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Abstract  18 

We evaluated gut carriage of extended spectrum beta lactamase producing Enterobacteriaceae 19 

(ESBL-E) in southeastern U.S. residents without recent in-patient healthcare exposure. Study enrollment 20 

was January 2021-February 2022 in Athens, Georgia, U.S. and included a diverse population of 505 21 

adults plus 50 child participants (age 0-5). Based on culture-based screening of stool samples, 4.5% of 22 

555 participants carried ESBL-Es. This is slightly higher than reported in studies conducted 2012-2015, 23 

which found carriage rates of 2.5-3.9% in healthy U.S. residents.   24 

All ESBL-E confirmed isolates (n=25) were identified as Escherichia coli.  Isolates belonged to 25 

11 sequence types, with 48% classified as ST131. Ninety six percent of ESBL-E isolates carried a blaCTX-26 

M gene. Isolated ESBL-Es frequently carried virulence genes as well as multiple classes of antibiotic 27 

resistance genes. Long-term colonization was common, with 64% of ESBL-E positive participants testing 28 

positive when rescreened three months later. One participant yielded isolates belonging to two different E. 29 

coli sequence types that carried blaCTX-M-1 genes on near-identical plasmids, suggesting intra-gut plasmid 30 

transfer. 31 

Isolation of E. coli on media without antibiotics revealed that ESBL-E. coli typically made up a 32 

minor fraction of the overall gut E. coli population, although in some cases they were the dominant strain. 33 

ESBL-E carriage was not associated with a significantly different stool microbiome composition. 34 
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 2 

However, some microbial taxa were differentially abundant in ESBL-E carriers. Together, these results 35 

suggest that a small subpopulation of US residents are long-term, asymptomatic carriers of ESBL-Es, and 36 

may serve as an important reservoir for community spread of these ESBL genes. 37 

Importance  38 

Antibiotic resistant bacteria, especially Enterobacteriaceae carrying ESBLs, have become an 39 

increasing public health threat. Increasing numbers of community-associated infections (47% of ESBL-E 40 

infections in the U.S.) in participants without healthcare exposure is particularly concerning. This study 41 

found that 4.5% of a southeastern United States study population, without in-patient healthcare exposure, 42 

were asymptomatically colonized with ESBL-E, and 64% of ESBL-E positive participants were still 43 

positive when rescreened 3 months later. This suggests that the gut microbiome of healthy participants 44 

may represent an understudied community reservoir of ESBL genes and ESBL Escherichia coli in the 45 

U.S. 46 

Keywords: extended-spectrum beta-lactamase, antimicrobial resistance, community-acquired ESBL, 47 

microbiome, ESBL-Enterobacteriaceae 48 

Introduction  49 

Antimicrobial resistance is a serious and growing public health threat worldwide (1, 2) that 50 

contributes to increased complication rates, as well as increased treatment costs (3, 4).  Extended-51 

spectrum beta-lactamase (ESBL) producing Enterobacteriaceae (ESBL-E) are listed as a serious threat by 52 

the U.S. Center for Disease Control and Prevention (CDC), contributing to 197,400 infections and 9,100 53 

deaths in 2019 (2).  54 

ESBL-E were first reported in 1983 and have since spread rapidly throughout the world (5–8).  ESBL 55 

enzymes confer resistance to multiple antibiotics including penicillin, monobactams, and cephalosporins, 56 

commonly used to treat infections caused by Gram negative bacteria (9).  There are multiple classes of 57 

ESBL enzymes including TEM, SHV, OXA and CTX-M (10–12).  Recently, attention has been drawn to 58 

the CTX-M class ESBLs as it is currently the most common ESBL found worldwide (13–16). CTX-M-15 59 

is typically associated with E. coli sequence type 131 (ST131), a frequent causative agent of 60 

extraintestinal infections and outbreaks (17, 18). The successful dissemination of this E. coli clone 61 

contributed to the wide spread of this ESBL enzyme (19). Another factor contributing to the rapid 62 

dissemination of ESBLs is their frequent association with mobile elements including plasmids (20–22).  63 

Microorganisms often carry ESBL genes in plasmids from the groups IncF, IncI1, IncA/C and IncHI2, 64 

facilitating horizontal gene transfer of antibiotic resistance (23). These plasmids also carry antibiotic 65 

resistance genes for other classes, easily resulting in multi-drug resistant organisms (24).  66 

In a meta-analysis by Bezabih et al. (25), the global intestinal carriage rate of ESBL-E. coli in the 67 

community increased 10-fold during 2001-2020, highlighting the significance of investigating 68 
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community-associated ESBL-E. The global prevalence of ESBL-E fecal carriage in the community is 69 

highly variable throughout the globe, with substantially higher rates (76.3%) in Tanzania and the lowest 70 

(1.9%) in Australia (25, 26). The exact causes of these geographic variations are unknown, although they 71 

have been associated to factors including the use of antibiotics in food animals and sanitation standards 72 

(27). 73 

Few studies have examined ESBL-E carriage in healthy individuals in the U.S. Doi et al. (28, 29) 74 

reported a 3.9% prevalence of ESBL-E. coli in community-associated samples from outpatient clinics in 5 75 

U.S. states collected in 2009-2010. Vento et al. (30) found that only 1 of 101 healthy U.S. military 76 

personnel based in the U.S. (May-June 2011) carried an ESBL-E. Weisenberg et al. (31), reported a 2.5% 77 

colonization rate for ESBL-E in 2012, among New York residents in participants at pre-travel or no 78 

international travel planned. Finally, Islam et al. (32) reported an ESBL-E carriage rate of 3.5% among 79 

stool samples from healthy children collected 2013-2015 in three U.S. cities. Overall, these studies 80 

suggest that carriage of ESBL-E in the U.S. is low. However, the steady increase of community-81 

associated ESBL-E infections from 2013-2019 (2, 29) suggest a need for updated data on ESBL-E 82 

community carriage in the U.S.  83 

The aim of this work, was an examination of the prevalence and risk factors for gut colonization of 84 

ESBL-E in the community among participants living in or near Athens, Georgia (GA), U.S.  We also 85 

evaluated the frequency of long-term (~3 month) carriage of ESBL-E among positive participants.  86 

Finally, we performed an in-depth genomic analysis, including mobile elements, of ESBL-E isolated in 87 

this study and a comparison of gut microbiome community composition between carriers and non-88 

carriers.   89 

Results 90 

We recruited a total of 555 participants including 505 adults and 50 children between January 91 

2021 and November 2021 from the southeastern U.S. (mostly northeastern Georgia) (Fig. S1).  Overall, 92 

the study population reflected the demographic composition of the study area as expected based on U.S. 93 

census data (Table S2), with some over-representation of participants who identified as white and non-94 

