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Abstract

Developing a solution to predict clinical outcomes for immunotherapy
that is accurate, scalable, affordable, clinically meaningful, and globally
accessible is an unmet medical need. Precise prediction of patient response
to immunotherapy from pretreatment biopsy images will enable the de-
livery of immuno-oncology drugs to suitable patients and reduce the risk
of administering unnecessary toxicity to patients who do not benefit from
it. We propose an AI-based framework to produce stratifying algorithms
that only need routinely obtained unannotated hematoxylin and eosin
(H&E)-stained whole slide images. This design choice eliminates the need
for pathologist annotations, ensuring affordability and scalability. Our
solution, developed with data from 418 durvalumab patients, was vali-
dated both for head and neck squamous cell carcinoma and non-small
cell lung cancer with data from 283 durvalumab patients, demonstrating
its versatility and ease of adaptation for different indications. The re-
sults obtained using test data from clinical trials, different from training
data, exhibit clinically meaningful improvement between those classified
as positive and negative. For median overall survival (OS), the enhance-
ment is in the range [55.9%, 198%] and [0.49, 0.70] for the hazard ratio for
OS. For median progression-free survival (PFS), the improvement ranges
within [39%, 195%], while the hazard ratio is within [0.46, 0.86] for PFS.
Our solution complements the current biomarker, programmed death lig-
and 1, for immunotherapy therapy, presenting an opportunity to develop
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more accurate solutions. In addition, as the algorithm was developed in
a hypothesis-free approach, the analysis of the converged solution may
enhance expert understanding of the pathomechanisms driving the re-
sponse to immunotherapy. Its scalability and accuracy, combined with
the AI-based engineering nature of the solution, bring the opportunity of
being globally deployed using the cloud. Our technique has the potential
to unlock opportunities not available for patients before by enabling the
generation of efficient and affordable diagnoses for immunotherapy.

1 Introduction

Lung cancer and Head and Neck cancer together account for over 20% of cancer
deaths worldwide [1,2]. Recent advances in immune checkpoint inhibitors (ICI)
have led to its widespread use as a therapeutic strategy across multiple tumor
types. In particular, responses to antibodies inhibiting programmed death 1
(PD-1)/programmed death ligand 1 (PD-L1) in advanced non-small cell lung
cancer (NSCLC) and head and neck squamous cell carcinoma (HNSCC) have
demonstrated robust and durable anti-tumor activity leading to its incorpo-
ration as first-line treatment options for newly diagnosed patients with these
cancers in the recurrent or metastatic settings [3–10]. Nonetheless, despite the
repeated demonstration of the superiority of ICI over traditional chemotherapy,
only a small subset of NSCLC and HNSCC patients respond to ICI [11,12].

As such, there has been a growing interest in identifying predictors of benefit
to ICI. In the present day, the selection of patients for PD-(L)1 inhibitors in
HNSCC and NSCLC primarily relies upon detecting the expression of PD-L1
by immunohistochemistry (IHC) staining [13]. These assays use a variety of
detection platforms at different levels (protein, mRNA), employ diverse biopsy
and surgical samples, and have disparate positivity cut-off points and scoring
systems, all of which complicate the standardization of clinical decision-making
[14]. In addition, inconsistencies in using PD-L1 expression as a biomarker
for response to immunotherapy have emerged: many patients with high PD-L1
expression do not respond to ICI [15–18], and patients with no discernible PD-L1
expression may show remarkable responses to ICI. PD-L1 expression status can
vary significantly based on the assay used (i.e., the validated PD-L1 IHC assays
are Ventana SP142, Ventana SP263, and Dako 22C3), and therefore may vary
across medical institutions [19]. As the evidence for immunotherapy continues to
expand, a critical and unmet clinical need is the identification of reliable assays
to predict response to ICI. In order to address these outstanding clinical needs,
researchers have focused on opportunities brought by combinin two technological
breakthroughs: digital pathology and the revolution of computer vision brought
through the wide use of deep learning (DL).

Digital pathology’s emergence as a scientific discipline directly results from
the digitizing of traditional practices. In essence, high-resolution digital scan-
ners capture detailed whole-slide images (WSIs) from glass slides. Adoption
grew when the U.S. Food and Drug Administration (FDA) gave clearance to
the first WSI system in 2017 [20], updating the traditional workflow of the
pathologist by facilitating content sharing as well as catalyzing the adoption
of new digital techniques to assist pathologists in working with more efficiency
and accuracy. Recently, multiple studies compared the histopathology diag-
nostic performance between digital pathology WSIs and glass slides under the
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microscope [21]. The clinicians observed similar diagnostic performance and
reported error rates. Various AI-driven applications in digital pathology em-
phasize reducing the turnaround time for pathologists.

Furthermore, the performance of the state-of-the-art algorithms of tradi-
tional computer vision applications has experienced a boost obtained by the
extensive adoption of artificial intelligence (AI) in general and DL in particu-
lar [22], driven by its success [23] in the general purpose classification dataset
ImageNet, a large dataset used to benchmark the advances in image classi-
fication algorithms. DL in computer vision has demonstrated the ability to
extract and learn features from large volumes of data to solve multiple tasks,
including image classification, object detection, semantic segmentation, and face
recognition. The applications of deep learning in the field of medical imaging
have increased significantly [24], including X-ray [25, 26], computed tomogra-
phy (CT) [27, 28], magnetic resonance imaging (MRI) [29], positron emission
tomography (PET) [30], and dermoscopy images [31].

The use of DL techniques in digital pathology has unique challenges when
compared to other application domains (e.g., retail or manufacturing). These
challenges come from two key aspects. Firstly, computing limitations due to the
size of the WSIs often exceed the memory capacity of current graphics processing
units (GPUs); a WSI can be gigabytes in size. Secondly, annotating WSIs is
laborious and expensive, requiring pathologists to annotate, label, and classify
regions of interest, a necessary step for training algorithms in the supervised
setting.

Despite these limitations, the applications of DL in digital pathology are
growing. For example, DL algorithms, developed as part of the CAMELYON
challenge, were used for lymph node metastase detection in breast cancer [32]
and found to have potential for pathological diagnosis. In prostate cancer, Bul-
ten et al. developed a solution for automated tumor detection and segmentation
from H&E stained slides [33]. Arvaniti et al. designed an approach to automati-
cally grade cancer cell abnormality (Gleason grading) [34] in the prostate. More
recently, the FDA authorized the first AI-based software [35], Paige Prostate,
to assist pathologists by identifying the area of interest containing cancer cells
on the prostate biopsy images. By using this solution, the pathologist can re-
view those regions and help to make the diagnosis. Another application of deep
learning in digital pathology is the prediction of genetic mutation. For example,
in [36], the authors used convolutional neural networks (CNNs) to determine if
the SPOP gene was mutated in prostate cancer. In the immuno-oncology (IO)
therapy setting, Bains et al. developed an algorithm for automatic recurrence
and risk prediction in NSCLC. Kapil et al. addressed the task of automated
objective scoring of PD-L1 expression to identify patients who may respond to
anti-PD-1/PD-L1 treatments [37].

DL in digital pathology for companion diagnostic (CDx) is a new area, as
there is no cleared or approved device [38]. Unlike other approaches in this field,
we propose to address the challenging task of predicting patient response to im-
munotherapy from pretreatment biopsy images. The successful stratification of
patients into responders and non-responders will help oncologists to better pre-
scribe treatment to patients. Towards this, we propose using weakly-supervised
deep learning algorithms to stratify patients into two groups: responders to
immunotherapy and non-responders. We named this approach artificial intelli-
gence for predicting clinical outcome (AIPCO). Our hypothesis is that normal
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H&E-stained WSIs of patients contain encoded information regarding the re-
sponsiveness of the patients to immunotherapy.

To validate this hypothesis, we used five durvalumab trials, of which two
are NSCLC trials (MYSTIC [39] and ARCTIC [40]), while the other three cor-
respond to HNSCC (EAGLE [41], HAWK [42], and CONDOR [43]). Contrary
to most of the existing approaches in the area that focus on supervised learn-
ing [44], we did not employ pathologist annotations but formulated the task
as a clinical outcome-driven and hypothesis-free solution, as illustrated in the
diagram shown in Fig. 1. The proposed approach involves training a tumor
classification model followed by a response prediction at the patch level. Some
of the benefits offered by this technique include a faster development cycle and
enhanced scalability, as the pathologist’s time-consuming annotations are not
required. In addition, our annotation-free technique may lead to novel discover-
ies on the relationship between WSI architectural features and clinical outcomes
that human experts may not know. This information may be used to improve
the accuracy of the prognostication of the disease.

2 Results

2.1 AIPCO trained with unannotated H&E whole-slide
images predicts immuno-oncology therapy efficacy for
non-small cell lung cancer and head and neck squa-
mous cell carcinoma

Datasets For the development of our framework AIPCO, we use data of pa-
tients who received durvalumab as part of Phase II or Phase III global multi-
center clinical trials, as shown in Table 2. We use both the H&E WSIs and the
associated clinical information of the patients, including the clinical outcome
and the baseline characteristics. Since these modalities are needed, we can only
use patients for which we have both. Due to the limited availability of patients
with accessible H&E-stained WSIs compared to the total number of patients in
the original studies, the cardinality of the dataset for developing our framework
is reduced. To show the validity of our approach across indications, on the one
hand, we use data from 292 HNSCC patients from EAGLE (n= 123), HAWK
(n= 109), and CONDOR (n= 60). On the other hand, for NSCLC, the data
used was obtained from 458 patients from MYSTIC (n= 312) and ARCTIC
(n=146) clinical trials.

Our approach aims not only to assess the performance using subjects who
were not used for training but also guarantee that these patients correspond
to a clinical trial that is different from the one utilized for training. In this
way, we validate the performance within the same study (held-out test set) and
test it across other studies (inter-study validation). This is key to assessing the
readiness of our solution for clinical practice. In addition, as training typically
requires more data and we do not want to train biased algorithms, we used, as
a training dataset, phase 3 clinical trials with patients with a variety of PD-
L1 status. Aligned with these requirements, MYSTIC is the dataset used for
training, and ARCTIC is the dataset used for testing for NSCLC. For HNSCC,
EAGLE is selected for training, while HAWK and CONDOR are utilized for
testing.
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Figure 1: Overview of the proposed AIPCO treatment response pipeline for an-
alyzing histology H&E stained WSI. On the top row a), the diagram shows the
tumor classification method; for a given WSI, multiple patches were randomly
selected. Different data transformations were applied to each patch during the
training of the model. The output heatmap was then generated by aggregat-
ing patch-level predictions. In the middle row b), the flowchart represents the
AIPCO treatment response pipeline. For each tumor predicted, a series of data
transformations were applied before analyzing it to predict the likelihood of
treatment response. A knowledge distillation model was used to learn discrimi-
native features. On the bottom row c), the AIPCO inference strategy is shown;
while testing, we run inference on the WSI level to perform tumor classification
followed by prediction of treatment response.

Using the Kaplan-Meier method [45], we graphically displayed PFS and OS
in order to compare AIPCO responders AIPCO+ and AIPCO non-responders
AIPCO- both for NSCLC and HNSCC.
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Clinical Trial Cohort n mOS (95% CI) mPFS (95% CI) ORR

Total 89 6.2(3.7− 7.9) 2.1(1.8− 3.7) 0.16
HAWK AIPCO+ 28 10.2(4.5− 20.0) 3.8(1.7− 11.2) 0.25

AIPCO- 61 4.9(2.8− 7.0) 1.9(1.8− 2.3) 0.11

Total 58 6.3(4.1− 11.6) 2.0(1.9− 3.4) 0.1
CONDOR AIPCO+ 17 14.9(4.1− 22.9) 5.6(1.9− 7.6) 0.23

AIPCO- 41 5.0(3.4− 8.9) 1.9(1.8− 2.0) 0.05

Total 86 7.8(5.5− 11.1) 2.8(1.9− 4.2) 0.14
SYNTH AIPCO+ 26 14.9(7.5− 19.8) 5.6(3.6− 8.4) 0.23

AIPCO- 60 6.2(4.4− 10.1) 2.0(1.9− 3.4) 0.1

Clinical Trial Cohort n mOS (95% CI) mPFS (95% CI) ORR

Total 136 10.8(8.3− 13.5) 2.4(1.9− 3.8) 0.13
ARCTIC AIPCO+ 48 14.5(8.4− 22.8) 3.2(1.9− 7.5) 0.15

AIPCO- 88 9.3(6.7− 11.9) 2.3(1.9− 3.7) 0.125

Table 1: Performance of AIPCO measured in terms of median overall survival in
months mOS, median progression-free survival in months mPFS, and objective
response rate (ORR) for the case of head and neck squamous cell carcinoma
(HAWK, CONDOR, and a synthetic cohort SYNTH composed by patients from
HAWK and CONDOR), shown on the top table. The bottom table contains
the performance corresponding to the non-small cell lung cancer (ARCTIC)
AIPCO. In both approaches, AIPCO-positive AIPCO+ patients significantly
improve for mOS, mPFS, and ORR in comparison to AIPCO-negative AIPCO-
patients.

Durvalumab AIPCO+

vs. Durvalumab AIPCO-:

HR, 0.58(95%, 0.34 − 0.92)

Durvalumab AIPCO+

vs. Durvalumab AIPCO-:

HR, 0.51(95%, 0.36 − 0.73)

Figure 2: The overall survival (left) and progression-free survival (right) among
HAWK patients who received durvalumab with status AIPCO+ (blue line) vs.
AIPCO- (orange line). The AIPCO stratification is based on the AIPCO al-
gorithm trained with EAGLE data. Green lines correspond to the curves of
the HAWK patients before stratification using AIPCO. Both figures show the
hazard ratio (HR) and the 95% confidence interval (CI) for comparing AIPCO+
and AIPCO- patients.
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Durvalumab AIPCO+

vs. Durvalumab AIPCO-:

HR, 0.49(95%, 0.26 − 0.93)

Durvalumab AIPCO+

vs. Durvalumab AIPCO-:

HR, 0.46(95%, 0.29 − 0.72)

Figure 3: The overall survival (left) and progression-free survival (right) among
CONDOR patients who received durvalumab with status AIPCO+ (blue line)
vs. AIPCO- (orange line). The AIPCO stratification is based on the AIPCO
algorithm trained with EAGLE data. Green lines correspond to the curves of
the CONDOR patients before stratification using AIPCO. Both figures show the
hazard ratio (HR) and the 95% confidence interval (CI) for comparing AIPCO+
and AIPCO- patients.

