identifying the important clinical features 

affecting pain intensity and opioid usage, using ML. Our results revealed that applying supervised 

ML predictive models was helpful in early pain prediction and opioid optimization. Among the four 

models utilized in this study, including GBM, RF, SVM, and LR, GBM emerged as the most 

promising, exhibiting the highest AUC (0.71), recall (0.39), and F1 score (0.48) for acute pain 

intensity prediction. LR excelled in predicting total MEDD, displaying competitive AUC scores 

Figure 6: The box plot visually summarizes the distribution of RF feature importance. Pre-

RT_painscore: pre-RT pain score; changewt: change in weight; changepulse: change in pulse 

(HR), Drugs (drug abuse history), primaryCancer_Type: primary cancer type (OC, OPC or 

unknown primary); Chemo Plan Y/N: chemotherapy plan Yes/No; T value: clinical T stage, N 

value: clinical N stage, Y/N: Yes or No. 
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(0.67). RF demonstrated the highest AUC (0.683) in analgesic efficacy prediction status 

prediction. These findings emphasize the potential of ML models, particularly GBM and RF, in 

enhancing risk stratification and prediction accuracy for critical outcomes in OC/OPC patients 

undergoing RT. Our different results in discrimination metrics highlight the importance of 

considering specific evaluation metrics based on the clinical requirements. 

Model calibration is especially important when deploying ML models for clinical decision-making, 

as it enhances the reliability of probability. Model calibration estimates a crucial aspect of ML to 

ensure the predicted probabilities align with the true probabilities of events and poorly calibrated 

models may provide misleading confidence scores, impacting the interpretability and 

trustworthiness of predictions  [38, 39]. However, few studies focused on evaluation of the 

calibration of the classification models investigated in the clinical settings [36, 38, 40]. In our study, 

we generated the calibration curves for the four models to investigate the relationship between 

the mean predicted probabilities of the positive class and the observed fraction of positive 

instances. Additionally, we calculated the Expected Calibration Error (ECE) as a key metric used 

to quantify the calibration performance of a model [36]. Our ECE results revealed good calibration 

of the four models we investigated for prediction of acute pain intensity, MEDD, and analgesic 

efficacy in patients with OC/OPC receiving RT. 

Although several studies investigated the accuracy and feasibility of ML models for cancer pain 

prediction and opioids requirement in advance, there is a lack in investigating these models in 

pain prediction in HNC patients. Chao et al., (2028) explored the role of ML to predict chest wall 

pain induced by RT in NSCLC patients, using Decision Tress (DT) and RF models build with 

patient, tumor and dosiomic features. The study demonstrated that ML models are predictive for 

RT-induced chest wall pain toxicity in lung cancer patients [24]. Additionally, Olling et al., (2018) 

applied LR, SVM and Generalized Linear Models for prediction pain while swallowing after RT in 

lung cancer patients and the results demonstrated the effectiveness of ML models in pain 

prediction during RT in lung cancers [25]. Our study demonstrated the potential effectiveness of 

ML models in predicting acute pain, opioids dose and analgesic efficacy of OC/OPC patients after 

RT.  

Baseline pain intensity and vital signs were identified as high-risk predictors for cancer-related 

pain [12, 41]. In a previous study, we established a correlation between vital signs, baseline pain 

scores, and the intensity of pain during RT for patients with OC/OPC [12]. Uncontrolled pain not 

only contributes to challenges in chewing and swallowing, leading to weight loss, but also exerts 

a broader impact on patients' physiological functions. Elevated pain levels are associated with 

increased heart rates and changes in blood pressure [12]. Bendall et al., demonstrated an 

association between vital signs and acute pain [42], additionally Moscato et al., developed an 

automatic pain assessment tool based on physiological signals recorded by wearable devices 

[43]. Reyes-Gibby et al., identified the presence of pre-treatment pain as an independent predictor 

of OC/OPC 5-year survival [44]. According to features importance results, our study highlighted 

the importance of baseline pre-treatment pain score and the change in vital signs (e.g., weight 

and heart rate) for contribution in predicting pain intensity, analgesic efficacy, and the total MEDD 

by GBM and RF models, which is consistent with previous studies [12, 41][43]. 

The clinical importance of early identification of severe pain in HNCs cannot be overstated. So 

far, it is extremely hard for clinicians to predict pain severity and identify high risky patients 

depending on their empirical knowledge. Most clinicians prescribe opioids to OC/OPC patients 

during therapy according to the pain intensity reported by patients the day of examination, and up 
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to 40% of patients will continue to be dependent on opioids chronically for several months post-

therapy [16, 45]. Although following the WHO- analgesic ladder in pain management, pain control 

during RT in these cancer populations is still challenging and needs further investigations. This 

study not only demonstrates the predictive capabilities of ML models but also highlights their 

potential clinical applications. These models can aid in risk stratification, allowing for personalized 

pain management plans based on individual patient characteristics. By accurately predicting 

acute pain levels and required opioid doses, clinicians can intervene proactively, mitigating the 

challenges associated with uncontrolled pain during RT. The integration of AI and ML into clinical 

practice holds promise for improving outcomes and enhancing the overall well-being and QoL of 

OC/OPC patients. 

Limitations: 

Despite the promising findings, this study has limitations that warrant consideration. The 

retrospective uni-institutional nature of the study and reliance on electronic health records 

introduce inherent biases. The drop-off of some patients with missing data reduced the size of 

the final cohort involved in the models, and a bigger multicentric cohort is needed for further 

validation.  The need for external validation of the ML models on independent datasets is crucial 

to assess their generalizability and robustness. Prospective studies and the incorporation of 

additional clinical variables may further refine and enhance the predictive performance of these 

models. We depended our outcome assessment on the patient reported data for pain scoring and 

the prescription notes in the EHR, however more objective methods are needed for pain 

assessment and more data about if the patients used the prescribed opioids or not. Recognizing 

these limitations is imperative for the responsible and effective implementation of AI and ML in 

clinical settings. 

Conclusion: 

This research addresses the pressing challenge of predicting acute pain and optimizing opioid 

usage in patients with OC/OPC undergoing RT. Leveraging ML models, including GBM, RF, SVM, 

and LR, the study demonstrates the potential effectiveness of these models in enhancing risk 

stratification and accurately predicting acute pain intensity, total morphine equivalent daily dose 

(MEDD), and analgesic efficacy at the end of RT. Key predictors identified, such as baseline pain 

intensity and changes in vital signs, underscore the importance of early identification of high-risk 

patients, offering the opportunity for proactive and personalized pain management strategies. 
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