Hispanic, were 18-39 years of age, and/or reported female sex. (Table S1).  95 

Carriage of ESBL Enterobacteriaceae (ESBL-E) 96 

From 555 samples, 25 participants (4.5%) were positive for stool carriage of an ESBL-E. One of 97 

the 25 ESBL-E positive participants was a child, whose parent also tested positive. Of the 25 ESBL-E 98 

positive participants, 22 provided a second sample at follow-up (97-176 days later), including the parent-99 

child dyad. 14 of those 22 samples (64%) were ESBL-E positive, whereas the remaining 8 were ESBL-E 100 

negative.  101 
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ESBL-E carriage was not identified as significantly associated with any of the demographic or 102 

socioeconomic risk factors examined (Table 1, Table S1).  We observed slightly, but not significantly, 103 

increased incidence of ESBL-E in participants identified as biological males and Asian or Black/African 104 

American race identities.  The full list of occupational, lifestyle, and environmental risk factors tested is 105 

available in supplemental table S1. A subset of the study population regularly experienced interaction 106 

with increased risk environments; however, these exposures were not significantly associated with ESBL-107 

E carriage. ESBL-E carriage was also not associated with significant differences in self-reported 108 

gastrointestinal (GI) distress, urinary tract infection, or antibiotic usage. A review of the health 109 

information provided by ESBL-E positive participants did not suggest severe chronic health problems.   110 

International travel has been widely associated with ESBL colonization (33). The proportion of 111 

ESBL-positive participants that lived internationally in the last 5 years is higher than the ESBL-negative 112 

participants (17% vs. 7%); however, it was not significantly associated with ESBL-carriage (fdr-corrected 113 

p-value 0.09).  Only 8 participants (all ESBL-negative) reported international travel in the previous 30 114 

days prior to sample collection. 115 

Table 1: Selected demographic characteristics, risk factors, and presence of ESBL-E among all adult 116 

participants. The demographic data presented on Table 1 are based on the questionnaire responses from 117 

the first visit of all adult participants. The child demographics were not included in the tables or 118 

statistical analyses of risk factors, as they were not considered independent of the parent participants.  119 

Characteristics of ESBL-E isolates 120 

Genome assemblies and phylogenetic relationships 121 

All confirmed ESBL-E were identified as Escherichia coli by MALDI-TOF. High-quality draft  122 

genome sequences were obtained for the ESBL-E isolates of each 25 initial and 14 second visit samples 123 

(Table S3). Genome sizes ranged from 4,981,979 bp to 5,465,567 bp.  124 

Isolates belonged to phylogroups B2 (17 isolates), D (4), A (2) B1 (2) and F (1).  Of the B2 isolates, 125 

12 belonged to the uropathogenic group ST131, including members with fimH41 and fimH30 alleles (Fig. 126 

S2). Other closely related groups, ST2279 (2 isolates), ST1193 (2) and ST636 (1) were also present (Fig. 127 

1F). All the samples from second visits that yielded confirmed ESBL-E positive were near-clonal (3-55 128 

SNPs) with the isolate of the initial visit from that participant with the sole exception of the isolates from 129 

participant 497 (Fig. 1E). The initial isolate from participant 497 was assigned to ST154 in phylogroup 130 

B1, whereas the isolate from this participant’s second sample, 497R, was assigned to ST106 in 131 

phylogroup D (Fig. 1A-F). The parent-child dyad samples were both assigned to phylogroup A but had 132 

different sequence types: ST10 (parent) and ST305 (child) and 22,309 SNP differences.   133 

Figure 1: Characteristics and classification of ESBL-E isolates. A) Core-genome single nucleotide 134 

polymorphisms (SNPs) phylogenetic tree of ESBL-E isolates per participant colored by Clermont 135 
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phylogroup, highlighting ST131 isolates. B) Phenotypic characterization of antibiotic resistance by isolate 136 

tested in Sensititre, after the confirmation as ESBL-E given their resistance to beta-lactams: Cefotaxime 137 

and Ceftazidime. C) Antimicrobial resistance genes found by AMRFinderPlus in the genome, transposons 138 

(T) or plasmids (1) of each isolate classified by antimicrobial class. D) Beta-lactamase genes found in 139 

each isolate, chromosomally or in mobile elements. Circles labelled with a number match plasmids 140 

described in Table S5 for each isolate. E) SNPs between first and second sample confirmed as ESBL-141 

positive to determine clonality of isolates. F) Sequence type (ST) classification of each isolate, colored by 142 

phylogroup. Second samples collected (R) are not included in the figure as they were the same sequence 143 

type (ST) and share almost the same genetic content as their original sample, with the exception of 497R.      144 

 145 

Antibiotic resistance profile 146 

All confirmed ESBL-E positive isolates were phenotypically resistant to Ampicillin, Cefotaxime, 147 

Ceftazidime, Cefpodoxime, Ceftriaxone, Cefazolin, and Cephalothin. They presented variable resistance 148 

to Cefoxitin and Cefepime as shown in Figure 1B. Of the 25 initial ESBL-E isolates, 18 had resistance to 149 

Ciprofloxacin (72%) and 6 were resistant to Gentamicin (24%).  ESBL-E isolates from the second visit 150 

exhibited the same phenotypic antibiotic resistance profile as their original sample except for 491R, 151 

which showed a decreased resistance to Cefoxitin compared to the isolate 491. Some second-visit isolates 152 

(C483R and 487R) had resistance to Cefoxitin but were susceptible to other beta-lactams tested and were 153 

not confirmed as ESBL-E. None of the isolates were resistant to the carbapenems tested.   154 

All isolates, except for the child sample, carried at least one blaCTX-M beta lactamase gene (Fig. 155 

1D). The most predominant beta lactamase gene was blaCTX-M-15 in 12 isolates, followed by blaCTX-M-27 in 8 156 

isolates, blaCTX-M-14 in 3 isolates, and blaCTX-M-1 in 2 isolates. blaCTX-M-15 was located on a plasmid in 2 157 

isolates and located within a chromosomally encoded transposon in 2 isolates. blaCTX-M-15 was 158 

chromosomally encoded without an obvious mobile genetic element in the remaining 8 isolates (Fig. 1D). 159 

All isolates with blaCTX-M-27 carried the gene in IncF plasmids (Table 2).  160 

Other beta lactamase genes identified in ESBL-E isolates included blaEC, blaTEM-1, and blaOXA-1. 161 

