Abstract
Cell-free DNA (cfDNA) has shown promise as a non-invasive biomarker for cancer screening and monitoring. The current advanced machine learning (ML) model, known as DNA evaluation of fragments for early interception (DELFI), utilizes the short and long fragmentation pattern of cfDNA and has demonstrated exceptional performance. However, the application of cfDNA-based model can be limited by the high cost of whole-genome sequencing (WGS). In this study, we present a novel ML model for cancer detection that utilizes cfDNA profiles generated from all protein-coding genes in the genome (exome) with only 0.08X of WGS coverage. Our model was trained on a dataset of 721 cfDNA profiles, comprising 426 cancer patients and 295 healthy individuals. Performance evaluation using a ten-fold cross-validation approach demonstrated that the new ML model using whole-exome regions, called xDELFI, can achieve high accuracy in cancer detection (Area under the ROC curve; AUC=0.896, 95%CI = 0.878 - 0.916), comparable to the model using WGS (AUC=0.920, 95%CI = 0.901 – 0.936). Notably, we observed distinct fragmentation patterns between exonic regions and the whole-genome, suggesting unique genomic features within exonic regions. Furthermore, we demonstrate the potential benefits of combining mutation detection in cfDNA with xDELFI, which enhance the model sensitivity. Our proof-of-principle study indicates that the fragmentomic ML model based solely on whole-exome regions retains its predictive capability. With the ultra-low sequencing coverage of the new model, it could potentially improve the accessibility of cfDNA-based cancer diagnosis and aid in early detection and treatment of cancer.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This work was partially supported by Chiang Mai University and Faculty of Medicine Research Fund, Chiang Mai University under award number 031-2566. This work was supported by the Google Cloud Research Credits program with the award GCP19980904.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The study used only openly available human data that were originally located at: http://finaledb.research.cchmc.org.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes