ABSTRACT
Objective The 12-lead electrocardiogram (ECG) is routine in clinical use and deep learning approaches have been shown to have the identify features not immediately apparent to human interpreters including age and sex. Several models have been published but no direct comparisons exist.
Approach We implemented three previously published models and one unpublished model to predict age and sex from a 12-lead ECG and then compared their performance on an open-access data set.
Main results All models converged and were evaluated on the holdout set. The best preforming age prediction model had a hold-out set mean absolute error of 8.06 years. The best preforming sex prediction model had a hold-out set area under the receiver operating curve of 0.92.
Significance We compared performance of four models on an open-access dataset.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
The work of AB was conducted with the support of the iTHRIV Scholars Program. The iTHRIV Scholars Program is supported in part by the National Center for Advancing Translational Sciences of the National Institutes of Health under Award Numbers UL1TR003015 and KL2TR003016 as well as by The University of Virginia. This content is solely the responsibility of the authors and does not necessarily represent the official views of NIH or UVA.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The study uses only ONLY openly available human data that were originally located at: https://physionet.org/content/mimic-iv-ecg/1.0/
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Footnotes
Significant revisions in response to reviewer feedback