All ESBL isolates carried the blaEC gene that confers resistance to Ampicillin, except for isolates 504 162 

and 486, which carried blaEC5 (not shown). Beta lactamase genes found in lower prevalence were blaTEM-163 

1 (carried by 8 isolates) and blaOXA-1 (carried by 6 isolates). Seven copies of blaTEM-1 were carried by IncF 164 

plasmids, and one isolate had a copy in the chromosome. blaOXA-1 was encoded in an IncF plasmid of one 165 

isolate, in transposons of two isolates and chromosomally in three isolates (Fig. 1D). Isolate 492 carried 166 

three copies of blaTEM-1, two of them in two different plasmids and one chromosomally. No currently 167 

characterized ESBL beta lactamase genes were identified in the child sample, C483. It is not currently 168 
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clear whether this isolate carries an uncharacterized gene or may have lost its ESBL gene following initial 169 

isolation on selective media. 170 

In addition to these beta lactamases, all isolates carried antimicrobial resistance genes in the 171 

efflux class, while 16 carried AR genes for Fosfomycin, 12 for sulfonamides, 12 for tetracycline, 10 for 172 

trimethoprim, 7 for macrolides, 8 for quaternary ammonium and 5 for phenicol (Fig. 1C). Interestingly, 173 

the child isolate C483 carried two operons (pco and sil) for resistance genes in metal classes like Copper 174 

and Silver, both in close association with transposase genes. Nearly all isolates (22 of 26, including 497R) 175 

carried quinolone resistance genes. All ST131 isolates had mutations on gyrA and parE genes and exhibit 176 

Ciprofloxacin resistant phenotype, except isolate 482 (Fig. S2). For participants with a confirmed ESBL-177 

E isolate from their second visit, all but two encoded the same resistance genes on re-isolation. One of 178 

these is 497R, which as discussed elsewhere, denoted a different sequence type from the initial visit 179 

isolate.  The other, 493R, was identified as clonal (14 SNPs) but lacked erythromycin, trimethoprim, 180 

streptomycin, tetracycline, and sulfamethoxazole antibiotic resistance genes that were present in the 181 

original isolate, 493. Both isolates carried a near-identical IncF plasmid, but in 493 this plasmid contained 182 

an IS6 insertion element that encoded the resistance genes and is missing in the plasmid carried by 493R 183 

(possibly lost in a deletion event) (Fig. S3).  184 

Virulence genes and Plasmids  185 

Figure 2: Selected virulence genes associated with pathogenic E. coli pathotypes. Virulence genes 186 

were identified by VirulenceFinder using the genome assemblies of each isolate.  Only selected virulence 187 

genes are shown based on their associated pathotype. Colored boxes represent the genes associated with 188 

each pathotype and gray circles indicate the presence of that gene in each isolate. Isolates are clustered by 189 

Clermont phylogroups matching Figure 1. Circles labelled with a number match plasmids described in 190 

Table S5 for each isolate. 191 

Phylogroup B2 isolates carried a large variety of virulence genes associated with extraintestinal E. 192 

coli (ExPEC) and had three or more genes associated with sepsis-associated E. coli (SEPEC) (Fig. 2).  193 

However, virulence genes were not limited to phylogroup B2 isolates. The afa genes, encoding for 194 

afimbrial adhesins, are also associated with diffusely adherent E. coli (DAEC) and were found in isolates 195 

498 and 499 from phylogroup D and 492 from phylogroup B2. Six of 9 genes in the adhesin associated 196 

locus (aal) that encodes for the Coli surface antigen 23 (CS23) were present in isolate 498, which also 197 

carried the eatA gene, encoding for ETEC autotransporter A. Isolate 495 carried the epsilon subtype of 198 

intimin outer membrane protein gene, eae, associated with enteropathogenic E. coli (EPEC), hemorrhagic 199 

E. coli (EHEC) and Shiga-toxin E. coli (STEC). Isolate 488 has 3 P fimbriae genes (A, C, F) in the same 200 

transposon as blaOXA-1 in addition to other resistance genes (aac(6’)-Ib-cr5, ermD, mdtM).  201 
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The most frequently identified and biologically significant plasmids identified belonged to the IncF 202 

group, with 24 of the 26 unique ESBL-E isolates carrying at least one plasmid in this group. Most beta 203 

lactamases genes located within plasmids were carried by IncF plasmids, except for isolates 497 and 204 

497R which carried blaCTX-M-1 in an IncI1 plasmid (Table 2). The only plasmid carrying more than one 205 

beta-lactamase gene was the IncF in isolate 495, which carried genes blaTEM-1, blaCTX-M-15, and blaOXA-1. 206 

Isolate 492 has 2 plasmids each carrying a copy of blaTEM-1.  207 

Eight isolates carried IncF plasmids that encoded blaCTX-M-27, all of which also carried the plasmid-208 

encoded enterotoxin, senB. blaCTX-M-27 was encoded in an IS6 transposon array frequently associated with 209 

up to 16 additional antibiotic resistance genes (Fig. S4). Two of these isolates, 486 and 504, were near-210 

clonal (52 SNPs) and carried plasmids that were 99.98% identical, with the main difference being two 211 

65Kb IS6 transposon arrays encoding (among other genes) 16 resistance genes that are present in the 212 

plasmid carried by isolate 504 but absent in 486 (Fig. S5). 213 

Three isolates carried an IncI1 plasmid, including 497 and 497R.  Isolates 497 and 497R, from the 214 

same participant at different times and in different sequence groups, shared a near-identical (99.7% 215 

pairwise identity) plasmid encoding blaCTX-M-1 (Fig. S6). Plasmid group IncY was identified in 2 isolates, 216 

while replicons for IncI2, IncH, IncB/O/K/Z and IncN were each present in one isolate accompanied by 217 

an IncF plasmid (Table 2).  218 

Table 2: Assembled plasmids carried by each isolate identified by PlasmidFinder with encoded 219 

antibiotic genes identified by AMRFinderPlus and encoded virulence genes identified by 220 

VirulenceFinder. Plasmid number in each isolate matches the numbers in panels C and D of Figure 1 221 

and Figure 2. 222 

Carriage of antibiotic resistant E. coli among ESBL-E positive participants 223 

We also examined the overall prevalence of AR among commensal E. coli in ESBL-E positive 224 

participants.  Up to 48 E. coli isolates were tested for resistance to ampicillin, ceftriaxone, ciprofloxacin, 225 

tetracycline, and trimethoprim. Participants 500 and 498 yielded no E. coli colonies on this medium. Six 226 

of 25 ESBL-E positive participants showed dominance of beta-lactam resistant strains in their commensal 227 