Durvalumab AIPCO+

vs. Durvalumab AIPCO-:

HR, 0.57(95%, 0.34 − 0.94)

Durvalumab AIPCO+

vs. Durvalumab AIPCO-:

HR, 0.50(95%, 0.35 − 0.72)

Figure 4: The overall survival (left) and progression-free survival (right) among
SYNTH (cohort created by combining HAWK and CONDOR data) patients
who received durvalumab with status AIPCO+ (blue line) vs. AIPCO- (orange
line). The AIPCO stratification is based on the AIPCO algorithm trained with
EAGLE data. Green lines corresponds to the curves of the SYNTH patients
before stratification using AIPCO. Both figures show the hazard ratio (HR) and
the 95% confidence interval (CI) for comparing AIPCO+ and AIPCO- patients.

AIPCO for head and neck squamous cell carcinoma Fig. 2 for HAWK
and Fig. 3 corresponding to CONDOR graphically show a significant improve-
ment in PFS and OS for the AIPCO+ group for both outcomes, quantitatively
expressed in Table 1, including objective response rate (ORR). In the case of
HAWK, the median OS for the AIPCO+ responders group was 10.2 months
as compared to 4.9 months for the AIPCO- group, 3.8 months vs. 1.9 months
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for the PFS case, and ORR is 25% for the AIPCO+ while for AIPCO- is 11%.
Similarly, for CONDOR, mOS AIPCO+ patients was 14.9 months while for
AIPCO- patients was 5.0 months, AIPCO+ patients showed an mPFS of 5.6
months vs. 1.9 months for AIPCO-, in terms of ORR the improvement goes
from 5% for AIPCO- patients to 23% months for AIPCO+ subjects.

Using the Cox proportional hazards model, AIPCO+ responders in HAWK
and CONDOR were associated with decreased risk of progression (HR 0.51, 95%
CI 0.36-0.73 and HR 0.46, 95% CI 0.29-0.72, respectively) and as compared to
the AIPCO- cohort. Overall survival followed a similar pattern as progression-
free survival as AIPCO responders were associated with decreased risk of death
(HR 0.58, 95% CI 0.34-0.92 for HAWK and HR 0.49, 95% CI 0.26-0.93).

The enhancemenet of efficacy of our approach is further validated using the
SYNTH dataset, as illustrated in Fig. 4. The SYNTH dataset, detailed in
App. A.4, comprised patient data from the HAWK and CONDOR studies to
produce a dataset HNSCC with the whole range of PD-L1 status. In this case,
the median OS for the AIPCO+ responders group was 14.9 months, notably
higher than the 6.2 months observed for the AIPCO- group. This trend ex-
tended to the median PFS of 5.6 months for AIPCO+ patients, compared to
the 2.0 months of the AIPCO- cohort. Moreover, ORR is 23% for the AIPCO+,
significantly higher than 10% of the AIPCO- set. The hazard ratios for OS and
PFS were 0.57 (95% CI, 0.34–0.94) and 0.50 (95% CI, 0.35–0.72), respectively,
indicating a favorable risk-benefit profile for AIPCO+.

Durvalumab AIPCO+

vs. Durvalumab AIPCO-:

HR, 0.70(95%, 0.46 − 1.07)

Durvalumab AIPCO+

vs. Durvalumab AIPCO-:

HR, 0.86(95%, 0.60 − 1.25)

Figure 5: The overall survival (left) and progression-free survival (right) among
ARCTIC patients who received durvalumab with status AIPCO+ (blue line)
vs. AIPCO- (orange line). The AIPCO stratification is based on the AIPCO
algorithm trained with MYSTIC data. Green lines correspond to the curves of
the ARCTIC patients before stratification using AIPCO. Both figures show the
hazard ratio (HR) and the 95% confidence interval (CI) for comparison between
AIPCO+ and AIPCO- patients.

AIPCO for non-small cell lung cancer Fig. 5 depicts a clear improve-
ment in OS and PFS for the AIPCO+ group in ARCTIC, which is numerically
expressed at the bottom of Table. 1. In particular, in terms of mOS, the 48
AIPCO+ patients achieved 14.5 months compared to the 9.3 months for the
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88 AIPCO- cohort. For mPFS, AIPCO+ patients reach 3.2 months, while for
the AIPCO- set, 2.3 months are achieved. This improvement is also reached
for ORR, with 15% of the population selected by our approach, while for the
AIPCO- the calculated value is 12.5%.

ρ = 0.015

p-value: 0.86

ρ = −0.168

p-value: 0.051

Figure 6: Violin plots of the AIPCO scores for head and neck squamous cell car-
cinoma (left) and non-small cell lung cancer (right). For HNSCC, the Spearman
correlation coefficient (ρ) is 0.015, with a p-value of 0.86. This analysis, com-
paring the AIPCO score and PD-L1 class, corresponding to CONDOR (PD-L1
Low/Negative) and HAWK (PD-L1 High), suggests that there is no statisti-
cally significant relationship between the AIPCO score and the PD-L1 status.
Conversely, for NSCLC using ARCTIC data, a Spearman coefficient correlation
(ρ) of −0.168 was calculated, whose corresponding p-value is = 0.051. These
results may indicate a weak negative relationship between AIPCO score and
PD-L1 status for NSCLC.

Using the Cox proportional hazards model, AIPCO+ responders in ARCTIC
were associated with decreased risk of progression (HR 0.86, 95% CI 0.6-1.25)
compared to the AIPCO- cohort. Overall survival followed a similar pattern as
progression-free survival as AIPCO responders were associated with decreased
risk of death (HR 0.70, 95% CI 0.46-1.07).

Comparison with PD-L1 Expression While PD-L1 testing is performed
routinely for all newly diagnosed NSCLC and HNSCC patients, clinical evidence
shows that the PD-L1 biomarker neither guarantees response to first-line ICI
monotherapy in patients with high PD-L1 expression nor rules out the possibility
of response in patients with low or negative PD-L1 expression [46].

The AIPCO platform described in this article is a computational predictive
model that analyzes pre-treatment digital pathology slides to predict clinical
benefit from anti-PD-(L)1-based therapy. We found that AIPCO scores are not
correlated for HNSCC (Spearman correlation coefficient ρ = 0.015 with p-value
= 0.86) or weakly correlated for NSCLC (ρ = −0.168 and p-value = 0.051) with
PD-L1 expression as determined by the VENTANA SP263 assay, as shown
in Fig. 6, suggesting that the AIPCO and PD-L1 expression biomarkers are
addressing discrete biological aspects of the tumor.
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Figure 7: An example of the analysis of the results generated by AIPCO. On the
left side, an original H&E-stained whole-slide image (WSI) with four zoomed
patches corresponding to regions of the image with low likelihood score and high
likelihood score. On the right part, a heatmap of the whole slide image of the
AIPCO score. By zooming in, a finer analysis of the algorithm using Grad-CAM
is shown at a patch level to explain which visual features were critical to assign
the score to a given patch.

2.2 Interpretability of AIPCO model predictions

Fundamental components of AIPCO are computer vision DL models utilized to
score WSIs, whose values are used to stratify patients. As described in the pre-
vious section, our proposed approach obtained meaningful and promising results
as a patient stratification tool for HNSCC and NSCLC patients who received
durvalumab monotherapy. However, although the training and test datasets
were curated, their generation did not involve pathologist intervention. There-
fore, in comparison to supervised algorithms, explaining the decision-making
process followed by our algorithms becomes even more critical.

