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likely driver of genetic susceptibility to childhood-onset asthma. 2 
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 37 

Abstract 38 

 39 

Asthma is a complex disease caused by genetic and environmental factors. Epidemiological 40 

studies have shown that in children, wheezing during rhinovirus infection (a cause of the common 41 

cold) is associated with asthma development during childhood. This has led scientists to 42 

hypothesize there could be a causal relationship between rhinovirus infection and asthma or that 43 

RV-induced wheezing identifies individuals at increased risk for asthma development. However, 44 

not all children who wheeze when they have a cold develop asthma. Genome-wide association 45 

studies (GWAS) have identified hundreds of genetic variants contributing to asthma 46 

susceptibility, with the vast majority of likely causal variants being non-coding. Integrative 47 

analyses with transcriptomic and epigenomic datasets have indicated that T cells drive asthma 48 

risk, which has been supported by mouse studies. However, the datasets ascertained in these 49 

integrative analyses lack airway epithelial cells. Furthermore, large-scale transcriptomic T cell 50 

studies have not identified the regulatory effects of most non-coding risk variants in asthma 51 

GWAS, indicating there could be additional cell types harboring these “missing regulatory 52 

effects”. Given that airway epithelial cells are the first line of defense against rhinovirus, we 53 

hypothesized they could be mediators of genetic susceptibility to asthma. Here we integrate 54 

GWAS data with transcriptomic datasets of airway epithelial cells subject to stimuli that could 55 

induce activation states relevant to asthma. We demonstrate that epithelial cultures infected 56 

with rhinovirus significantly upregulate childhood-onset asthma-associated genes. We show that 57 

this upregulation occurs specifically in non-ciliated epithelial cells. This enrichment for genes in 58 

asthma risk loci, or ‘asthma heritability enrichment’ is also significant for epithelial genes 59 

upregulated with influenza infection, but not with SARS-CoV-2 infection or cytokine activation. 60 

Additionally, cells from patients with asthma showed a stronger heritability enrichment 61 

compared to cells from healthy individuals. Overall, our results suggest that rhinovirus infection 62 

is an environmental factor that interacts with genetic risk factors through non-ciliated airway 63 

epithelial cells to drive childhood-onset asthma.   64 
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Introduction 65 

Asthma is a complex and heterogeneous disease that affects 300 million children and adults 66 

worldwide and represents a significant burden to healthcare ($82 billion for the US in 2013) 1. It 67 

is characterized by inflammation of the airways leading to recurrent episodes of airflow 68 

obstruction and symptoms such as wheezing, shortness of breath and coughing. Asthma patients 69 

have impairments of epithelial barrier function, manifested by irregular disruption of the tight 70 

junctions, detachment of ciliated cells and reduced expression of cell-cell adhesion molecules 71 

(for instance, E-cadherin) 2. This barrier disruption allows environmental substances like 72 

allergens, viruses, bacteria and toxic substances to penetrate the submucosa more easily.  73 

Allergens, viral infections, and type 2 inflammation have been shown to further damage the 74 

barrier integrity of the airway epithelium; moreover, they trigger asthma exacerbations 3. 75 

Longitudinal epidemiological studies have shown that wheezing caused by rhinovirus infection in 76 

children is a risk factor for developing asthma later in childhood 4–6. These observations have led 77 

to two hypotheses: (1) rhinovirus infection could be causal in asthma development or (2) 78 

rhinovirus-induced wheeze is a biomarker that identifies children at increased risk for asthma 79 

development. In some children, rhinovirus wheezing does not lead to asthma.  80 

 81 

Genome-wide association studies (GWAS) have discovered more than 100 risk loci for asthma 7,8. 82 

Similar to other complex diseases, the vast majority of the likely causal risk variants are non-83 

coding. As a consequence, deciphering the mechanisms through which the risk alleles lead to 84 

disease is challenging; it has been achieved for only a small minority of risk loci. Using a suite of 85 

recently developed methods that integrate GWAS data with functional genomics datasets, 86 

investigators have discovered key cell types that mediate the genetic susceptibility to complex 87 

diseases. For example, risk variants for rheumatoid arthritis are enriched in regulatory elements 88 

specific for CD4 T cells, and studies in patients and mice have shown the relevance of these cells 89 

in the pathogenesis of this disease 9–13. Additionally, GWAS integration with transcriptomics 90 

revealed that a significant proportion of the risk alleles for Alzheimer’s disease act through the 91 

myeloid lineage rather than the brain 14. Alzheimer’s disease is now considered an immune-92 
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mediated disease 14,15. For asthma, T cell-specific regulatory elements and gene expression are 93 

enriched in genetic risk loci 12,13,16,17, with some highlighting particularly Th2 cells consistent with 94 

the role of type 2 inflammation in asthma pathogenesis 18–21.  95 

 96 

The observations that non-coding risk variants affect gene regulation in cell types relevant to 97 

each disease have motivated large-scale transcriptomic studies to identify genetic variants that 98 

are associated with both gene expression (expression quantitative trait loci, eQTL) and disease 99 

risk. However, only 25-40% of risk variants for immune-mediated diseases co-localize with eQTLs 100 

in immune cells 22–24 . For asthma, alleles at only 47% of loci co-localize with leukocyte expression 101 

and/or splicing QTLs 22. Hence, the regulatory effects of most non-coding risk variants remain 102 

unknown. More recent studies have highlighted that these “missing regulatory effects'' could be 103 

hidden in specific activation or differentiation cell states that haven’t been systematically 104 

ascertained 25–28. 105 

 106 

GWAS enrichment studies have been highly biased towards annotations of blood immune cell 107 

types, with reduced resolution when using other tissues relevant to the context of asthma, such 108 

as GTEx tissues from post-mortem human organs 11,13,16,29,30. Here we sought to define whether 109 

airway epithelial cell states could be driving genetic susceptibility to asthma. We analyzed 10 110 

single-cell and bulk transcriptomic datasets of epithelial cells subject to different activation 111 

conditions. We integrated these datasets with GWAS summary statistics for childhood-onset 112 

asthma (COA), adult-onset asthma (AOA), unspecified-onset asthma (henceforth referred to as 113 

all asthma), and a genetically correlated type 2 inflammation trait: allergy/eczema 114 

(Supplementary Table 1) 31–33. We additionally tested three control traits to assess the specificity 115 

of our findings. We used state of the art methods that control for linkage disequilibrium, take 116 

advantage of most ascertained genetic variants in the genome, and have been shown to work 117 

well for bulk and single cell datasets 13,17.  118 
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Results 119 

We applied two methods that use GWAS data to identify relevant cell types for disease. Linkage 120 

Disequilibrium Score-regression in Specifically Expressed Genes (LDSC-SEG) identifies heritability 121 

enrichment in genomic annotations (such as genes or chromatin marks with specific presence in 122 

a particular cell type or cell state) 13. Single-cell disease-relevance score (scDRS) identifies cells, 123 

from single-cell RNA-seq data, that significantly express genes in GWAS loci (weighted according 124 

to their strength of association with disease) relative to null sets of control genes in the same 125 

dataset 17. We retrieved GWAS summary statistics from asthma related traits as described above. 126 

Throughout our analyses we included three complex traits as controls: height, as a non-immune 127 

control, Alzheimer’s disease (AD) as a trait implicating myeloid cells, and rheumatoid arthritis 128 

(RA) as a lymphocyte-driven disease with a strong T cell component 11,13,16,17,29. 129 

 130 

T cell validation  131 

First, we sought to validate T-cell involvement in the genetic susceptibility to asthma, as 132 

previously reported in the literature 13,16,17,29. Applying LDSC-SEG to bulk ATAC-seq data of human 133 

peripheral blood leukocyte populations, we confirmed that T-cell specific open chromatin regions 134 

are significantly enriched in heritability for asthma-related traits (Supplementary Figure 1)16. 135 