E. coli community, with more than 50% of the colonies resistant to both ceftriaxone and ampicillin (Fig. 228 

3). Five participants carried commensal E. coli resistant to ciprofloxacin. High levels (>50% colonies) of 229 

tetracycline resistance were found in 10 of the 25 ESBL-E positive participants. Trimethoprim resistance 230 

was less common, with only six participants showing high resistance (>50% colonies) (Fig. 3). In the 231 

second samples provided, eight participants had an increase in the proportion of E. coli colonies resistant 232 

to both ceftriaxone and ampicillin. Most of the second samples that were ESBL-E negative, had a 233 

decreased proportion of commensal E. coli colonies that were resistant to the antibiotics tested. 234 
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Figure 3: Antibiotic resistance phenotype of commensal E. coli isolated from ESBL-E positive 235 

participants. A range between 1-48 E. coli colonies isolated from ESBL-E positive participants were 236 

patched into Mueller Hinton II agar with antibiotics at CSLI standard levels. Each circle size and color 237 

intensity show the proportion of those colonies that were resistant to the antibiotic tested.   238 

Gut microbial community composition in ESBL-E positive and ESBL-E negative participants 239 

ESBL-E colonization was not associated with significantly different stool microbiome alpha 240 

diversity (Fig. S7). Stool microbiome composition as evaluated by weighted Bray-Curtis distances (Fig. 241 

4A) resulted in a significant PERMANOVA p-value of 0.03.  However, the R2 value was 0.003, 242 

indicating that ESBL-E carriage explained only a very small proportion of community variance. 243 

Participants with negative second visit samples did not exhibit significantly larger between-sample shifts 244 

in stool microbiome composition than participants with continued colonization at re-sampling (Fig. 4B; 245 

Fig. S8). 246 

Figure 4: Microbial community similarities based on ESBL-E carriage. A) Bray-Curtis distances of 247 

metagenomic microbiome samples from all participants, organized in a non-metric multidimensional 248 

scaling (NMDS). Magenta dots represent participants that were ESBL-E negative while blue dots 249 

represent participants colonized with ESBL-E. B) Comparison of samples (first, duplicate of first, second 250 

and duplicate of the second sample) from the same ESBL-E positive participant, calculated by Bray-251 

Curtis distances. Each number indicates the participant ID, while circles or triangles represent the ESBL-252 

E status by sample.   253 

The relative abundance of most microbial classes was similar between ESBL-E positive and 254 

ESBL-E negative samples (Fig. S9). However, DESeq2 analysis identified 21 amplicon sequence variants 255 

(ASVs) that were significantly enriched and 50 that were significantly depleted in samples from ESBL-E 256 

positive vs. ESBL-E negative participants (Fig. 5).  257 

Figure 5: Genus assignments for ASVs identified as enriched or depleted in ESBL-E positive 258 

participants. ASVs identified as significantly enriched or depleted by DESeq2 analysis with local fit and 259 

Wald test identifying significantly different ASVs under an alpha=0.001. ASVs are colored by phylum 260 

and organized by genus. Point size shows normalized mean counts and y axis shows log2fold change in 261 

ESBL-E positive participants. ASVs with a positive log2fold change were enriched, while ASVs with a 262 

negative log2fold change were depleted in ESBL-E positive participants.   263 

Discussion 264 

A key goal of this work was to evaluate asymptomatic carriage of ESBL-E in U.S. residents without 265 

significant healthcare exposure.  We observed a carriage rate of 4.5% in our study population, which was 266 

recruited from the vicinity of the city of Athens, in northeastern Georgia. This reflects a higher prevalence 267 

than previous reports from the U.S. that range between 1.7% and 3.5% (26, 30, 32), although this remains 268 
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lower than carriage rates reported from European and African countries (34–36). One caveat is that our 269 

study participants were recruited from the southeastern U.S., which has reported a higher rate (19.9%) of 270 

healthcare associated ESBL-E infections than the national average of 12.2% (37).   271 

Our study did not identify any demographic, socioeconomic, environmental, or health-associated risk 272 

factors that were significantly associated with the carriage of ESBL-E. This contrasts with previous 273 

studies that have reported antibiotic usage (38) and recent international travel (39) as correlated to ESBL-274 

E carriage. These results may have been impacted by the COVID-19 pandemic, which limited 275 

international travel during the study period (January 2021-February 2022). This lack of association with 276 

specific risk factors suggests that ESBL E. coli may be circulating, albeit at low rates, among the general 277 

population in the study area. 278 

A large fraction (14 of 22) of ESBL-E positive participants remained positive when re-tested at least 279 

3 months after their initial visit, which is similar to previous reports in Sweden (40). That study, as well 280 

as others, found that sequence type ST131 or strains classified in the B2 and D phylogroups were more 281 

likely to persist (40, 41).  However, our persistent isolates were distributed across many E. coli 282 

phylotypes, suggesting that persistent colonization is not confined to these phylogroups (42).   283 

Overall, the most prevalent group of ESBL E. coli was B2, which matches previous studies in North 284 

America (43–46). In terms of sequence types, 46% of the isolates were identified as belonging to ST131, 285 

a globally distributed uropathogenic clade that is widely associated with ESBL gene carriage and 286 

identified as the most frequent multidrug resistant extraintestinal pathogenic E. coli (47). ST131 287 

subclades C1, C2 and C1-M27 (as classified by blaCTX-M and fimH (48)) were all present.  288 

All but one isolate carried at least one gene encoding for an CTX-M type enzyme, for a total 289 

prevalence of 96%, compared to the 90% reported in a previous review of community isolates from 290 

different geographical regions worldwide (49). This suggests that blaCTX-M carrying E. coli may be a key 291 

driver of community ESBL-E spread in the southeastern U.S. In fact, an E. coli carrying blaCTX-M-15 has 292 

been isolated from a stream sample in Athens, GA (50). Among the isolates that carried blaCTX-M genes, 293 

blaCTX-M-15 was the most predominant, followed by blaCTX-M-27 and blaCTX-M-14. This agrees with previous 294 

reports that blaCTX-M-15 is the most abundant beta lactamase gene circulating in the U.S., closely followed 295 

by blaCTX-M-27 (51, 52), although a third study of urinary tract infections from gram-negative pathogens 296 

isolated in hospitals of Canada and the U.S. (2010-2014) reported blaCTX-M-14 as more abundant than 297 

blaCTX-M-27 (53). blaCTX-M-27 was primarily associated with ST131 C1-M27 and C1/H30R clades as 298 

previously reported (54) but was also present in ST131 clones with fimH41. In all recovered isolates with 299 