Explainability of the results enhances the trust in the solution as bugs, over-
fitting, and other common errors could be detected, this verification facilitates
the tool adoption, but this is not the only benefit. Additionally, it has the
potential to improve our understanding of disease pathomechanisms. With no
human intervention, DL models allow for extracting morphological and archi-

10

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted February 7, 2024. ; https://doi.org/10.1101/2024.02.05.24301493doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.05.24301493


(a) HNSCC - low score (b) HNSCC - low score (c) HNSCC - high score(d) HNSCC - high score

(e) NSCLC - low score (f) NSCLC - low score (g) NSCLC - high score (h) NSCLC - high score

Figure 8: Pathological assessment and interpretability of selected AIPCO
patches for head and neck squamous cell carcinoma (HNSCC) at 20× magnifi-
cation (a-d patches), and the patches for non-small cell lung cancer (NSCLC)
at 40× magnification (e-h images). For each of the two sets, the top row shows
the selected four patches, with two low-score regions (scoring below the 25th
percentile) and the other two high-score patches (scoring above the 75th per-
centile). In the bottom row, corresponding heatmaps generated using Grad-Cam
provided insights into how decisions are made, where red corresponds to high
confidence while blue is low. For HNSCC, patch (a) depicts well-differentiated
characteristics and keratinization. Patch (b) is interesting, as it displays glan-
dular and papillar patterns. The high-score patch (c) reveals nuclear atypia,
while patch (d) shows clear signs of chronic inflammation. While for NSCLC,
patch (e) exhibits a glandular pattern, also visible in the patch (f) with addi-
tional papillary features. Chronic inflammation with nuclear atypia is shown in
the high-score patch (g), while patch (h) showcases a clear solid pattern.
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tectural features typically not recognized by human experts. These features can
be used to identify morpho-clinical correlates and to refine prognostication.

We present the first interpretable DL algorithm for H&E-based prediction of
HNSCC and NSCLC response to immunotherapy. Our model robustly identified
morpho-clinical correlates and could enable further prognostic refinement of
patients with HNSCC and NSCLC.

We separately explore the pathological interpretations of the tumor and its
microenvironment of the predicted regions for both data sets using heatmap
visualizations generated employing Grad-CAM [47]. We overlaid transparent
risk density maps on H&E stained WSIs, which enable pathologists to correlate
the model predictions with the underlying histology of the disease. Density
maps were generated using a trained AIPCO model to predict the risk for each
region of interest (ROI) in a whole-slide image. The ROI predicted risks were
then aggregated to a WSI level, followed by a color map to overlay on WSI,
where red and blue indicate high and low AIPCO risk regions, respectively. A
selection of risk heatmaps from multiple patients is presented in Fig. 7, with
ROIs showing how AIPCO predictions correlated with important pathological
phenomena.

The AIPCO model classified image patches as a high score or a low score
for predicting response to immunotherapy in HNSCC and NSCLC. The confu-
sion matrix indicated concordant and some discordant cases between the true
response to immunotherapy and the predicted image-based classification. It is
very challenging to objectively assess the histology-based morphological and ar-
chitectural features used by the model to correctly predict treatment response.
AI-based models have the potential to detect novel tumor-immune interrelations
that human experts traditionally would not focus on.

It is well known that pathologists show limited ability to identify tumors
that would respond to immunotherapy when provided with minimal clinical
information and especially when evaluating based on morphology alone. Despite
using only histology as input for decision-making, our model can accurately
predict treatment response to immunotherapy.

Quantitative evaluation of the color map overlaying the H&E slide for the
high and low score images showed that the model mainly focused on the tumor
region rather than the invasive border and adjacent normal tissue, as shown on
the selected ROI in Fig. 8. The model seemed to show a “higher” attention
towards strong nuclear atypia (e.g., Fig. 8c and Fig. 8g) than for the low score
images. The high-score images also showed specific immune-related features,
such as acute inflammation and a high density of tumor-infiltrating and peritu-
moral lymphocytes, as in Fig. 8d and Fig. 8g. Low score images highlighted high
keratinizing areas Fig. 8a. In addition, some low score images displayed a more
glandular architecture as in Fig. 8b and Figs. Fig. 8e-8f, whereas high-score
images showed a more solid tumor growth and a low tumor-to-stroma ratio as
in Figs. 8g-8h.

3 Discussion

To our knowledge, this work represents the first study utilizing a machine learn-
ing approach with digitized pathology slides to predict response to an IO drug
without pathologist annotations on the WSI for both HNSCC and NSCLC.
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Our ML algorithm, exclusively using the digitized H&E pathology slide from a
pretreatment biopsy, successfully classified responders to durvalumab in a popu-
lation of advanced HNSCC and NSCLC clinical trial subjects. We demonstrated
that the AIPCO classification for response translated to improved OS and PFS,
suggesting that this method is a clinically meaningful classification tool.

With the weak correlation of the approach to PD-L1 expression, this ap-
proach could be a reliable tool for clinicians to supplement PD-L1 expression by
identifying responders to ICI based solely on digitized pretreatment pathology
slides when deciding whether or not to treat an advanced cancer patient with ICI
monotherapy. This is also supported for HNSCC, as AIPCO shows a statisti-
cally significant improvement for HAWK and CONDOR, which are high PD-L1
and negative/low PD-L1 studies, respectively, indicating its complementariness
to PD-L1 status as a biomarker.

One of the critical questions regarding the clinical adoption of AI approaches
for digital pathology in the clinic is the pathway for approval by regulatory
agencies. The fundamental principle guiding the regulatory approval process is
the requirement of “an explanation of how the software works” [48], and the
FDA has recently started granting approval to AI-based approaches for clinical
use [35]. In order to generate an AI-based companion diagnostic, developing an
algorithm that shows promising performance according to the relevant metrics
is only the first step. To be successful in its transition from development to
implementation in the clinic, our AI approach has adopted a) good engineer-
ing practices and choosing qualified technological partners (e.g., cloud-managed
services) and b) embracing good machine learning practices to mitigate the risk
that algorithms will not keep the performance using real-world data.

These good practices are aligned with our focus on interpretability and ex-
plicability, which helps us identify potential overfitting issues and algorithmic
inconsistencies. In particular, by analyzing how our approach made its predic-
tions, we found features correlated with the response to IO therapy, including
acute inflammation and tumor-infiltrating and peritumoral lymphocytes. On
the contrary, AIPCO highlighted keratinizing areas and glandular architectures
for low scores. Furthermore, by studying the visual patterns that drive the
algorithm decision, we may push the science by identifying new architectural
patterns in the tissue related to IO response. In parallel, running an orthogo-
nal analysis of these cells highlighted by the algorithm with other technologies
(e.g., mass cytometry or spatial transcriptomics) will allow us to characterize
the biological rationale of AIPCO.

In addition, our framework shows an improvement for patients when it is
trained independently for HNSCC and NSCLC, showing good generalizability
properties across clinical trials. From the knowledge transferability perspective,
we hypothesize the feasibility of extracting valuable features from one specific
indication that could benefit another. This approach may lead to a solution
that is tumor-agnostic and indication-agnostic.

Based on the promising results using retrospective data, the following steps
should be running a prospective clinical trial to build confidence in this frame-
work. In particular, we envision a clinical trial using AIPCO to prospectively
select newly diagnosed recurrent or metastatic HNSCC patients to receive dur-
valumab monotherapy. The goal of this trial is to predict response to durval-
umab based solely on a digitized pretreatment pathology slide, and as such, are
targeting PD-L1 negative patients who would otherwise not be candidates for
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anti-PD(L)1 monotherapy. By providing prospective evidence of the validity of
this AI algorithm, we will be one step closer to gaining approval for the first
FDA-approved AI companion diagnostic.