Furthermore, when comparing cell types between their resting and activated state, we confirmed 136 

that activation-specific open chromatin in T cells has significant heritability enrichment for all the 137 

asthma-related traits (Supplementary Figure 1E). Next, we applied scDRS to single-cell RNA-seq 138 

datasets to identify cells with significant over-expression of risk genes identified from GWAS 139 

studies (see Methods). In sinonasal mucosa tissue from healthy donors and chronic rhinosinusitis 140 

patients, we observed that 21-83% of cells with significant disease relevant score (10% FDR) for 141 

asthma-related traits are T cells (Supplementary Figure 2). In a dataset of house dust mite-142 

activated T cells from asthma and allergic patients, we observed that among the cells with 143 

significant disease relevant score, most were T effector and Th2 cells (51-57% and 48-42% 144 

respectively, Supplementary Figure 3).  Overall, these analyses confirm the validity of the 145 
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methods used for this study and confirm previous findings showing the relevance of T cells in the 146 

genetic susceptibility to asthma-related traits. 147 

 148 

Rhinovirus infection induces upregulation of asthma-associated genes in epithelial cells from 149 

healthy donors. To assess the role that rhinovirus infection could play in asthma genetic 150 

susceptibility at the epithelial cell level, we analyzed a publicly available bulk RNA-seq data of 151 

basal airway epithelial cells from healthy donors (N=9) that were infected in vitro with RV-A16 152 

(rhinovirus species RV-A, subtype 16) or treated with PBS vehicle control (Figure 1A) 34. Using a 153 

linear mixed model, we performed differential expression analysis (DEA) testing for rhinovirus 154 

infection versus PBS vehicle. From the 14,883 tested genes, we selected the top 10% based on t-155 

statistic (as recommended by LDSC-SEG) to select genes that are upregulated with rhinovirus 156 

infection(Figure 1B). We used LDSC-SEG to investigate whether this gene set showed an 157 

enrichment of asthma heritability. Our analysis showed significant heritability enrichment in 158 

rhinovirus-upregulated genes for all asthma (P = 0.033) and COA (P = 0.037), with a larger 159 

coefficient observed for COA (Figure 1C). Moreover, we did not observe any significant 160 

enrichment for any of the control traits (AD, RA, height) (Supplementary Figure 4A). The fact that 161 

we did not observe significant heritability enrichment in RV-upregulated genes for RA suggests 162 

that the signal observed for all asthma and COA is not due to a general immune transcriptional 163 

response, but rather a response that is specific for RV-infection of epithelial cells. 164 

 165 

Next, we sought to validate these findings in an independent study using a different strain of RV. 166 

We reanalyzed a bulk RNA-seq time course dataset of epithelial cells from 3 healthy donors 167 

where cells were infected with RV-C15, and samples were collected before infection and at 12, 168 

24, and 42 hours post-infection (HPI) (Figure 1D) 35. We performed differential expression 169 

analysis to identify genes upregulated specifically in each time point (versus all others), and 170 

applied LDSC-SEG (Supplementary Figure 4B). We observed significant heritability enrichment 171 

for upregulated genes by rhinovirus infection specifically at 24 hours for all asthma-related traits 172 

(P < 0.05, Figure 1E). This enrichment was higher for COA and allergy/eczema, compared to all 173 

asthma and AOA (Figure 1E). Genes that were specifically expressed at 42 hours post-infection 174 
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also had positive enrichment for heritability in all traits, but this was only significant for 175 

allergy/eczema (P = 0.03). Once again, this enrichment was not present in any of the control traits 176 

(Supplementary Figure 4C). Together, these findings suggest that rhinovirus-infected epithelial 177 

cells represent a cell state that may mediate genetic susceptibility to asthma, with a greater 178 

contribution to COA than to AOA.  179 

 180 

Asthma-associated genes after rhinovirus infection are specifically enriched in non-ciliated 181 

epithelial cells. We then asked whether there were specific epithelial cell subsets that may 182 

mediate asthma genetic risk after rhinovirus infection. To evaluate this, we used single-cell RNA-183 

seq data of 3 healthy donors, where airway epithelial cell samples were infected with RV-C15 or 184 

resting and profiled at 24 hours (Figure 2A, Supplementary Figure 5A-C). We performed cell 185 

clustering and then annotated the clusters based on epithelial cell markers (Supplementary 186 

Figure 5D). We identified 2 ciliated cell subsets, and 5 non-ciliated cell subsets: basal, 187 

deuterosomal, neuroendocrine, secretory, and transitional (Figure 2B, Supplementary Figure 188 

5D). We applied scDRS on this dataset to identify cells with significant over-expression of asthma-189 

associated genes. The number of cells with significant disease relevant scores (10% FDR) varied 190 

per trait: 147 cells for all asthma, 850 cells for COA, 0 for AOA and 147 cells for allergy/eczema 191 

(Figure 2C). Notably, COA was the trait with the highest proportion of disease-relevant cells. 192 

Among the cells with a significant disease relevant score, 99% corresponded to the stimulated 193 

condition. Furthermore, the disease relevant cells were strongly over-represented in the non-194 

ciliated cell subsets, representing 96-99% of the significant cells, while they make up 25% of the 195 

whole dataset (Figure 2C-D). As expected, we did not observe any significant cells for height, AD 196 

and RA (Supplementary Figure 5E). 197 

 198 

Overall, we identified non-ciliated cells as the main epithelial cell subset with significant 199 

upregulation of childhood-onset asthma-associated genes after rhinovirus infection. However, 200 

only ciliated cells are known to be infected by RV-C15, which we confirmed by looking at the 201 

expression of the RV-15 receptor (CDHR3) and the presence of the viral sequence itself in the 202 

scRNA-seq data 36 (Supplementary Figure 5F-G). We therefore hypothesized that ciliated cells 203 
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may communicate with non-ciliated cells upon rhinovirus infection. We used CellphoneDB  to 204 

investigate some of the possible ligand-receptor mechanisms through which cells may be 205 

communicating 37. Specifically, we looked for ligand-encoding genes expressed in ciliated cells 206 

and their corresponding receptor-encoding gene expressed in non-ciliated cells. Furthermore, we 207 

required that the ciliated cell ligand-encoding gene is upregulated upon rhinovirus infection. We 208 

identified a potential pair of interactors consisting of LGALS9, which codes for a galectin from the 209 

beta-galactoside-binding protein family implicated in the modulation of the cell-cell and cell-210 

matrix interactions, and SORL1, a gene encoding sortilin-related receptor, which may have a role 211 

in endocytosis and intracellular trafficking (Supplementary Figure 5H-I).  212 

 213 

Enrichment of asthma-associated genes after rhinovirus infection is strong in epithelial cells 214 

from asthma patients. Having observed the enrichment of asthma-associated genes after RV 215 

infection in both bulk and single-cell level in healthy subjects, we asked whether we would 216 

observe the same enrichment in samples coming from asthma patients. To do this, we repeated 217 

the differential expression analysis between rhinovirus RV-A16 infection and treatment with PBS 218 

from the first dataset 34, this time using the asthma patient cohort (Figure 3A). We found 2,843 219 

differentially expressed genes at 5% FDR, 1,353 of them upregulated and 1,481 downregulated 220 

after RV infection (Figure 3B). Of the 2,843 differentially expressed genes in patients, 1,834 were 221 

also differentially expressed in healthy controls. After selecting the top 10% genes by t-statistic 222 

(1,488) and running LDSC-SEG, we observed significant heritability enrichment for all asthma (P 223 