this gene, the blaCTX-M-27 was borne on an IncF-type plasmid. 300 

In addition to the resistance shown to beta-lactams antibiotics, 72% of the ESBL-E isolates showed 301 

resistance to Ciprofloxacin and 24% were resistant to Gentamicin. Ciprofloxacin resistance is widely 302 
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associated with ST131 (17); however, 7 isolates from other groups also exhibited ciprofloxacin resistance 303 

suggesting a broader relationship. A previous study of extra-intestinal pathogenic ESBLs from 304 

hospitalized patients in India reported a slightly lower prevalence of 65% (55). It remains unclear whether 305 

this increased prevalence is because ciprofloxacin resistance is more common in gut isolates or whether 306 

this is due to the population studied.  307 

The most abundant plasmid type found in our isolates was IncF, which also was the plasmid type 308 

carrying the most antibiotic resistance and virulence genes, as has been widely reported (56). While 309 

plasmids from the incompatibility group IncI1 are typically associated with transfer of beta lactamase 310 

genes (57), we only isolated ESBL-carrying IncI1 plasmids from two participants.  The IncI1 plasmid 311 

from participant 497, is of particular interest because the ESBL-E. coli isolates obtained from the first and 312 

second fecal samples provided by this participant carried a near-identical copies of this plasmid but 313 

belonged to two different lineages of E. coli. This suggests a recent transfer of this plasmid in the human 314 

gut. Similar events have been reported elsewhere (58–61) and have been used to argue for the potential 315 

role of the human gut as a key site of horizontal gene transfer of antibiotic resistance genes.  316 

In agreement with previous studies (62), many of our isolates, particularly those belonging to the B2 317 

phylogroup, carried virulence genes associated with extra-intestinal pathogenic E. coli including 318 

uropathogenic (UPEC) and sepsis associated (SEPEC) strains. The fimH gene was the most prevalent 319 

virulence factor, followed by UPEC-associated genes chuA, fyuA, usp, and yfcV and kpsMII (found in 320 

84% of ESBL-E isolates). Other virulence genes frequently found in our study include iutA, papA, papC, 321 

sat, vat, cnf1 and hlyA, as previously shown by Iseppi et. al (63), however in contrast to their results sfa 322 

was not found in any isolate and afa genes were only in 3 isolates. Remarkably, the eae gene, previously 323 

used to classify EPEC isolates (64), was found in the isolate from participant 495, who also carried the 324 

only plasmid in this study with 3 different beta-lactamase genes. The presence of virulence genes in 325 

plasmids could explain the hybrid classification into different pathotypes of E. coli and contribute to the 326 

evolution of these pathotypes by accumulating virulence factors within the commensal community (65–327 

67).  328 

We also examined the frequency of antibiotic resistance among the overall population of commensal 329 

E. coli present in stool samples from ESBL-E positive participants. More than half of ESBL-E positive 330 

participants carried ampicillin- (64%) and tetracycline- (56%) resistant E. coli. However, presumptive 331 

ESBL-E made up most commensal E. coli in initial samples from only 6 of 25 ESBL-positive 332 

participants. This agrees with previous studies that in most cases the ESBL-producing E. coli is not the 333 

dominant strain among gut E. coli (36). Interestingly, 8 of the 22 second samples showed an increase in 334 

the fraction of presumptive ESBL-E. coli isolated which could indicate a highly dynamic population 335 

structure and/or possible genetic exchange of antibiotic resistance genes among commensal E. coli.  336 
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Alpha and beta diversity analysis suggests that ESBL-E carriage was not associated with substantially 337 

different gut microbiome composition or diversity, consistent with the results of other studies (68, 69). 338 

However, pairwise analysis identified multiple taxa with significantly different abundance in carriers and 339 

non-carriers. Similar to other studies, we observed enriched taxa belonging to Prevotella (69, 70) and 340 

depletion of taxa belonging to Sellimonas (71) and Bacteroides uniformis (72). On the other hand, some 341 

taxa that other groups found enriched in ESBL-E carriers were identified as depleted in our ESBL-E 342 

communities, including Clostridiales (69),  Erysipelotrichaceae, Lactococcus, Bilophila and 343 

Negativibacillus (70). In addition, Desulfovibrio and Oscillospira genera were identified as enriched 344 

among ESBL-E carriers in our study but depleted in another (68). These differences could be explained 345 

by the species of ESBL-Enterobacteriaceae in each study, given that the microbial population differs 346 

based on the ESBL-E species (71), or other factors influencing the microbiome composition as discussed 347 

before (73).  348 

Notable limitations of our study include that it was restricted to a specific geographic range (Athens, 349 

GA and vicinity) and that the study commenced during the global COVID-19 pandemic, which caused 350 

multiple large-scale changes in behavior including limitations on international travel. In addition, there 351 

was a possible bias provided by the participant self-reporting of risk factors. However, overall our results 352 

suggest that a subset of southeast U.S. residents are likely asymptomatic carriers of ESBL-E. coli.  353 

Conclusions 354 

To our knowledge this is the first genomic analysis of community associated ESBL-E carriage in the 355 

southeastern U.S. including long-term colonization, as previous studies only focused on the prevalence of 356 

ESBL-E or on healthcare-associated isolates. If the results from this study can be extrapolated, it suggests 357 

the potential for a small but notable increase in ESBL-E carriage in the U.S. since 2015, consistent with 358 

reports that the frequency of community-acquired ESBL-E infections also increased over this period (25) 359 

and supporting the role community-associated isolates in the incidence of ESBL-E outbreaks. Long term 360 

(>3 months) colonization was common in the study population, which underscores the potential of the 361 

human gut microbiome to serve as a long-term reservoir of ESBL Enterobacteriaceae.  Colonizing ESBL 362 

Enterobacteriaceae were all identified as E. coli including strains that are unlikely to be pathogenic and 363 

strains carrying virulence genes associated with extraintestinal pathogenic E. coli.   Finally, many strains 364 

carried multidrug resistance plasmids and we observed at least one participant where the same plasmid 365 

was observed in isolates with different phylogenetic backgrounds, consistent with a role for the human 366 

gut as a hotspot for antibiotic resistance gene exchange (74). Overall, our study suggests that the human 367 

gut may represent an important but under-recognized reservoir of ESBL genes and ESBL-carrying E. coli 368 

and highlights the relevance and importance of understanding the role of gut commensals in mediating 369 

the spread of antibiotic resistance.  370 
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Materials and Methods 371 

Specimen collection, metadata collection and analysis 372 

Recruitment and consenting of participants were performed by the Clinical and Translational 373 