Finally, from a scalability and operationalization standpoint, considering
the deliberate modularity of AIPCO and its absence from pathologist annota-
tions, we envision leveraging the full potential of machine learning operations
(MLOPs) [49] to create an automated machine learning solution capable of gen-
erating candidate algorithms. On the one hand, the adoption of MLOPs would
lead to the creation of an H&E-based IO-predictive algorithm factory. On the
other, it would accelerate the production and the validation of new candidate
solutions, for example, for new tumor types (e.g., small cell lung cancer) or new
lines of therapy, including antibody-drug conjugates (ADCs). Utilizing cloud-
based solutions inherently provides global reach, presenting new affordable and
quick diagnostic opportunities for patients unavailable before.
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A Data-Driven Methods

A.1 Ethical approval

The analysis presented in the manuscript uses data from patients that provided
informed consent including for secondary reuse. All studies were conducted in
compliance with the Declaration of Helsinki and the United States (US) Food
and Drug Administration (FDA) Guidelines for Good Clinical Practice.

A.2 Data

We used five durvalumab clinical trials to run our analysis, as illustrated in
Table 2. The characteristics of the studies used for HNSCC:

EAGLE was a phase III study performed on recurrent and metastatic HNSCC
patients to investigate the safety and efficacy of durvalumab with treme-
limumab and durvalumab compared to standard chemotherapy. The pri-
mary endpoint for this study was OS, and the secondary endpoint included
PFS.

HAWK is a single-arm multi-center phase II study of durvalumab. The pa-
tients with PD-L1 positive recurrent or metastatic HNSCC were enrolled
in this study. It also included patients who progressed during or after
platinum-based chemotherapy with recurrent or metastatic disease.

CONDOR study was a phase II, randomized, open-label study of durvalumab,
Tremelimumab, and durvalumab in Combination With Tremelimumab.
This study contains patients with recurrent/metastatic HNSCC.

Enrolling criteria for this study included PD-L1 low or negative disease
that had progressed after platinum for both recurrent and metastatic par-
ticipants. Patients were randomized (n = 267) from April 15, 2015, to
March 16, 2016, at 127 sites in North America, Europe, and Asia Pa-
cific. The primary outcome was to access safety, tolerability, and efficacy
measured by ORR.

For the NSCLC analysis, the data utilized corresponded to:

MYSTIC was a phase III clinical trial study performed to investigate the
safety and efficacy of durvalumab with tremelimumab and durvalumab
monotherapy compared to platinum-based chemotherapy in 1st line treat-
ment. This global multi-center study includes participants with epidermal
growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK)
wild-type locally advanced or metastatic NSCLC.

PFS is considered one of the significant endpoints in oncology clinical
trials, and it is termed as the time from enrollment into the study (ran-
domization) until the disease progression or death.

ARCTIC corresponds to the randomized phase III study containing data from
multiple centers to assess the efficacy and safety of durvalumab versus
standard of care (SoC) in NSCLC patients with PD-L1 positive tumors
and the combination of durvalumab plus tremelimumab versus SoC in
NSCLC patients with glspdl1-negative tumors in the treatment of male
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and female patients with locally advanced or metastatic NSCLC (Stage
IIIB-IV), who have received at least two prior systemic treatment regimens
including one platinum-based chemotherapy regimen for NSCLC.

Clinical Trial Indication Study Description PD-L1 inclusion
EAGLE [41] HNSCC Phase III negative/low/high
HAWK [42] HNSCC Phase II high
CONDOR [43] HNSCC Phase II negative/low
MYSTIC [39] NSCLC Phase III, first-line negative/low/high
ARCTIC [40] NSCLC Phase III, third-line+ high/low

Table 2: Summary of the data from five durvalumab clinical trials have been
utilized to develop AIPCO. Specifically, EAGLE, CONDOR, and HAWK clin-
ical trials for head and neck squamous cell carcinoma (HNSCC) and MYSTIC
and ARCTIC were utilized for non-small cell lung cancer (NSCLC). The table
includes the clinical trial phase and the PD-L1 status of the inclusion criteria.

A.3 Hardware and software

All experiments were conducted on AZ’s Scientific Computing Platform using
NVIDIA Tesla K-80 GPUs with 12 GB of internal memory. We program in
Python (version 3.6.10), PyTorch (version 1.31.), and Torchvision (version 0.4.2)
as the deep learning framework. Some key packages used were OpenSlide (ver-
sion 1.1.1) to process and analyze the WSIs, and for the general data analysis,
we used Numpy(version 1.19.1), Pandas (version 1.1.0), and Lifelines (version
0.25.8) for the survival analysis.

All the WSIs were scanned using the Hamamatsu C13220 with a maximum
magnification of 40×, corresponding to approximately 0.23 microns per pixel.
Each WSI is represented using a pyramid format that contains the image rep-
resented with different magnifications, including 20×, corresponding to 0.46
microns per pixel and 0.92 microns per pixel for 10×.

A.4 Datasets for training, cut-off selection, and testing

In data-driven algorithm development, the data is usually employed for training,
validation, and testing, where in order to show generalizability, the train and
the test set must be independent. The test set comprises data from patients
who have not been part of the information during the training process. Follow-
ing this methodology, we assess how effectively our solution can handle unseen
information.

To enhance the applicability of our approach in the real-world setting, we
have implemented an additional condition for the test set. This requirement
ensures that the test set consists only of data from clinical trials not used dur-
ing training. Consequently, the results reported not only take into account the
variations among patients but also consider the variability produced by differ-
ent clinical trials. This strategy provides more reliable information about the
algorithm’s readiness as a patient stratifying tool. This is aligned with the best
machine learning practices and the guidelines created by the FDA [50].
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In the case of training a drug response prediction for HNSCC and NSCLC,
as shown in Table 3, we divided the available AZ’s durvalumab datasets into
three categories according to their use:

• The data corresponding to patients of the durvalumab arm from EAGLE
or MYSTIC are used for training purposes for the HNSCC and NSCLC,
respectively.

• Information from patients of the SoC arm from EAGLE or MYSTIC is
used to determine the cut-off for stratification.

• With all AIPCO model parameters defined, in the case of the HNSCC,
the data corresponding to patients from HAWK and the durvalumab arm
from CONDOR are utilized for testing. In the case of NSCLC, ARCTIC
patients who received durvalumab were used for testing.

In the case of the algorithm developed for HNSCC, we can test the efficacy of
the solution for PD-L1 positive patients using HAWK data and for PD-L1 low
or negative patients using CONDOR data. Complementary to this, it is worth
evaluating the performance characteristics of the algorithm for the scenario of
all-comers. To achieve this, we create a new cohort, denoted by SYNTH in this
manuscript, by combining patients from both HAWK and CONDOR studies
so that its PD-L1 distribution closely resembles the expected PD-L1 score dis-
tribution for all-comers. We approximate the probability of PD-L1 scores for
all-comers as P(PD-L1 < 1%) = P(PD-L1 ≥ 1%∪PD-L1 < 50%) = P(PD-L1 ≥
50%) = 1/3, where P(·) denotes the probability that a patient’s PD-L1 score
falls within the specified interval. As the PD-L1 cut-offs provided in the avail-
able clinical information are not concordant with this desired distribution for
all-comers, we combined HAWK and CONDOR datasets by pseudo-randomly
selecting patients with the following distribution:

• 48 patients from HAWK with a PD-L1 score greater than 25%,

• 15 CONDOR patients with PD-L1 scores ranging from 1% to 25%,

• and 31 patients from CONDOR with PD-L1 score below 1%.

The cohort of ARCTIC durvalumab patients used in this work is obtained
as the combination of the patients of the ARCTIC Sub-study A, whose patients
show PD-L1 status high during the pre-screening period and patients from Sub-
study B that were classified as PD-L1 low.