= 0.003) and COA (P = 0.003, Figure 3C). We did not observe heritability enrichment for down-224 

regulated genes by RV (P > 0.05, Supplementary Figure 6C). While the results were consistent 225 

with what we observed in healthy controls (COA *=0.17, all asthma *= 0.15), the enrichment 226 

of RV-upregulated asthma-associated genes was more significant and had a larger enrichment 227 

coefficient in the asthma patients  (COA *=0.32, all asthma *=0.25).  228 

 229 

Based on these results, we hypothesized that asthma patients might have airway epithelial cells 230 

in a transcriptomic state that over-expresses asthma-risk genes in comparison to healthy 231 

controls, which might be linked to or independent of their response to RV. To test this, we 232 
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analyzed differentially expressed genes between asthma patients and healthy individuals taking 233 

all samples while controlling for RV/PBS treatment. We found 994 differentially expressed genes 234 

between patients and controls (5% FDR, Figure 3D). After selecting the top 10% genes 235 

upregulated in patients based on t-statistic (1,593), we found a suggestive significant enrichment 236 

for COA heritability (P = 0.05, Figure 3E). As expected, our control traits did not have any 237 

significant heritability enrichment for either of the annotations tested (Supplementary Figure 6). 238 

Overall, these results suggest that the epithelial cells from patients could be in a state that is 239 

over-expressing asthma-associated genes. 240 

 241 

Genes at asthma risk loci upregulated with rhinovirus infection in airway epithelial cells. We 242 

then investigated which of the genes upregulated by rhinovirus infection are associated with COA 243 

and AOA. To do so, we retrieved the GWAS lead variants identified by Ferreira et al. 38. We then 244 

linked risk variants to genes using three approaches: (1) selecting the likely target genes identified 245 

by the locus-to-gene (L2G) algorithm of Open Targets Genetics, herein called L2G genes, (2) 246 

selecting the closest gene to the lead variant, and (3) selecting genes within a 250kb window of 247 

the lead variant (see Methods). From these gene lists, we selected genes that were upregulated 248 

upon rhinovirus infection in epithelial cells at 5% FDR (Figure 4) 34,35. For COA we identified 55 249 

risk loci with genes upregulated upon rhinovirus infection in epithelial cells, 13 of which have L2G 250 

likely target genes (e.g. IL1RL1, IL4R, GSDMB, OVOL1, MYC), and 6 are the closest gene to the 251 

lead variant (e.g. IRF1, GPR183). For AOA only 19 risk loci have genes upregulated by RV in 252 

epithelial cells, among which 3 are likely target genes (e.g. IL4R, HDAC7, IL1RL1) and 3 are the 253 

closest gene to the lead variant (e.g. RAPGEF3, IRF1, SSR3). Few genes were shared between COA 254 

and AOA (IRF1, IL4R, PDLIM4, IL1R2 and IL1RL1).  255 

 256 

After having characterized the asthma-associated genes that are upregulated in RV-infected 257 

epithelial cells, we sought to define which of these genes are shared with T cells. To do so, we 258 

compared the levels of expression of the genes in the RV-datasets with a dataset we previously 259 

published consisting of 8 activation time points of human periphery memory CD4+ T cells 260 

stimulated with anti-CD3/CD28 microbeads 25. One of the highlighted genes that also had an 261 
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increased expression in T cells was MYC, with an increase at 2 and 4 hours post-stimulation. 262 

Notably, this gene’s expression was not only increased after rhinovirus infection within asthma 263 

patients (P=0.01) and within healthy controls (P=0.0009) but was also upregulated in patients 264 

compared to controls (P=0.01). On the other hand, OVOL1, another GWAS gene upregulated in 265 

RV-infected epithelial cells, shows the same pattern of expression as MYC in epithelial cells, but 266 

shows almost no expression in T cells (Figure 4B, Supplementary Figure 7). OVOL1 is also 267 

associated with atopic dermatitis, another type 2 inflammatory disease and a recent meta-268 

analysis study confirmed this susceptibility locus for eczema-associated asthma 39. 269 

 270 

Other viral infections in epithelial cells and their association with asthma susceptibility. 271 

We next asked whether other viruses could potentially be inducing upregulation of asthma-272 

associated genes in epithelial cells. First, we analyzed a bulk RNA-seq dataset of bronchial 273 

epithelial cells stimulated by influenza A virus at 48 hours or sham control (N = 3 healthy donors, 274 

Figure 5A). We identified differentially expressed genes between influenza A and the sham 275 

control and we selected the top 10% upregulated genes ranked by a t-statistic to run LDSC-SEG 276 

(Supplementary Figure 8A). The results show a significant enrichment of heritability for the four 277 

asthma-related traits (P < 0.05), suggesting that influenza A infection also significantly 278 

upregulates asthma and allergy-associated genes (Figure 5B). We did not observe any significant 279 

enrichment for the control traits (Supplementary Figure 8B).  280 

 281 

Subsequently, we analyzed a single-cell RNA-seq dataset of immune and non-immune cells 282 

obtained by nasopharyngeal swabs from COVID-19 patients or healthy donors (N=58, Figure 5C-283 

D) 40. We identified cells with significant disease-relevant scores at 10% FDR, among which we 284 

found 174 cells for AOA, 795 cells for COA, 594 for allergy/eczema and 280 for all asthma (Figure 285 

5E). COA yielded the highest number of disease relevant cells. We observed an increase in 286 

proportions of enriched cells for T cells in all traits and for squamous cells in COA, allergy/eczema 287 

and all asthma (Figure 5F). More precisely, T cells which represented 5% of the cells in the 288 

dataset, constituted 78% of significant cells for AOA, 11% for COA, 42% for allergy/eczema and 289 

61% for all asthma (Figure 5F). The COVID-19 status did not have any significant impact on the 290 
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asthma-associated expression, as the disease-relevant cells were not overrepresented in any 291 

specific patient group (Figure 5G). As expected, we observed an enrichment for the macrophages 292 

cluster in Alzheimer’s and T cells cluster in rheumatoid arthritis (Supplementary Figure 8C). 293 

Additionally, we analyzed a dataset of bronchial epithelial cells (BECs) infected with SARS-CoV-2 294 

in vitro, and profiled with scRNA-seq after one, two or three days, along with non-infected cells 295 

(N = 1 healthy control, Supplementary Figure 9A-B). We clustered and annotated ciliated and 296 

non-ciliated cell subsets, and applied scDRS for the four asthma-related traits (Supplementary 297 

Figure 9C-D). We identified cells with significant disease-relevant scores at 10% FDR, finding 3 298 

cells for AOA, 802 cells for COA, 243 cells for allergy/eczema and 621 cells for all asthma 299 

(Supplementary Figure 9D-E). The disease relevant cells were strongly over-represented in the 300 

non-infected cells subsets, constituting 62-89% of the significant cells (Supplementary Figure 9F). 301 

Overall, these findings indicate that the influenza virus significantly induces the expression of 302 

asthma-associated genes, whereas SARS-CoV-2 does not. 303 

  304 

Epithelial cells activated with cytokines relevant for type 2 inflammation.  305 

Both epithelial and immune cells respond to cytokines by upregulating signaling pathways that 306 

drive inflammation. Some pro-inflammatory cytokines relevant to asthma are IL-4, IL-13, IL-17 307 

and interferon (IFNγ). These cytokines are upregulated in subsets of patients with severe or type 308 

2 asthma 41–46. Moreover, blockade of IL4Rα is a highly effective treatment for moderate to 309 

severe asthma 47. Consequently, we asked whether epithelial cells stimulated with cytokines 310 

might induce a transcriptional program enriched for asthma-associated genes. First we used a 311 

bulk RNA-seq dataset consisting of human bronchial epithelial cells (HBECs) that were stimulated 312 

with either IFNα, IFNγ, IL-13 or IL-17 (N = 6 healthy donors, Figure 6A) 48. We selected the top 313 