Research Unit (CTRU) at the University of Georgia. Inclusion criteria included: the ability and 374 

willingness to answer an online survey regarding risk factors and to physically visit the CTRU to obtain 375 

and return the specimen collection kit, as well as age >18 years for adult participants. Adult participants 376 

with a child age ≤ 5 years in their household were invited to enroll the child in the study. Exclusion 377 

criteria included pregnancy and in-patient (overnight) hospitalization/health care in the last 12 months for 378 

reasons other than uncomplicated childbirth. Prospective participants who reported systemic (oral or 379 

intravenous) antibiotic use within the last 48 hours were asked to schedule specimen collection/drop-off 380 

for a later date, as were participants with active COVID-19 infections. Children who did not reside with 381 

participant parent for 5 days or more per week were also excluded. A signed consent was obtained from 382 

each participant or parent. To protect the confidentiality of personal data, all participants were assigned a 383 

unique, randomly generated identification number. All research activities involving human subject 384 

research were reviewed and approved by the Institutional Review Board (IRB) at University of Georgia, 385 

Athens.  386 

Participants were provided a stool specimen container that was pre-labeled with their participant 387 

ID (Medline Industries, Cat. No. DYND36500) with a scheduled sample return date. Participants were 388 

asked to collect a stool sample using the provided collection kit and to complete an online questionnaire 389 

to collect demographic information as well as possible environmental risk factors for carriage of antibiotic 390 

resistant bacteria (see supplemental materials) as close in time as possible and no more than 12 hours 391 

before their scheduled return appointment.  After collection, they were instructed to keep the stool 392 

specimen in a refrigerator or protected from heat until return to the facility. Upon return to the CTRU, 393 

stool specimens were stored at 4ºC until processing. Upon transfer to the study team, stool specimens 394 

were subdivided for processing, typically within 1-3 hours of receipt (max. 24 hours). For culture work, 395 

200 mg of stool specimens were diluted in 1 mL of 1X PBS and immediately processed as described 396 

below. For DNA extraction and molecular analyses, 200 mg sub-specimens were transferred to sterile 397 

cryovials and stored at -20oC until processing as described below. 398 

Participant data was collected by online survey (Qualtrics) and matched to laboratory samples via 399 

alphanumeric participant IDs. Participant surveys consisted of a series of questions relating to each 400 

participant’s demographics, lifestyle, socioeconomic status, environmental exposures, preexisting medical 401 

conditions, and travel experience. All child surveys were completed by a designated parent or guardian. 402 

Upon completion of sample collection, all data were downloaded, matched to laboratory results, and 403 

cleaned for analysis using R statistical analysis software with ‘tidyverse’, ‘readxl’, ‘magrittr’, ‘reshape2’ 404 
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and ‘rcompanion’. ESBL carriage frequencies and Fisher’s test with Monte-Carlo simulations were used 405 

to calculate p-values using ‘fisher.test’ function in R. P-adjusted values were calculated using the 406 

‘p.adjust’ function with the Benjamini-Hochberg procedure for False Discovery Rate (FDR) (75, 76). 407 

Statistical significance was considered from p-values less than 0.05.  408 

Isolation, testing and confirmation of ESBL-E 409 

200 mg of each stool specimen was diluted in 1 ml of 1X PBS. 100µl of the diluted aliquot was 410 

pre-enriched overnight in 5 ml tryptic soy broth (TSB) at 37ºC. 10 µl of the enriched culture was then 411 

spread onto CHROMagarTM ESBL plates and incubated at 37ºC overnight. Well-isolated colonies from 412 

CHROMagar ESBL plates were re-streaked for isolation and purification on the same medium and 413 

incubated under the same conditions. Presumptive ESBL-producing colonies were re-streaked on blood 414 

agar, identified by MALDI-TOF MS, and confirmed by antibiotic resistant profiling using Sensititre panel 415 

ESB1F at the UGA Veterinary Diagnostics Laboratory. An isolate was considered ESBL-positive if it 416 

was resistant to Cefotaxime and Ceftazidime but susceptible when clavulanic acid was added to each. 417 

Other antibiotics tested with Sensititre included Ampicillin, Cefazolin, Cefepime, Cefoxitin, 418 

Cefpodoxime, Ceftriaxone, Cephalothin, Ciprofloxacin, Gentamicin, Imipenem, Meropenem and 419 

Piperacillin/Tazobactam. Confirmed ESBL-positive participants were requested to provide a second 420 

sample at least 90 days after the initial participation. 22 of 25 positive participants provided a second 421 

sample, the remaining 3 could not be contacted after multiple attempts. Second-visit samples were 422 

processed under the same conditions as the first samples. 423 

Whole-genome sequencing and analysis 424 

Isolated colonies from ESBL-confirmed participants were used for whole-genome analysis. 425 

Genomic DNA of isolates was extracted using Omega Biotek Bacterial DNA Kit. Purified DNA was 426 

arrayed in 96-well plates, normalized, and run on agarose minigels for QC. Genomic libraries were 427 

created using an NEBNext Ultra II FS DNA Library Prep Kit with custom primers and protocols (77) and 428 

an Opentrons OT-2 robot. Libraries for all ESBL-confirmed isolates were sequenced on a NovaSeq S4 429 

6000 to obtain PE150 reads. Trimming and quality filtering was performed via Trimmomatic v0.39.  430 

For long-read sequencing, DNA extracts were normalized to 50 ng per 9 µl. Oxford Nanopore 431 

Technologies (ONT) libraries were prepared following manufacturer’s instructions for the rapid barcode 432 

96 kit and cleaned with Ampure XP beads. A total of 75 µl of library was loaded onto an ONT MinION 433 

flow cell (9.3.1) for sequencing. Following sequencing, bases were called using super accuracy mode 434 

with Guppy v6.1.1. 435 

De novo assembly was performed using Unicycler v0.4.7. using the short-reads first approach and 436 

default settings (78). A phylogenetic tree between ESBL-E genomes was constructed using maximum 437 

likelihood and core single nucleotide polymorphisms with Parsnp, with a randomly selected reference 438 
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genome (AREA_ 490). Core genome single nucleotide polymorphisms (SNPs) between isolates from first 439 

and second samples were calculated using CSI Phylogeny (79, 80). AMRFinder v3.9.8 was used to 440 

identify antimicrobial resistance genes in assembled genomes using the Plus genes database (--plus) and 441 

E. coli as the reference organism (-O) to identify point mutations (81). Mobile genetic elements were 442 

identified using MobileElementFinder v1.0.3 with antimicrobial resistance genes annotated (82). Tools 443 

from the Center for Genomic Epidemiology (http://www.genomicepidemiology.org/services/) that were 444 

used to analyze the hybrid assemblies including: MLST v2.0.9 with configuration for Escherichia coli #1 445 

and a minimum depth of  5X; SeroTypeFinder v2.0.1 with 85% threshold ID and 60% minimum length, 446 