A.5 Whole slide image sampling

WSIs usually have gigapixel resolution, producing a challenge for applying out-
of-the-box computer DL approaches due to limitations in the typical memory
size of GPUs. For example, the minimum size of a batch of complete WSIs
exceeds the memory capacity, making these approaches infeasible.

To address this limitation in the adoption of DL techniques, we implemented
a common approach of sampling the WSI, generating smaller patches that are
suitable for use in GPUs. For each i-th patient, its corresponding WSI was
sampled using a tile of the size of 512×512 pixels for the magnification selected
for the algorithm (e.g., 40×, 20×, and 10×).
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Figure 9: A visual example of a hematoxylin and eosin-stained whole-slide image
corresponding to a head and neck squamous cell carcinoma patient. The image
shows, as black squares, the pseudorandomly-obtained 103 512 × 512 pixels
patches generated at a 10× magnification.

The patches were produced by pseudo-randomly uniformly distributed sam-
pling within the area of the digital pathology image. Per WSI, N tissue patches
are generated, focusing on the area of the image that contains tissue, dismissing
the area of the WSI containing the background. This process removes data
that is not relevant for the algorithm development, reducing the computational
needs. Fig. 9 shows a visual example of the outcome sampling process with a
10× magnification of a WSI corresponding to a CONDOR patient. We use wi

j

to denote the j-th tissue patch of the i-th patient andWi for the corresponding
set of patches, where j = 1, . . . , N .

A.6 Cancer whole-slide image patch selection

We hypothesize that the most relevant information needed to discriminate be-
tween IO responders can be obtained by analyzing the tumor microenvironment.
As a part of the algorithm pipeline, we implement this by classifying the WSI
tissue patches into two classes: those that contain tumor cells and those that
do not. This step in the context of the whole algorithm is shown on the top row
in Fig. 1.

In particular, given the i-th patient, the corresponding tumor patches ob-
tained from WSI Wi are classified using a cancer cell classification DL model.
Then, the patches classified as positive create a new set, W̃ i, that are the images
used by our framework either for training or testing purposes.
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Figure 10: Example of a whole-slide image (WSI) heatmap of a cancer cell patch
classifier score of a CONDOR patient. This score helps to define the regions
of interest of WSI that our algorithm uses to decide between the patients who
respond to durvalumab and those who do not.

In addition, by using this tumor patch classifier, our approach removes
patches from the algorithm that could hinder its performance. For example,
this process could eliminate the patches that show quality issues, including
margin ink, bubbles, dark spots, tissue folding, pen marks, fingerprints, and
out-of-focus. By running this step, we reduce the overall risk related to the
reliability or generalizability of the produced algorithm.

Fig. 10 depicts a WSI heatmap visualization of the cancer cell patch classifier
corresponding to a CONDOR patient using a sliding window to produce the
normalized score. The details of the creation of the tumor patch classifier can
be found in App. A.6.1

Table 3 illustrates how the number of WSIs available for development is
reduced by the curation process that is used to enhance the quality of the data.
WSIs are dismissed if they do not contain any cell patch classified as cancerous.
As a result, 122 EAGLE durvalumab monotherapy WSIs are used for training
the HNSCC model, and 296 curated MYSTIC WSIs are employed for the same
purpose for the NSCLC case.

A.6.1 Cancer patch classifier model development

As shown in Fig. 1, one of the components of our framework is the cancer patch
classifier. This model is employed to pinpoint the regions within WSIs with
tumor tissue as the areas containing the most relevant information about the
disease, including its nature and response to treatments.

This DL model was developed using the PatchCamelyon (PCam) data [32,
51]. This dataset has 327680 96 × 96 color 10×-magnified images. The labels
of the dataset indicate if the patch contains tumor tissue. For generating this
model, we modified the dataset defined for the Histopathologic Cancer Detection
Kaggle competition [52]. Specifically, we divided the original training set, which
comprises 220025 patches, into training and testing for our cancer patch classifier
development: 80% of the patches were 176020 for training, and the remaining
20% corresponded to 44005 images for testing.
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Clinical Trial Arm Purpose # WSIs # curated WSIs
EAGLE Durvalumab Training 123 122
EAGLE SoC cut-off selection 122 122
HAWK Durvalumab Testing 109 91
CONDOR Durvalumab Testing 60 60
SYNTH Durvalumab Testing 94 88

Clinical Trial Arm Purpose # WSIs # curated WSIs
MYSTIC Durvalumab Training 312 296
MYSTIC SoC cut-off selection 297 271
ARCTIC Durvalumab Testing 146 144

Table 3: Immunotherapy clinical trials and data used for developing and testing
the AIPCO algorithms for head and neck squamous cell carcinoma (HNSCC)
(top table) and non-small cell lung cancer (NSCLC) (bottom table). Both for
the HNSCC and NSCLC development, the durvalumab monotherapy arm and
standard of care (SoC) arms were used for training and cut-off determination,
respectively. For testing, HAWK and CONDOR datasets and the synthetic
cohort SYNTH were used for HNSCC, while ARCTIC durvalumab monotherapy
patients’ data were in the case of NSCLC. In both tables, it is shown the number
of whole-slide images original part of the dataset, as well as the number of slides
after curation.

We trained an ImageNet-pre-trained VGG16 CNN [53], where the last fully-
connected (FC) layer was substituted by a multilayer perceptron composed of
an FC layer with 4096 inputs and 256 outputs connected to a ReLU layer fol-
lowed by an FC layer obtaining two output values that are processed through a
logarithmic softmax activation function. During training, all the original layers
are frozen, and only the new two FC layers are updated during training.

We used cross-entropy as the cost function for training during 25 epochs in
batches of 64 patches. As the optimizing algorithm, we employed the stochastic
gradient descent algorithm with a learning rate of 10−3 and 0.9 as the momen-
tum. We synthetically increased the number of samples to mitigate the risk of
overfitting by performing data augmentation. In particular, we pseudorandomly
obtained resized crops with scale in the range [0.08, 1.0] and aspect ratio within
[3/5, 4/3] before resizing. In addition, each modified patch was horizontally
flipped with a probability of 0.5

The final model selected as our cancer patch classifier was the one that
maximizes the accuracy in the testing stage calculated after each training epoch.
In this case, the best-performing model was obtained after 11 epochs, showing
an accuracy of 89.44%, whose threshold used to differentiate between positives
and negatives is 0.5.
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A.7 Outcome prediction training

A.7.1 Weakly-supervised labeling

Given the low cardinality of the datasets used, the problem is formulated as a
k-class classification problem. Training and test data D = {xi, yi}Li=1, where xi

denotes the i-th curated patch of the set X =
⋃
∀k∈T W̃k where T represents

the set of patient indices belonging to the training set. yi denotes the i-th true
label, and L stands for the cardinality of the training set.

In order to train the models, each patch of a given subject has an associated
label corresponding to the target of the WSI. The DL model is trained to map
this correspondence. The label is obtained as a function of the clinical data of
the patient. Examples of the outcome of the clinical data are objective response
(OR), PFS, and OS. For example, in the case of OR,

yi =

{
1 , if a given patch corresponds to a responder patient,

2 otherwise.
(1)

Or, in the case of using OS, one can use a threshold T (e.g., T = 18 months) to
formulate the task as a binary classification problem as

yi =

{
1 if the i-th patient had a registered OS≤ T,

2 otherwise.
(2)

Given the i-th patient, the label is assigned to all the patches extracted from
the WSI. However, it is sensible to think that not all the patches containing
cancer cells are accurately associated with the clinical outcome. Therefore, one
should address the problem as a noisy supervised task or weakly supervised
machine learning approach.