10% upregulated genes by t-statistic for each stimulus (Supplementary Figure 10A). We used 314 

LDSC-SEG to analyze these 4 sets of genes in the 4 asthma-associated traits and the control traits. 315 

We did not identify any significant heritability enrichment for any of the stimuli gene sets for the 316 

asthma-associated traits tested here (Figure 6B), nor for the control traits (except for genes 317 

upregulated by IFNγ for rheumatoid arthritis, Supplementary Figure 10B).  318 

 319 
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Next, given that IL-13 might work synergistically with IL-4, we performed bulk RNA-seq of nasal 320 

airway epithelial cells from healthy donors (N = 5) co-stimulated in vitro with IL-4 and IL-13 321 

(Figure 6C). We tested DE genes for the IL-4-IL-13 condition compared to the unstimulated 322 

control. In line with the results observed in the previous analysis, we found no significant 323 

enrichment for any of the asthma-associated (Figure 6D) or control traits (except for AD, 324 

Supplementary Figure 10E). Together, these results suggest that epithelial cells upregulate 325 

asthma-associated genes in a stimulus-specific manner, which to the extent of this study, is not 326 

caused by the stimulation with the cytokines tested here. 327 

 328 

Discussion 329 

While some genetic risk variants for asthma are enriched near genes with T cell-specific 330 

expression 13,17,22,28, the effects of most variants on gene regulation remain unknown. In this 331 

study, we asked whether some of these “missing regulatory effects” could be hidden in airway 332 

epithelial cells, given they are the first line of contact for respiratory viruses, including those that 333 

have been associated with asthma development or exacerbations. We analyzed ten 334 

transcriptomic datasets of human airway epithelial cells cultured under different stimuli and 335 

integrated them with genetic susceptibility data for asthma and related traits. We consistently 336 

showed that rhinovirus-activated epithelial cells significantly upregulate genes at childhood-337 

onset asthma risk loci. We observed this in samples from healthy donors and even more so in 338 

cells from asthma patients. Notably, we discovered that non-ciliated cells are the subset driving 339 

these associations with asthma, indicating that non-ciliated airway epithelial cells activated with 340 

rhinovirus are key mediators of genetic susceptibility to childhood-onset asthma. While other 341 

respiratory viruses, such as influenza might also significantly upregulate genes at asthma risk loci, 342 

this is not likely a general virus response or epithelial cell activation signature, given that we did 343 

not detect asthma heritability enrichment for SARS-CoV-2 or cytokine-upregulated genes.  344 

 345 

Our findings are consistent with epidemiological studies that have shown associations between 346 

wheezing illness caused by rhinovirus infection and asthma development in children 4,49–51. 347 

Additionally, a previous birth cohort study identified genetic variants at the 17q21 locus that 348 
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were associated with asthma in children who had rhinovirus-associated wheezing illness in the 349 

first 3 years of life, but not in children who had RSV-associated wheezing illnesses at those same 350 

ages 52. In that study, rhinovirus upregulated two genes at this locus, ORMDL3 and GSDMB, in 351 

PBMCs 52. Here, we observe that in non-ciliated airway epithelial cells rhinovirus induces 352 

upregulation of GSDMB as well as putative causal genes in 54 additional loci. This demonstrates 353 

a widespread interaction between in vitro rhinovirus infection and polygenic susceptibility to 354 

childhood-onset asthma, specifically mediated through airway epithelial cells. These findings are 355 

concordant with a previous study reporting that genes at COA-specific risk loci (as compared to 356 

AOA) have high expression in skin, which is a barrier tissue with an abundance of epithelial cells 357 

30. Overall, our findings support the hypothesis that rhinovirus could be causally linked to asthma 358 

development in children and not just be a biomarker of children destined to develop asthma. Not 359 

all children that get RV-wheezing develop asthma, and our findings suggest that the combination 360 

of preschool rhinovirus wheezing illnesses and a high genetic burden synergistically promote the 361 

development of childhood asthma.  362 

 363 

We discovered that non-ciliated cells (basal, secretory, and transitional) are the specific cell 364 

subsets that overexpress genes at asthma risk loci. This suggests that an important fraction of 365 

the non-coding risk variants for asthma likely affect gene regulation in non-ciliated cells under 366 

specific viral activation states. In our study we looked at two different rhinovirus types. For the 367 

case of RV-C15, the receptor of the virus, CDHR3, is mainly expressed in the ciliated cells 53,54 and 368 

viral RNA quantification confirmed this subset is the one directly infected by the virus 369 

(Supplementary Figure 5G). This suggested that RV-infected ciliated cells efficiently transmit a 370 

signal to the non-ciliated cells, which then express genes in asthma risk loci. The time course 371 

experiments indicated this upregulation of asthma-associated genes occurred predominantly at 372 

24 and 42 hours 35. In our analyses of RV-A16 infected epithelial cells, the data came from bulk 373 

RNA-seq of basal cells (non-ciliated) treated for 24 hours. In contrast to RV-C15, RV-A16 binds to 374 

the ICAM receptor, which is expressed in ciliated cells and basal cells 55. Strikingly, while the cell 375 

subsets that get directly infected differ between the two RV strains, both significantly 376 

upregulated asthma-associated genes in non-ciliated cells at 24 hours. By contrast, for SARS-CoV-377 
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2, in vitro infection did not upregulate genes in asthma risk loci; rather, the non-infected cells 378 

presented a significant expression of asthma-associated genes. Although the data in this study 379 

came from only one individual, the cells with significant disease relevant scores were also 380 

predominantly non-ciliated cells (> 83%, Supplementary Fig. 9). Future single-cell studies with 381 

larger sample sizes and ascertaining infection by multiple types of viruses could point to 382 

additional epithelial cell subsets and cell states as candidate drivers of genetic susceptibility to 383 

asthma. 384 

 385 

The observations in our study may also be relevant to virus-induced asthma exacerbation 56. 386 

Here, we not only demonstrate that rhinovirus infection induces a transcriptional response 387 

enriched in childhood-onset asthma risk, but we also identified a heritability enrichment for 388 

genes upregulated in asthma patients compared to controls, even when controlling for RV 389 

infection (suggestive P = 0.051, Figure 3E). This result goes in line with a previous observation 390 

that, at the open chromatin level, airway epithelial cells of asthma patients have a large amount 391 

of open chromatin regions at baseline that are RV-response regions in healthy controls 34. It is 392 

possible that over-expression of asthma-associated genes at baseline may increase the risk for 393 

acute virus-induced exacerbations in patients with asthma. Influenza infections, which can cause 394 

asthma exacerbations (especially in adults) 57–59, induced an enrichment of both adult-onset and 395 

childhood-onset asthma heritability in influenza upregulated genes in airway epithelial cells. 396 

Furthermore, SARS-CoV-2 seems less likely than other viruses to provoke asthma exacerbations, 397 

and asthma does not appear to be a risk factor for severe SARS-CoV-2 infection 60. This could be 398 

due to multiple reasons, such as allergy-induced reduction in the ACE2 receptor 61, but it is also 399 

in line with our observations that SARS-CoV-2 infection itself does not induce a transcriptional 400 

program significantly enriched in asthma heritability 61.  401 

 402 

Our study had some limitations. We were not able to ascertain all possible epithelial cell subsets 403 

and states. Most of the datasets analyzed involved in vitro infections, rather than in vivo infected 404 

samples. Additionally, all samples came from adults, which made it all the more striking that we 405 

detected heritability enrichments for childhood-onset asthma. Future studies in children are 406 
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important to validate these findings. Furthermore, we were limited by the cell sources and 407 

specific time points and experimental designs of each study. In particular, the absence of asthma 408 

heritability enrichment in cytokine-upregulated genes in epithelial cells could imply multiple 409 

scenarios. One possibility could be that even though pro-inflammatory cytokines (IL-4, IL-13, 410 