FimTyper v1.0 with 95% threshold ID, 95% threshold identity and 60% minimum coverage and 447 

VirulenceFinder v2.0.3 for E. coli with 90% threshold ID and 60% minimum length (83–86). Assemblies 448 

were classified by phylogroups using the ClermonTyping web server (http://clermontyping.iame-449 

research.center)(87).  450 

Microbial community characterization 451 

Fecal E. coli were isolated without antibiotic selection from all stool samples using CHROMagar 452 

ECC. Up to 48 well-isolated colonies (if available) were re-streaked on LB plates for purity, then arrayed 453 

in 96-well plates to grow overnight with Mueller Hinton II broth media. 3 µl subsamples of the overnight 454 

culture were patched in Mueller Hinton II agar plates containing antibiotics at CLSI standards: Ampicillin 455 

(32 µg/ml), Ceftriaxone (32 µg/ml), Ciprofloxacin (4 µg/ml), Tetracycline (4 µg/ml) and Trimethoprim (8 456 

µg/ml) to characterize the AR profile of the commensal E. coli community in the ESBL-E positive 457 

participants.  458 

For 16S rRNA gene library sequencing, DNA was isolated from 200 mg of each stool sample 459 

with the Omega Biotek Stool DNA kit following the manufacturer protocol for pathogen detection 460 

(Omega Biotek, Norcross, GA, USA).  The optional incubation with DS buffer and Proteinase K was 461 

performed to improve recovery of Gram-positive bacteria. Extracted DNA was eluted in 100µl of elution 462 

buffer from the kit heated at 65ºC. DNA concentrations were measured with NanoDrop. Amplification of 463 

16S rRNA gene was done using primers 515F and 806R as described previously (88), followed by library 464 

sequencing with Illumina MiSeq 250 x 250 bp at the Georgia Genomics Facility. Sequence analysis was 465 

performed using DADA2 (version 1.18) in R (version 4.0.2) including filtering, trimming, merge and 466 

taxonomy assignment with SILVA database, version 138 (89, 90). Data analyses were done in R using 467 

phyloseq, vegan, dplyr, tidyverse and DESeq packages with samples rarefied to a depth of 10,000 when 468 

needed (91, 92).  469 

Data availability 470 

Whole-genome assemblies and 16S rDNA sequences have been submitted to NCBI under the BioProject: 471 

PRJNA894544.  472 
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 751 

 752 
 753 
Figure 1: Characteristics and classification of ESBL-E isolates. A) Core-genome single nucleotide 754 

polymorphisms (SNPs) phylogenetic tree of ESBL-E isolates per participant colored by Clermont 755 

phylogroup, highlighting ST131 isolates. B) Phenotypic characterization of antibiotic resistance by isolate 756 

tested in Sensititre, after the confirmation as ESBL-E given their resistance to beta-lactams: Cefotaxime 757 

and Ceftazidime. C) Antimicrobial resistance genes found by AMRFinderPlus in the genome, transposons 758 

(T) or plasmids (1) of each isolate classified by antimicrobial class. D) Beta-lactamase genes found in 759 

each isolate, chromosomally or in mobile elements. Circles labelled with a number match plasmids 760 

described in Table S5 for each isolate. E) SNPs between first and second sample confirmed as ESBL-761 

positive to determine clonality of isolates. F) Sequence type (ST) classification of each isolate, colored by 762 

phylogroup. Second samples collected (R) are not included in the figure as they were the same sequence 763 

type (ST) and share almost the same genetic content as their original sample, with the exception of 497R.      764 
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 765 
Figure 2: Selected virulence genes associated with pathogenic E. coli pathotypes. Virulence genes 766 

were identified by VirulenceFinder using the genome assemblies of each isolate.  Only selected virulence 767 

genes are shown based on their associated pathotype. Colored boxes represent the genes associated with 768 

each pathotype and gray circles indicate the presence of that gene in each isolate. Isolates are clustered by 769 

Clermont phylogroups matching Figure 1. Circles labelled with a number match plasmids described in 770 

Table S5 for each isolate. 771 
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 773 

 774 
Figure 3: Antibiotic resistance phenotype of commensal E. coli isolated from ESBL-E positive 775 

participants. A range between 1-48 E. coli colonies isolated from ESBL-E positive participants were 776 

patched into Mueller Hinton II agar with antibiotics at CSLI standard levels. Each circle size and color 777 

intensity show the proportion of those colonies that were resistant to the antibiotic tested.   778 
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 780 
Figure 4: Microbial community similarities based on ESBL-E carriage. A) Bray-Curtis distances of 781 

metagenomic microbiome samples from all participants, organized in a non-metric multidimensional 782 

scaling (NMDS). Magenta dots represent participants that were ESBL-E negative while blue dots 783 

represent participants colonized with ESBL-E. B) Comparison of samples (first, duplicate of first, second 784 

and duplicate of the second sample) from the same ESBL-E positive participant, calculated by Bray-785 

Curtis distances. Each number indicates the participant ID, while circles or triangles represent the ESBL-786 

E status by sample.   787 
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 789 

 790 
Figure 5: Genus assignments for ASVs identified as enriched or depleted in ESBL-E positive 791 

participants. ASVs identified as significantly enriched or depleted by DESeq2 analysis with local fit and 792 

Wald test identifying significantly different ASVs under an alpha=0.001. ASVs are colored by phylum 793 

and organized by genus. Point size shows normalized mean counts and y axis shows log2fold change in 794 

ESBL-E positive participants. ASVs with a positive log2fold change were enriched, while ASVs with a 795 

negative log2fold change were depleted in ESBL-E positive participants.   796 

  797 
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Table 1: Selected demographic characteristics, risk factors, and presence of ESBL-E among all adult 798 

participants. The demographic data presented on Table 1 are based on the questionnaire responses from 799 

the first visit of all adult participants. The child demographics were not included in the tables or 800 

statistical analyses of risk factors, as they were not considered independent of the parent participants.  801 

Demographic or  

Risk Factor 
N 

ESBL-E positive 

N=24 

ESBL-E negative 

N=481 

p-value
1
/FDR p-

adjusted
2 

Biological Sex 

Female 349 13 (54%) 336 (70%) 
0.12/0.79 

Male 156 11 (46%) 145 (30%) 

Race 

Asian 37 4 (17%) 33 (7%) 

0.17/0.79 Black or African American 59 5 (21%) 54 (11%) 