A.7.2 Deep ensemble for predicting clinical outcome

Developing a solution to predict clinical outcomes for IO therapy only using
H&E-stained slides presents its challenges, requiring tailored approaches. For
example, due to the limited number of patient samples, the available data for
algorithm training and testing is restricted.

In this low-data regime scenario, it is well-known that a classic one-model
solution often shows a tendency to overfit, lack of robustness, and consequently
bias. Therefore, we needed to focus on ML techniques that are efficient in using
data.

Furthermore, the complexity of the challenge significantly increased as the
disease pathomechanisms that drive the response to IO are incompletely under-
stood, and the WSIs are not annotated. Therefore, we addressed our goal by
formulating it as hypothesis-free and weakly supervised.

Consequently, we designed and developed a solution to mitigate these risks
by combining transfer learning and deep learning ensembles. Transfer learning
enables the transfer of knowledge learned from a different task to a related task,
thus reducing the demand for data, while deep learning ensembles combine
several individual models to generate more robust and generalizable algorithms.
Ensemble learning, as demonstrated by random forest [54] or XGBoost [55],
consistently performs well across various applications.
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One of the main issues regarding the use of DL ensembles is their high com-
putational requirements. For instance, an ensemble composed of M models run
sequentially would increase the execution time by a factor of M . In addition,
there are complexities regarding maintaining M models during their entire life-
cycle compared to one model. Nevertheless, more importantly, interpretability
and explainability are critical to facilitate the adoption of hypothesis-free ap-
proaches like ours. This would include the independent analysis of M DL algo-
rithms and the fusion of their corresponding scores that become time-consuming
and complex tasks. To address these issues, we incorporated knowledge distilla-
tion [56–58] in our framework. Knowledge distillation is the process of transfer-
ring knowledge from a larger trained model to a smaller model and has shown
promise in digital pathology applications [59,60].

In our framework, the ensemble of M DL models acts as a teacher for a
new CNN, which is trained to replicate the teacher’s outcomes per dataset.
Knowledge distillation helps to resolve scoring discrepancies among the baseline
models and serves as a regularization tool that improves the robustness of our
solution. In this way, the student CNN will potentially perform as the teacher
while the computational cost and maintenance effort are significantly reduced.
Moreover, the interpretability and explainability become more straightforward,
as there is only one model to analyze.

In summary, our framework for developing algorithms to predict the clini-
cal outcome of immunotherapy using unannotated H&E WSIs comprises three
stages, as illustrated in Fig. 11. In Stage 1, M deep learning baseline models
are trained. In Stage 2, M̃ models are selected. Finally, in Stage 3, knowledge
distillation transforms the ensemble of original M baseline models into a single
DL model.

Stage 1: Generation of the baseline models We chose to obtain a variety
of baseline models for the ensemble by using different subsets of the training
set. In particular, to capture the sample variations, we pseudorandomly split M
times the training set (i.e., EAGLE and MYSTIC durvalumab arms for HNSCC
and NSCLC, respectively) into baseline training set with approximately 80% of
the patients and 20% of them for the validating set of the baseline models.

We trained the algorithm for each of the M splits using the baseline training
set, evaluating the baseline models with their corresponding baseline validation
split. This enables a coarse exploration of the feasibility of capturing the clin-
ical outcome using a particular hyperparameter configuration (e.g., backbone,
magnification, optimization technique, etc.). For example, for the curated i-th
patch xi, the corresponding score ski is computed by the k-th baseline model
ski = fk(xi;θk), with k = 1, . . . ,M and θk representing the parameters of the
k-th baseline model.

As the backbone for the baseline models, we employed ResNet50 [61]pre-
trained on ImageNet. We substituted the last FC layer with a stack composed
of one FC layer with 2048 inputs and outputs, followed by a Rectified Linear
Unit (ReLU) connected to a second FC layer with 2048 inputs and two outputs.
Finally, during training, we used a logarithmic softmax layer as the last layer.
All the layers are frozen except the ones corresponding to the stack added, as
this helps minimize the number of trainable parameters, thus reducing the risk
of overfitting. Stochastic gradient descent (SGD) is utilized to minimize the
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Figure 11: Overview of the process to obtain the AIPCO model based on
ensemble learning and knowledge distillation. First, the sampled tumor-
positive patches xi obtained from the H&E from the training set of the
whole-slide image, where i = 1, . . . , L. Then, in Stage 1, M baseline mod-
els f1(xi;θ1), . . . , fM (xi;θM ) are trained with respect to the clinical outcome
(e.g., objective response or overall survival). In Stage 2, M̃ models are selected
based on the performance of the validation set from the M trained models. Fi-
nally, at Stage 3, the final model is computed using knowledge distillation of
the assemble of the output of the selected M̃ models to obtain one single fi-
nal AIPCO model fd(xi;θd) to stratify patients into two categories Responder
AIPCO+ and Non-Responders AIPCO-.

cross-entropy loss function in batches of 32 patches of WSIs. The optimization
process uses a momentum of 0.9 and a weight decay of 5×10−5 over 100 epochs.
The learning rate is set to 10−3 for the first 80 epochs and subsequently reduced
to 10−4 for the remaining 20.

Moreover, it is common for the baseline training sets to show class imbalance;
however, in our application, it is crucial that the produced models are not
biased toward any specific category. To mitigate potential drift during training,
we balanced the training datasets by oversampling the categories with fewer
samples.

As mentioned, given the computational constraints of the current GPUs,
the WSIs must be sampled to facilitate the training. Once the DL models are
trained, it is necessary to fuse the patch-level scores at a patient level to evaluate
the discriminative capability between responders and non-responders. We eval-
uated several approaches for aggregating the results, including taking the mean,
the median, and the ratio between the number of patches, taking a value larger
than or equal to a certain value, and the total number of patches. Based on
the results, we decided to prioritize the mean of the patch scores, as it provided
good characteristics in terms of performance, robustness, and explainability.
Therefore, for a given Ñ -length array of patch scores corresponding to the i-th
patient si = (si1, . . . , s

i
Ñ

), the aggregated patient-wise score si is calculated as

the arithmetic mean si = 1/Ñ
∑Ñ

j=1 s
i
j .
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Stage 2: Model selection By design, our approach creates several baseline
models, each showing their unique performance characteristics as a consequence
of using different baseline training sets (e.g., using different subsets of the train-
ing set). To produce an accurate ensemble, it is necessary to differentiate be-
tween baseline models that enhance the average performance of the ensemble for
a given criterion (e.g., median OS or median PFS) and those that deteriorate it.
In this manner, by only using the outputs of the algorithms that produce more
accurate decisions, the overall performance of the ensemble will be inherently
improved.

We defined the criterion for selecting baseline models identifying positive
patients (e.g., responders according to RECIST 1.1. criterion), while false pos-
itives are zero. This criterion can be algorithmically implemented by analyzing
the precision-recall curves and selecting the M̃ baseline models with a precision
of one for recall values larger than zero.

Stage 3: Knowledge distillation The knowledge of the selected M̃ models
is distilled to produce one final model, which is achieved in two steps:

• In the first step, each of the M̃ selected models produces the scores of
the curated patches corresponding to its baseline test set. As a patient
can appear in the baseline test set of several baseline models, the distilled
score is calculated as the maximum of the scores per patch for each WSI
to prioritize high-score patches.