IFNα, IFNγ, IL-17) upregulate many genes in epithelial cells (684-2876 at 5% FDR in our analyses), 411 

they do not significantly interact with polygenic risk factors for asthma in epithelial cells. Other 412 

possibilities for the absence of signal could be that the cytokine-induce activation might interact 413 

with genetic risk factors acting in T cells or other non-epithelial cells, or that there are interactions 414 

with environmental conditions not present in the models included in this analysis.  415 

 416 

Overall, our findings of asthma heritability enrichment in various epithelial cell states (resting 417 

versus virus-infected, patients versus healthy controls) could reflect variability in how risk 418 

variants contribute to disease onset versus progression. These results highlight the importance 419 

of studying the cellular context in which GWAS loci contribute to disease risk and will ultimately 420 

help to better understand the mechanisms through which those risk variants are acting. 421 

Moreover, the outcomes of our study could open the door to new therapeutic avenues. Indeed, 422 

drug targets that have genetic evidence are more likely to be approved and move forward to 423 

clinical trials than those without it 62. Large-scale multi-omic studies (with comparable power to 424 

GWAS 63) of non-ciliated airway epithelial cells activated with rhinovirus could help identify the 425 

target genes of non-coding asthma risk variants, together with functional validations with 426 

approaches such as base editing. Finally, if our observations are confirmed and further 427 

characterized by future studies, it would support the development of a rhinovirus vaccine or 428 

other protective intervention as a way to prevent childhood-onset asthma 64.  429 

Material and methods 430 

Dataset collection  431 

We downloaded transcriptomic datasets from the National Center for Biotechnology Information 432 

(NCBI) Gene Expression Omnibus (GEO), Genome Sequence Archive (GSA) and from ImmPORT. 433 
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We also downloaded a chromatin accessibility dataset (ATAC-seq) from GEO (Supplementary 434 

Table 2).  435 

Supplementary Table 2. Datasets used in this study. 

Data type Source Accession number 

ATAC-seq Calderon et al., 2019 GSE118189 

scRNA-seq  Wang et al., 2023 HRA000772 (Genome Sequence Archive) 

scRNA-seq  Seumois et al., 2020 GSE146170 

RNA-seq  Helling et al., 2020 GSE152550 

RNA-seq  Basnet et al., 2023 SDY1882 (ImmPORT) 

scRNA-seq  Basnet et al., 2023 SDY1882 (ImmPORT) 

RNA-seq  Tao et al., 2022 GSE193164 

scRNA-seq  Ravindra et al., 2021 GSE166766 

RNA-seq  Koh et al., 2022 GSE185200 

RNA-seq  Barret lab Will be published as part of current study 

 436 

Ethical approval  437 

The Mass General Brigham Institutional Review Board gave ethical approval for the Barrett 438 

dataset.  439 

 440 

GWAS collection 441 

We downloaded pre-processed summary statistics for the four asthma-associated traits; adult-442 

onset asthma, childhood-onset asthma, all asthma, allergy/eczema and for those in our control 443 

panel; height, Alzheimer’s disease and rheumatoid arthritis (Supplementary Table 1).  444 

 445 

Supplementary Table 1. Summary statistics used for heritability enrichment analysis. 

 Studied trait  Reference 

Asthma-associated 

traits 

Adult-onset asthma Ferreira et al., Am J Hum Genet, 2019 38 

Childhood-onset asthma Ferreira et al., Am J Hum Genet, 2019 38 

Allergy/eczema UK biobank 65 

All asthma UK biobank 65 

Control traits Height Lango, et al., Nature, 2010 66 
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Alzheimer’s disease Lambert, et al., Nat Genet, 2013 67 

Rheumatoid arthritis Okada, et al., Nature, 201468 

 446 

Summary statistics processing for visualization 447 

We downloaded the childhood-onset asthma and adult-onset asthma 38 summary statistics from 448 

the GWAS catalog. We used the harmonized summary statistics in the GRCh38 version of the 449 

genome. We removed the MHC region (chr6:28510120-33480577).  450 

 451 

Bulk RNA-seq data processing and quality check 452 

FASTQ files were aligned to the GRCh38 or GRCh37 human genome using STAR (v2.7.9a) with 453 

standard parameters and two-pass mode, or the Salmon tool (v1.5.1). For BAM files generated 454 

with STAR, counts were calculated using RSEM (v1.3.3). We normalized the counts by 455 

transforming them to their log2(TPM+1) value, where TPM stands for transcripts per million. To 456 

detect outlier samples, we performed principal component analysis on scaled normalized 457 

expression for the top 1000 most variable genes that were expressed in at least 25% of the 458 

samples. For alignment and quantification, we used the ENSEMBL reference annotation release 459 

105 which was downloaded from the ENSEMBL website. 460 

 461 

Differential expression analyses 462 

Differential gene expression was tested using a linear mixed model, similar to what we did in 463 

Gutierrez-Arcelus et al.69. Specifically, we used a likelihood ratio test between two nested models 464 

(anova function in R). In these models, gene expression levels (log2(TPM + 1)) represent the 465 

dependent variable. “Donor ID” was included as a predictor variable, treated as a random effect. 466 

To compare one condition against the others, we indicated with 1 the tested condition and 0 for 467 

the others (the test variable). We used the function “lmer” from the R package “lme4” to 468 

implement the model. For risk gene visualization in the miami plot, P-values were corrected for 469 

multiple hypothesis testing using the package “qvalue”. Differentially expressed genes at 5% FDR 470 

are reported for depicting specific genes in risk loci. After each analysis, we calculated a t-statistic 471 

for each gene to rank them and chose the top 10% as annotations for heritability enrichment 472 
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analysis (see LDSC-SEG section below). The details of each analysis are divided by dataset and 473 

described in the following section.  474 

 475 

-  Helling Dataset 476 

To assess DE genes between rhinovirus treatment and PBS vehicle control within healthy 477 

individuals, we tested genes that had a normalized count greater than 1 in at least 9 samples 478 

which led to a total of 14,883 genes. The threshold for the minimum number of samples reflected 479 

half of the biological replicates (9/18). In addition to having “donor ID” as a random effect, we 480 

accounted for “sex” as a fixed effect. We repeated this process in asthma patients only, testing 481 

14,888 genes for differential expression between rhinovirus infection and PBS vehicle control. To 482 

find DE genes from asthma patients compared to healthy controls, we took all the samples and 483 

recalculated the number of genes present in at least 9 samples. We tested 15,935 genes and 484 

incorporated “treatment” with either PBS or rhinovirus as a fixed effect covariate in the model, 485 

and tested for disease status (0/1). 486 

 487 

 Tao Dataset 488 

We included 16,031 genes having a normalized count greater than 1 in half of the samples (3/6 489 

samples). We tested for differential expression between influenza treatment and control (sham).  490 