White 377 15 (63%) 362 (75%) 

Age (years) 

18-29 234 13 (54%) 221 (46%) 

0.17/.079 

30-39 84 2 (8%) 82 (17%) 

40-49 53 3 (13%) 50 (10%) 

50-59 49 2 (8%) 47 (10%) 

60-69 45 1 (4%) 44 (9%) 

70-79 22 2 (8%) 20 (4%) 

80-89 5 0 (0%) 5 (1%) 

Antibiotic use in the past 1 month (oral, topical, or intravenous) 

Yes 47 2 (8%) 45 (9%) 
1/1 

No 454 22 (92%) 432 (90%) 

Gastrointestinal conditions or symptoms in the past 1 month 

Yes 177 8 (33%) 169 (35%) 
1/1 

No 327 16 (67%) 311 (65%) 

Urinary tract infection in the past 1 month (self-diagnosed or diagnosed by doctor) 

Yes 13 1 (4%) 12 (2%) 
0.47/0.79 

No  492 23 (96%) 469 (98%) 

International travel (past year)   

Yes 31 1 (4%) 30 (6%) 
1/1 

No 471 23 (96%) 448 (93%) 

Lived internationally in the last 5 years 

Yes 37 4 (17%) 33 (7%) 
0.09/0.79 

No 463 20 (83%) 443 (92%) 

Exposure to treated recreational water in the past month 

Yes 127 4 (17%) 123 (26%) 
0.47/0.79 

No 371 20 (83%) 351 (73%) 

Exposure to untreated recreational water in the past month   

Yes 107 3 (13%) 104 (22%) 
0.44/0.79 

No 391 21 (88%) 370 (77%) 
1 p-values were calculated using ‘fisher.test’ function in R with Monte-Carlo simulations. 2FDR adjusted p-values 802 

were calculated using the ‘p.adjust’ function in R with the Benjamini-Hochberg method.   803 

 804 
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Table 2: Assembled plasmids carried by each isolate identified by PlasmidFinder with encoded 806 

antibiotic genes identified by AMRFinderPlus and encoded virulence genes identified by 807 

VirulenceFinder. Plasmid number in each isolate matches the numbers in panels C and D of Figure 1 808 

and Figure 2. 809 

Isolate
a
  Plasmid 

Type  
Plasmid-associated Antibiotic Resistance Genes Virulence Genes  

497R (n=4) 1. IncI1  
2. IncFII   

1. blaCTX-M-1  1. cia  
2. mcbA, traJ, traT  

491 (n=2) -     

498 (n=3) 1. IncFII  
2. IncFIB  

2. blaCTX-M-27  1. aap, eatA, faeF, traT  
2. traJ, traT  

499 (n=0) -      

497 (n=2) 1. IncF  
2. IncI1  

1. tetA, tetR  
2. blaCTX-M-1  

1. anr, ompT  
2. cia  

495 (n=2) 1. IncF  
2. IncF  

1. blaCTX-M-15, blaOXA-1, blaTEM-1, aph(3”)-Ib, aph(6)-Id, 

aac(6’)-Ib-cr5, catB3, floR, qacEdelta1, qnrS1, sul1, 

sul2, terB, terC, terD, terE, tet(A), dfrA1  

1. terC  
2. anr, traJ, traT  

483 (n=3) 1. IncFII  
2. 

IncB/O/Z/K  

1. blaCTX-M-15, qnrS1  1. traT  
2. ireA  

C483 (n=0) -      

490 (n=3) 1. IncF  

 

1. tet(B)  1, anr, iucC, iutA, sitA, 

traT  

492 (n=6) 1. IncF  
2. IncFII  

 

1. blaTEM-1, aph(3”)-Ib, aph(6)-Id, sul2, tet(B)  
2. blaTEM-1  

1. anr, iucC, iutA, sitA, 

traT  
2. mcbA, traJ, traT  

504 (n=3) 1. IncF  
2. IncFII  

1. blaCTX-M-27, aadA5, aph(3”)-Ib, aph(6)-Id, erm(B), 

mph(A), qacEdelta1, sul1, sul2, tet(A), dfrA17  
1. senB  
2. fyuA, traJ  

486 (n=3) 1. IncF  1. blaCTX-M-27  1. senB  

482 (n=3) 1. IncF  
2. Col156  

  1. traJ, traT  
2. senB  

505 (n=1) 1. IncF  1. blaCTX-M-27, aadA5, aph(3”)-Ib, aph(6)-Id, mph(A), 

qacEdelta1, sul1, sul2, tet(A), dfrA17  
1. anr, senB, traT  

493 (n=2) 1. IncF  
2. IncF  

1. blaCTX-M-27, aadA5, aph(3”)-Ib, aph(6)-Id, mph(A), 

qacEdelta1, sul1, sul2, tet(A), dfrA17  
1. anr, senB, traT  
2. traT  

496 (n=1) 1. IncF  1. blaTEM-1, aph(3”)-Ib, aph(6)-Id, qnrS1, sul2, dfrA14  1. anr, traJ, traT  

503 (n=1) 1. IncF  1. tet(A)  1. iutA, senB  

485 (n=2) 1. IncF    1. anr, iutA, senB, traJ, 

traT  

487 (n=2) 1. IncF  1. aph(3”)-Ib, aph(6)-Id, sul2, tet(A)  1. anr, senB  

488 (n=3) 1. IncFI   
2. IncFII   

1. blaTEM-1, aadA5, aph(3”)-Ib, aph(6)-Id, mph(A), 

qacEdelta1, sul1, sul2, tet(A), dfrA17  
1. traJ, traT  
2. mcbA, traT  

500 (n=3) 1. IncF  

 

1. blaTEM-1, aac(3)-IId, aadA5, aph(3”)-Ib, aph(6)-Id, 

mph(A), qacEdelta1, sul1, sul2, tet(A), dfrA17  
1. senB, traJ, traT  

484 (n=3) 1. IncF  
2. IncFII  

1. blaTEM-1, aac(3)-IId, aph(3”)-Ib, aph(6)-Id, sul2, 

tet(B), dfrA17  
1. anr  
2. traT  

494 (n=2) 1. IncF  1. blaTEM-1  1. anr, senB, traT  

489 (n=2) 1. IncF  1. blaCTX-M-27  1. anr, senB, traT  

501 (n=3) 1. IncF  
2. IncI1  

1. blaCTX-M-27  1. anr, senB, traT  
2. cia  

502 (n=2) 1. IncF  1. blaCTX-M-27  1. anr, senB  
a 
n represents total number of plasmids contigs associated with each isolate, as listed in Table S5.  810 
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