• In the second step, a new CNN is trained using the distilled scores of
the curated patches using the Kullback-Leibler divergence (KLD) as the
loss cost function. The KLD loss enables the student to learn a similar
distribution of information as the teacher, thus optimizing the use of the
information. This model is trained using the same hyperparameters as
the baseline models but only for 20 epochs.

After the knowledge-distilled model is obtained, the cut-off needs to be com-
puted to map the continuous score into two classes: AIPCO+ for patients who
are likely to benefit from IO therapy and AIPCO- for those who would not. In
order to do this, we employed the EAGLE/MYSTIC SoC arms, in which the
patients were not treated with immunotherapy; however, the distribution of the
scores should be consistent since the tissue was obtained in the same manner as
in the durvalumab arms. We selected the 75th percentile of the patients’ scores
in those arms as the cut-off for our algorithms. With the model trained and the
cut-off established, the final AIPCO model can be used in a different dataset to
validate its generalizability.

A.7.3 Generation of the head and neck squamous cell carcinoma and
non-small cell lung cancer models

We employed the methodology proposed in the previous section to develop and
lock all the parameters of the HNSCC and NSCLC algorithms. In order to
make the algorithm easy to maintain, it is crucial to keep simplicity in the
algorithm design. Aligned with this principle, we developed an algorithm using
only one magnification. Through preliminary simulations, we decided that a
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magnification of 10× was appropriate for HNSCC, while 20× was chosen for
NSCLC.

To demonstrate the versatility of our approach, we focused on training the
baseline models using objective response for HNSCC. Conversely, for NSCLC,
we trained deep learning models using patches derived from patients with a
survival duration exceeding 18 months (Overall Survival ¿ 18 months).

Stage 1, M = 20 Stage 2, M̃ = 9 Stage 3
EAGLE n mOS (95% CI) n mOS (95% CI) n mOS (95% CI)
Total 119 7.6(5.2− 9.9) 103 6.3(4.7− 8.1) 103 6.3(4.7− 8.1)

AIPCO+ 30 8.13(5.1− 22.6) 25 14.7(5.1− 22.6) 25 10.2(4.5− 22.6)
AIPCO- 89 7.3(4.67− 9.8) 78 5.5(4.0− 7.7) 78 6.1(4.0− 8.1)

Table 4: Median overall survival (mOS) in months and the 95% confidence
interval for the n patients per cohort receiving durvalumab during the EAGLE
clinical trial for head and neck squamous cell carcinoma (HNSCC). The results
were obtained using stratification of our development framework at each stage
to classify patients between AIPCO+ and AIPCO-. Complementary to this,
the results of the total number of patients per stage without employing our
framework are displayed. In stage 1, an ensemble of the M = 20 baseline
models is utilized. In Stage 2, the ensemble was refined using the selected M̃ = 9
baseline models. Finally, Stage 3 produces the knowledge-distilled solution.

Stage 1, M = 20 Stage 2, M̃ = 11 Stage 3
MYSTIC n mOS (95% CI) n mOS (95% CI) n mOS (95% CI)
Total 268 14.3(10.7− 16.6) 252 14.3(10.7− 16.6) 252 14.3(10.7− 16.6)

AIPCO+ 36 19.2(9.3−∞) 33 22.8(9.8−∞) 20 23.6(8.7−∞)
AIPCO- 232 13.7(10.4− 16.3) 219 13.7(10.1− 16.3) 232 13.8(10.2− 16.4)

Table 5: Median overall survival (mOS) in months and the 95% confidence
interval for the n patients per cohort receiving durvalumab during the MYSTIC
clinical trial for non-small cell lung cancer (NSCLC). The results were obtained
by using stratification of our development framework at each stage to classify
patients between AIPCO+ and AIPCO-. Complementary to this, the results
of the total number of patients per stage without employing our framework are
displayed. In stage 1, an ensemble of the M = 20 baseline models is utilized. In
Stage 2, the ensemble was refined using the selected M̃ = 11 baseline models.
Finally, Stage 3 produces the knowledge-distilled solution.

Respectively for HNSCC and NSCLC, Tables 4 and 5 contain the median
OS as the sequential steps of the algorithm are computed to finally generate
the distilled model. The data shown for the case of the baseline ensemble and
selected ensemble are obtained based on the union of the set of AIPCO+ patients
of the models, where the patients belong to the test set of each baseline model.
Therefore, these results correspond to samples of patients that were not used in
the deep learning training of the solution. As for the distilled model, the data
used for knowledge distillation is generated as a function of the scores of the
test set; therefore, the analysis of data must take this into consideration.

The proposed framework to develop one model to predict clinical outcome
per indication starts by training a set of baseline models with M = 20. From
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these candidate baseline models, a subset is selected by the criterion expressed
above; for the case of HNSCC, the models meeting the criteria is M̃ = 9, and
for the case of NSCLC, M̃ = 11. In both cases, by comparing the baseline
ensemble vs. the ensemble of the selected algorithms, one can see that there
is a significant improvement in the performance. In particular, for the case
of HNSCC 30, AIPCO+ patients with mOS 8.13 months become 25 AIPCO+
patients with mOS 14.7 months. Analogously for NSCLC, 36 AIPCO+ patients
with mOS 19.2 months are transformed into 33 AIPCO+ patients with mOS
22.8 months due to the model selection as part of our framework. Therefore,
these results validate the hypothesis that by building an ensemble of models
that are precise, the resulting solution improves.

This favorable trend is confirmed when one also compares the obtained data
between the baseline ensemble and the final model obtained as a result of car-
rying out the knowledge distillation of the ensemble of the selected models. In
particular, for the case of HNSCC, the baseline ensemble shows a median OS of
the AIPCO+ patients of 8.13, while in the distilled model becomes 10.2 months.
Similarly, in NSCLC, the cohort of AIPCO+ patients of the baseline ensemble
model obtains a mOS of 19.2 months, while in the knowledge-distilled model,
the resulting median OS is 23.6 months.

Based on the results, these models, one for HNSCC and another for NSCLC,
support the use of the knowledge distillation process for both indications. The
data presented in Sect. 2 was obtained with them, supporting its generalization
across datasets.

B Performance metrics

B.1 Overall survival

The overall survival (OS) is generally regarded as the primary endpoint to eval-
uate the patient’s response to treatment for most of the oncology clinical trials.
OS is defined as the duration from the date of diagnosis or start of treatment
to the time of the event.

B.2 Progression-free survival

The progression-free survival (PFS) is a clinical endpoint in clinical trials assess-
ing treatment efficacy, especially in scenarios where OS takes a long to time to
observe. It measures the time between the treatment starts and the occurrence
of disease progression or other events, including death.

B.3 Objective response rate

The objective response rate (ORR) is used in routine clinical practice and is
a parameter to demonstrate the effectiveness of an oncology-related treatment.
It represents the proportion of patients with a reduction in disease burden of a
predefined amount.
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B.4 Precision and recall

Precision is a metric to evaluate the positive predictive ability of a classifier
and is defined as the ratio between correctly classified positive incidents and the
total number of positively classified incidents (true positive or true negative).
Recall, on the other hand, is a metric to evaluate the ability of a classifier to
correctly identify all incidents of a relevant class and is defined as the ratio
between the correct predictions from the selected class and the total number of
samples from the class. Mathematically, this is expressed as:

Precision =
Tp

Tp + Fp

Recall =
Tp

Tp + Fn

where Tp, Fn, and Fp represent the number of true positive, false negative and
false positive incidents. Given a validation dataset, each correctly identified
prediction is classified as either true positives or true negatives, whereas mis-
classified predictions are categorized as false negatives and false positives.
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