 491 

 Koh Dataset 492 

We tested 14,988 genes, to find differentially expressed genes specific to each condition 493 

compared to all others: IFNα, IFNγ, IL-13, and IL-17, respectively. We selected genes having a 494 

normalized count greater than 1 in at least 6 samples. This number reflected the smallest amount 495 

of replicates found across conditions (6/36 samples). 496 

 497 

-  Basnet Dataset 498 

We excluded the resting sample from donor B03 from these analyses (see Methods, Bulk RNA-499 

seq, QC, and analysis). To obtain differentially expressed gene profiles for each time point, we 500 

performed four separate models in which we tested a single time point against the other two 501 
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and the resting condition. Our fourth model tested for DE genes in activation conditions versus 502 

the resting state through the same approach. Since we had 3 biological replicates for most time 503 

points, we tested genes with a normalized count greater than 1 in at least (3/11) samples, which 504 

yielded 14,380 genes. This gene set was used for all models. 505 

 506 

-  Barrett  Dataset 507 

Air-liquid interface (ALI) cultures were grown from nasal basal epithelial cells from 6 healthy adult 508 

donors.  ALIs were allowed to mature for 14 days, then stimulated with 10 ng/mL of IL-4 and 10 509 

ng/mL of IL-13 for an additional 7 days, and then lysed with TCL buffer (Qiagen 1031576) at the 510 

conclusion of the experiment. Lysates were stored at -80C and later submitted to the Broad for 511 

SmartSeq2 low input bulk RNA-seq (38bp paired-end sequencing). 512 

 513 

To obtain genes DE under IL-4 and IL-13 co-stimulation we compared them against the non-514 

stimulated cells. We tested 13,518 genes that had a normalized count greater than 1 in at least 515 

half of the samples (9/18) samples. 516 

  517 

ATAC-seq data processing and differential accessibility analysis 518 

We used the 829,942 consensus peaks called by Calderon et al. (peaks were called in each sample 519 

separately, then merged across samples, and then counts were re-calculated for all samples using 520 

the merged peak coordinates). We transformed counts into reads per kilobase per million 521 

(RPKM), then quantile normalized and finally scaled to their log2(normalized RPKM+1). To assess 522 

differentially accessible (DA) peaks, we first calculated the mean normalized count per cell type 523 

and then created cell-type accessible sets of peaks. We included a peak in the set if it had a 524 

normalized count greater than the mean of the cell type in at least half of the samples 525 

corresponding to subtypes of that cell type. We tested between 400 and 600 thousand peaks per 526 

cell-type for DA. To do so, we implemented a linear mixed model using the normalized counts as 527 

the response variable, and for the predictor, a bit flag system indicating 1 if the sample belonged 528 

to the tested cell type and 0 for the remaining cells. Peaks were sorted by t-statistic and we took 529 

the top 10% peaks for each cell-type-specific annotation. This process was replicated for a second 530 

selection model, implemented to divide peaks between stimulated and unstimulated categories. 531 
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  532 

Single-cell RNA-seq, QC and analysis  533 

FASTQ files from the single-cell RNA-seq dataset from Wang et al., Seumois et al., Basnet et al., 534 

and Ravindra et al., 35,70–72 were downloaded as indicated in the “Dataset Collection” section. For 535 

each dataset, we aligned FASTQ files to the human reference human genome GRCh38 73, using 536 

the GENCODE release 32 with cellranger count (v6.1.2), using default parameters. For Basnet et 537 

al, we added the RV-C15 sequence to the reference genome. Counts were then aggregated using 538 

the cellranger aggr (v6.1.2) function with the default parameters. The subsequent analyses were 539 

done for each of the datasets individually. We discarded cells with less than 500 genes expressed 540 

and cells expressing more than 20% of mitochondrial genes. We normalized raw counts with the 541 

“LogNormalize” method from Seurat package (v4.0.5). We used the normalized counts to 542 

perform a PCA with the 1000 most variable genes. We used the top 20 principal components to 543 

perform dimensionality reduction with UMAP to visualize the data. We identified clusters using 544 

the “FindClusters” function with the Louvain algorithm and a resolution parameter of 0.2, using 545 

the top 20 principal components (PCs). We corrected PCs with Harmony package 74 (v0.1.1) as 546 

indicated as follows, if nothing is indicated, no corrections were applied. For Wang et al., dataset 547 

we corrected for “donor ID” and “tissue”. For Basnet et al., dataset we corrected for “donor ID” 548 

and virus infection. For Ravindra et al., dataset we corrected for virus infection.  549 

To identify which cellular type was present in each cell cluster, we used the function 550 

“FindVariableFeatures” (parameter; test.use=wilcox) from Seurat package to identify 551 

differentially expressed genes in each cluster. If immune cells were present in the dataset we 552 

used the tool MCPcounter (v1.2.0) to annotate immune cells 75. Based on these cellular markers 553 

we annotated the clusters with data from the literature 35,76,77.  554 

For data from Ziegler et al.40 we used the UMAP coordinates, and the cell annotation originally 555 

published by the authors.  556 

LDSC-SEG 557 

State-specific gene sets were generated using the top 10% of the genes tested ranked by t-558 

statistic for each of our DE analyses. Genes coordinates were mapped from the human genome 559 
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reference GRCh37 GTF file and formatted into bed files. We repeated this process to generate 560 

control bed files containing all the genes tested for DE in each analysis. Symmetric windows of 561 

100kb were added at each side of the genes using the bedtools (v2.31) “slop” function. For bed 562 

files containing ATAC-seq peaks, this window consisted of 225 bp at each side of the peak, to 563 

represent a similar genomic coverage. LD-Score files were generated using the LDSC pipeline 564 

along with data from HapMap 3 and Phase 3 of the European 1000 Genomes obtained from the 565 

LDSC-repository. The regression was run using the baseline model v1.2. We reported the P values 566 

of regression coefficients, and normalized regression coefficient as per-standardized-annotation 567 

effect sizes * as in (Gazal et al. 2017 Nat Genet)78 to allow for multi-trait comparisons. 568 

Regression P values were corrected using the “p.adjust” function from R using both FDR and 569 

bonferroni methods. The reference GTF file used to map the genes was obtained from GENCODE 570 

(v37). 571 

 572 

MAGMA and scDRS  573 

We used the adult-onset asthma, the childhood-onset asthma, the allergy/eczema, the all-574 

asthma, the rheumatoid arthritis, and the Alzheimer’s GWAS summary statistics as well as the 575 

corresponding set of 1000 putative disease genes (obtained with MAGMA) provided in the 576 

original publication of the scDRS method 17,79.  577 

We used MAGMA (v1.10) to compute the gene-level association P-values and z-scores from 578 

GWAS summary statistics of Height. We transformed P-values to z-scores using this formula: 579 

2*pnorm(abs(zscore), mean = 0, sd = 1, lower.tail = F) in R. To map SNPs to genes, we used magma 580 

with default parameters specified in the scDRS documentation. We retrieved the top 1000 genes 581 

based on MAGMA z-score as putative disease genes.  582 

 583 

We used scDRS (v1.0.2) to quantify the expression of the putative disease genes derived from 584 

GWAS summary statistics using MAGMA in each cell of each single-cell RNA-seq dataset 585 

separately for the 8 GWAS tested and described previously (Table dataset). We used the function 586 

scDRS “compute-score” with default parameters (--flag-filter-data False).  587 

 588 
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Cell-cell interaction between ciliated epithelial cells and non-ciliated epithelial cells 589 

To identify potential pairs of interactors between ciliated and non-ciliated epithelial cells we used 590 

the dataset of Basnet et al. 35. We first evaluated which genes were differentially expressed 591 

between rhinovirus infected epithelial cells and non-ciliated non-infected epithelial cells. We 592 

identified the hypothetical pair of interactors (ligand-receptor) between ciliated and non-ciliated 593 

cells with CellPhoneDB (v3.1.0) with the method “deg_analysis”, using the list of differentially 594 

expressed genes defined before and the default parameter. We filtered the results by identifying 595 

the ligand being expressed in ciliated cells and a receptor expressed in non-ciliated cells.  596 

 597 

Linking variants to genes 598 

For the Miami plot we used three different and complementary approaches to map variants to 599 

genes. First, we used data from Open Target Genetics website 80. We queried the website to 600 

retrieve information for childhood-onset asthma (GCST007995) and adult-onset asthma 601 

(GCST007799). We then extracted the L2G gene and the Closest Gene for each variant when 602 

information was available. We also added a window of 250kb around each variant with the 603 

“bedtools slop” function and retrieved the genes falling in those regions with the “bedtools 604 

intersect” function. Finally, we obtained the intersect between this “snp-to-gene” list of genes 605 

and  the genes upregulated upon rhinovirus infection (genes annotated on Figure 4A).  606 

 607 

We also retrieved the lead variants from the original paper from Ferreira et al. 38. We added a 608 

window of 250kb around each variant with the “bedtools slop” function and retrieved the genes 609 

falling in those regions with the “bedtools intersect” function. We identified the closest gene to 610 

the variant by using the function “bedclosest”.  611 

 612 

Software description (Plots, R, and Biorender) 613 

All the plots were generated with R and graphic schematics were generated with Biorender.  614 

 615 

Data availability 616 
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Bulk RNA-seq data on dataset with IL-4 and IL-13 activation of airway epithelial cells will be made 617 

available in GEO and dbGAP. Other datasets used are publicly available (details in Supplementary 618 

Table 1).  619 
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Figure 1

Figure 1.  Bronchial epithelial cells infected with rhinovirus upregulate genes associated with asthma susceptibility.

(A) Experimental design of the Helling et al. dataset consisting of basal bronchial epithelial cells from healthy donors stimulated 

with PBS or RV-A16.

(B) Volcano plot showing differentially expressed genes after rhinovirus infection, genes selected based on t-statistic are colored in 

purple.

(C) Bar plot showing LDSC-SEG heritability enrichment coefficient (τ*) for each of the asthma-associated GWAS studies. Error bars 

represent τ* +/- standard error. Asterisk denotes P < 0.05 and NS denotes nonsignificant (P > 0.05).

(D) Experimental design of the Basnet et al. time course dataset consisting of BECs stimulated with RV-C15.

(E) Bar plot showing LDSC-SEG heritability enrichment coefficient (t*) for differentially expressed genes at each time point when 

compared against all others. Error bars represent τ* +/- standard error. Asterisks denote significance as * P < 0.05, *** 

Bonferroni-adjusted P < 0.05 and NS denotes nonsignificant (P > 0.05).
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Figure 2

Figure 2. scRNA-seq uncovers non-ciliated epithelial cells as potential mediators for asthma risk.

(A) Experimental design of the Basnet et al. scRNA-seq dataset of BECs from healthy donors infected with RV-C15.

(B) UMAP visualization of the 10,721 airway epithelial cells colored by cell type.

(C) scDRS results represented on the UMAP for the 4 asthma-associated GWAS tested. The intensity of the color represents the 

disease relevant score, the lighter purple represents a less intense score whereas a more intense purple represents cells 

associated with a stronger score. nonsignificant cells with a FDR higher than 10% are depicted in gray.

(D) Bar plot representing the percentage of each cell type in all cells followed by the significant cells at 10% FDR for scDRS in 

COA, Allergy/Eczema, All asthma. AOA is not represented on this barplot because no cells were significant.
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Figure 3

Figure 3.  RV-infected BECs from asthma patients showed a stronger enrichment for asthma risk compared to those of 

healthy individuals.

(A) Experimental design of Helling et al. dataset consisting of BECs from asthma patients stimulated with PBS or RV-A16.

(B) Volcano plot showing differentially expressed genes after rhinovirus infection in patient samples. Genes upregulated 

after infection were selected based on t-statistic and are colored in burgundy.

(C) Bar plot showing LDSC-SEG heritability enrichment coefficient (τ*) across GWAS studies. Error bars represent τ* +/- 

standard error. Asterisks denote significance as *** Bonferroni-adjusted P < 0.05  and NS denotes nonsignificant (P > 0.05).

(D) Volcano plot showing differentially expressed genes between asthma patients and healthy donors. Genes upregulated 

in patients were selected based on t-statistic and are colored in blue.

(E) Bar plot of LDSC-SEG heritability enrichment coefficient (τ*), suggestively significant enrichment is labeled. Error bars 

represent τ* +/- standard error. NS denotes nonsignificant (P > 0.05).
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Figure 4
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Figure 4. Rhinovirus induced genes that are found in COA and AOA GWAS.

(A) Miami plot of COA and AOA GWAS. Each gray dot shows the SNP found in the Ferreira et al., GWAS. The black circles represent 

SNPs being found as lead variants in either Open Targets Genetics or in Ferreira study. Highlighted genes are upregulated upon 

rhinovirus infection, in purple the genes being L2G genes, in blue the closest one to the transcription start site of the variant (Open 

Target Genetics), and in black genes found in a window of 250kb around the SNP. The blue dashed line represents the P-value 

threshold of -log10(5x10-8).

(B) Box plots depicting gene expression levels for MYC (top) and OVOL1 (bottom).  Left panel shows gene expression in epithelial 

cells from the Helling et al. dataset; samples infected with RV-A16 are shown in green and non-infected samples are in brown. Right 

panel shows gene expression from Gutierrez-Arcelus et al. in activated CD4 memory T cells; colors depict time points after 

activation. In each plot every point represents an individual sample.
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Figure 5

Figure 5. Influence from other viruses on asthma genetics.

(A) Experimental design of Tao et al. bulk RNA-seq dataset.

(B) Bar plot representing LDSC-SEG enrichment. Error bars represent τ* +/- standard error. Asterisk denotes significance as 

* P < 0.05.

(C) Experimental design of Ziegler et al. single-cell RNA-seq dataset of epithelial cells infected with SARS-CoV-2 or not.

(D) UMAP visualization of the 32,588 cells colored by cell type.

(E) scDRS results represented on the UMAP for the 4 asthma-associated GWAS tested. The intensity of the color 

represents the disease relevant score, the lighter purple represents a less intense score whereas a more intense purple 

represents cells associated with a stronger score. nonsignificant cells with a FDR higher than 10% are depicted in gray.

(F) Bar plot representing the percentage of each cell type in all cells followed by the significant cells at 10% FDR for scDRS 

in AOA, COA, Allergy/Eczema and All asthma.

(G) Bar plot representing the percentage of cells in the full dataset coming from patients grouped by COVID severity 

categories (COVID-19, long COVID-19, respiratory failure) or from healthy donors (normal). Followed by percentage of cells  

passing significance at 10% FDR for AOA, COA, Allergy/Eczema, All asthma, by disease severity category or control.
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Figure 6
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Figure 6. Cytokines impact on asthma-associated genes.

(A) Experimental design of the Koh et al. bulk RNA-seq dataset of BECs from healthy donors that were stimulated or not 

with different cytokines (IFNγ, IFNɑ, IL-13, IL-17).

(B) Bar plot representing LDSC-SEG heritability enrichment coefficient (τ*) for genes up-regulated in each stimuli against all 

others, for each of the asthma-associated GWAS.Error bars represent τ* +/- standard error.  NS denotes nonsignificant (P > 

0.05).

(C) Experimental design of bulk RNA-seq of AECs from healthy donors co-stimulated with IL-4 and IL-13.

(D) Bar plot showing LDSC-SEG enrichment for each of the asthma-associated GWAS. Error bars represent τ* +/- standard 

error.  NS denotes nonsignificant (P > 0.05)
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Supplementary Figure 1. Validation of T cells enrichment in asthma-associated loci using differentially accessible peaks. 

(A) Experimental design of the Calderon et al. ATAC-seq dataset of immune cell types that were activating or not in vitro .

(B) Volcano plot showing differentially expressed peaks between T cells and all other cell types. Peaks upregulated in T cells were 

selected based on t-statistic and are colored in green.

(C) Bar plots representing LDSC-SEG heritability enrichment coefficient (τ*) for each cell type for the 3 control traits tested.

(D) Bar plot representing LDSC-SEG heritability enrichment coefficient (τ*) for each set of cell-type-specific differentially accessible 

peaks for each of the asthma-associated traits.

(E) Bar plots showing LDSC-SEG heritability enrichment coefficient (τ*) for each of the asthma-associated traits in cell-state-specific 

DA peaks  of immune cells divided in either resting (light colors) or activated (dark colors) condition. In all bar plots, error bars 

represent τ* +/- standard error and asterisks denote significance as *** Bonferroni-adjusted P < 0.05, ** FDR 5% , *  P < 0.05, and  NS 

denotes nonsignificant (P > 0.05).

Supplementary Figure 1
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Supplementary Figure 2

Supplementary Figure 2. T cell validation at the single-cell RNA-seq level.

(A) Experimental design of the Wang et al. scRNA-seq dataset of sinonasal mucosa from healthy donors and chronic 

rhinosinusitis patients (CRS).

(B) UMAP visualization of the 1,115,856 immune and non-immune cells colored by cell type.

(C) scDRS results represented on the UMAP for the 3 control GWAS tested. The intensity of the color represents the 

disease relevant score, the lighter purple represents a less intense score whereas a more intense purple represents cells 

associated with a stronger score. Non-significant cells with a FDR higher than 10% are depicted in gray.

(D) Bar plot representing the percentage of each cell type in all cells followed by the significant cells at 10% FDR for scDRS 

in Alzheimer’s Disease, Height and Rheumatoid Arthritis.

(E) scDRS results represented on the UMAP for the 4 asthma-associated traits tested. The intensity of the color represents 

the disease relevant score, the lighter color represents a less intense score whereas a more intense color represents cells 

associated with a stronger score.

(F) Bar plot representing the percentage of each cell type in all cells followed by the significant cells at 10% FDR for scDRS 

in COA, Allergy/Eczema and All asthma.
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Supplementary Figure 3

Supplementary Figure 3. Th2 validation at the single-cell RNA-seq level.

(A) Experimental design of the Seumois et al. scRNA-seq dataset consisting of T cells.

(B) UMAP visualization of the 38,559 T cells colored by subtypes.

(C) scDRS results represented on the UMAP for the 4 asthma-associated GWAS tested. The intensity of the 

color represents the disease relevant score, the lighter color represents a less intense score whereas a more 

intense color represents cells associated with a stronger score. nonsignificant cells with a FDR higher than 

10% are depicted in gray.
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Supplementary Figure 4. Control traits of BECs from healthy individuals infected with RV.

(A) Bar plots representing LDSC-SEG heritability enrichment coefficient (τ*) for the 3 control traits. NS denotes 

nonsignificant (P > 0.05).

(B) Volcano plots showing differentially expressed genes at each time point  (12,24,42)  compared to all others in 

RV-infected epithelial cells colored in yellow, orange and brown respectively. 

(C) Bar plot representing LDSC-SEG heritability enrichment coefficient (τ*) for each time point against all others  for 

each of the control trait tested.  NS denotes nonsignificant (P > 0.05). In all bar plots, error bars represent τ* +/- 

standard error. 
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Supplementary Figure 5

Supplementary Figure 5. Additional informations related to Figure 2. 

UMAP visualization of the 10,721 epithelial cells colored by (A) cell type. (B) donor.

(C) infection status (Infected / Non-infected).

(D) Dot plot representing the normalized average expression and the percent of cells expressing a given gene for epithelial cell 

markers.

(E) scDRS results represented on the UMAP for the 3 control GWAS tested. nonsignificant cells with a FDR higher than 10% are 

depicted in gray.

(F-I) Harmonized UMAP representing CDHR3, RVC15, LAGLS9 and SORL1 normalized expressions.
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Supplementary Figure 6
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Supplementary Figure 6. Control traits of BECs from asthma patients infected with RV.

Bar plots representing LDSC-SEG heritability enrichment coefficient (τ*) for the 3 control traits tested. NS denotes 

nonsignificant (P > 0.05). (A) Using DE genes after RV-infection in epithelial cells from patients.

(B) Using genes differentially expressed in asthmatics when compared to healthy individuals. (C) Bar plot showing 

LDSC-SEG heritability enrichment coefficient (τ*) across traits for genes downregulated upon RVC-15 infection. NS 

denotes nonsignificant (P > 0.05). In all bar plots, error bars represent τ* +/- standard error. 
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Supplementary Figure 7

Supplementary Figure 7. Normalized expressions of gene of interest. 

(A) Normalized expression of  genes of interest represented on the UMAP and (B) on the harmonized UMAP.
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Supplementary Figure 8

Supplementary Figure 8. Volcano plot and controls traits related to Figure 5.

(A)  Volcano plot showing differentially expressed genes between influenza infection and control. Genes upregulated upon 

influenza infection were selected based on t-statistic and are colored in black.

(B) Bar plots representing LDSC-SEG heritability enrichment coefficient (τ*) for the 3 control GWAS tested. Error bars 

represent τ* +/- standard error. NS denotes nonsignificant (P > 0.05).

(C) scDRS results represented on the UMAP for the 3 control traits tested. The intensity of the color represents the disease 
relevant score, the lighter color represents a less intense score whereas a more intense color represents cells associated with 
a stronger score. nonsignificant cells with a FDR higher than 10% are depicted in gray.
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Supplementary Figure 9

Supplementary Figure 9. scRNA-seq analysis of BECs infected or not with SARS-CoV-2.

(A) Experimental design of the Ravindra et al. scRNA-seq dataset of bronchial epithelial cells infected with 

SARS-CoV-2 or not, from one healthy donor.

UMAP visualization of the 74,088 cells colored by (B) days after virus infection and (C) by cell type.

(D) scDRS results represented on the UMAP for the 3 control traits tested. The intensity of the color 

represents the disease relevant score, the lighter color represents a less intense score whereas a more 

intense color represents cells associated with a stronger score. nonsignificant cells with a FDR higher than 

10% are depicted in gray.

(E) Bar plot representing the percentage of each cell type in all cells followed by the significant cells at 10% 

FDR for scDRS in AOA, COA, Allergy/Eczema and All Asthma.

(F) Bar plot representing the percentage of cells in the full dataset classified in SARS-CoV-2 infection or non 
infected, followed by percentage of cells passing significance at 10% FDR for AOA, COA, Allergy/Eczema, All 
asthma, by SARS-CoV-2 infection or not.
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Supplementary Figure 10
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Supplementary Figure 10. Control traits for Figure 6. 

(A) Volcano plots showing differentially expressed genes for each stimuli (IFNα, IFNγ, IL-13 and IL-17)  compared to all 

others in bronchial epithelial cells colored in black, teal, orange and brown respectively.

(B)  Bar plot representing LDSC-SEG enrichment for each stimuli against all others  for each of the 3 control traits. Error 

bars represent τ* +/- standard error. Asterisk denotes significance as * P < 0.05 and NS denotes nonsignificant (P > 

0.05).

(D) Volcano plot showing differentially expressed genes between IL-4/IL-13 stimulation and resting condition. Genes 

upregulated upon IL-4/IL-13 stimulation were selected based on t-statistic and are colored in green.

(E) Bar plots representing LDSC-SEG heritability enrichment coefficient (τ*) for the 3 control traits. Error bars represent 

τ* +/- standard error.  Asterisk denotes significance as * P < 0.05 and NS denotes nonsignificant (P > 0.05).
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