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Background Altered structural brain development has been identified in fetuses with Congenital 32 

Heart Disease (CHD), suggesting that the neurodevelopmental impairment observed later in life 33 

might originate in utero. There are many interacting factors that may perturb neurodevelopment 34 

during the fetal period and manifest as structural brain alterations, such as altered cerebral 35 

substrate delivery and aberrant fetal hemodynamics.  36 

Methods We extracted structural covariance networks (SCNs) from the log Jacobian 37 

determinants of 429 in utero T2w MRI scans, (n = 67 controls, 362 CHD) acquired during the 38 

third trimester. We fit general linear models to test whether age, sex, expected cerebral 39 

substrate delivery and CHD diagnosis were significant predictors of structural covariance.  40 

Results We identified significant effects of age, sex, cerebral substrate delivery, and specific 41 

CHD diagnosis across a variety of SCNs, including primary motor and sensory cortices, 42 

cerebellar regions, frontal cortex, extra-axial CSF, thalamus, brainstem, and insula, consistent 43 

with widespread coordinated aberrant maturation of specific brain regions over the third 44 

trimester.  45 

Conclusions SCNs offer a sensitive, data-driven approach to explore whole-brain structural 46 

changes without anatomical priors. We used them to stratify a heterogenous CHD patient 47 

cohort, highlighting similarities and differences between diagnoses during fetal 48 

neurodevelopment. Although there was a clear effect of abnormal fetal hemodynamics on 49 

structural brain maturation, our results suggest that this alone does not explain all the variation 50 

in brain development between individuals with CHD. 51 

 52 

 53 

Introduction 54 
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Congenital heart disease (CHD) is the most common congenital malformation (EUROCAT 55 

2020), occurring at a frequency of 0.8% to 1.2% of live births worldwide (Dolk et al., 2011, 56 

Bouma & Mulder 2017). CHD encompasses a wide spectrum of cardiovascular defects, from 57 

simple cardiac malformations to more complex and severe lesions that require surgical 58 

intervention. Following improvements in surgical and therapeutic intervention over the last two 59 

decades, most patients with CHD will survive into adulthood (Dellborg et al., 2023). However, 60 

many will display impairments affecting a wide range of neurodevelopmental domains (Latal et 61 

al, 2016, Newburger et al., 2012, Naef et al., 2017, Marelli et al., 2016, Bellinger et al 2011).  62 

Research into the mechanisms underpinning impaired neurodevelopment in CHD may enable 63 

appropriate preventative prenatal interventions to promote improved neurodevelopmental 64 

outcomes later in life.  65 

With recent advances in fetal MRI, it has become possible to study brain development in utero. 66 

Previous work has identified deviations from normal brain growth trajectories in fetuses with 67 

CHD, including reduced regional brain volumes (Limperopoulos 2010, Clouchoux et al., 2013, 68 

Brossard-Racine 2014, Ren et al., 2021, Dovjak et al., 2022, Cromb et al. 2023), altered 69 

volumes of transient fetal compartments (Rollins et al., 2021, Wu et al., 2021), reduced cortical 70 

folding (Ortinau 2019, Jaimes et al., 2020) and a relationship between cerebral oxygen delivery 71 

and fetal brain size (Sun et al., 2015, Cromb et al, 2023). These studies demonstrate that 72 

abnormal neurodevelopment in the CHD population begins in utero during a period of rapid 73 

brain growth, featuring metabolically demanding cellular processes such as gyrification, 74 

oligodendrocyte maturation, and synaptogenesis. It has been hypothesised that aberrant 75 

cardiovascular physiology, altering the delivery of oxygen, glucose and other nutrients to the 76 

fetal brain during this critical window, impairs brain development (Peyvandi 2021, Lauridsen 77 

2017, Sun 2015). Different types of CHD will affect the pattern of cerebral substrate delivery in 78 

different ways, likely having unique implications for brain development (Sun et al., 2021, Rollins 79 
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et al., 2021, Cromb et al., 2023). There are also a multitude of other interacting factors that may 80 

perturb neurodevelopment during the fetal period and manifest as structural brain alterations. 81 

These include genetic factors, placental function, maternal stress, socioeconomic and 82 

environmental factors. Disentangling the effect of each of these factors remains a challenge, 83 

and therefore our understanding of structural brain abnormalities in the CHD population is 84 

incomplete.  85 

In this work, we extracted structural covariance networks (SCNs) from the brain MRI of 429 86 

fetuses. SCNs represent brain regions with coherent structural expansion and coordinated, 87 

independent maturational trajectories, often converging on functional brain networks (Geng et 88 

al., 2017, Seeley et al., 2009). SCNs have been used effectively to investigate changes in the 89 

organization of the brain at the network level, both in healthy ageing populations (Li et al., 2013, 90 

Geng et al., 2017, Spreng & Turner 2013), and in at-risk populations including preterm infants 91 

(Fenchel et al., 2021, Vanes et al., 2021), psychiatric patient cohorts (Bassett et al., 2008, 92 

Heinze et al., 2015), and in neurodegenerative disease (He et al., 2008, Seeley et al., 2009). 93 

SCNs offer a data-driven, dimensionality reduction approach, removing the dependency on 94 

predefined regions of interest, which allows the examination of dynamic contrast changes 95 

across space and time. This is particularly relevant for investigating the maturation of the fetal 96 

brain, which is rapid, complex, and characterised by the presence of transient structures 97 

(Kostovic & Rakic 1990). This model-free approach is also well suited to studying the 98 

heterogenous and varied pathophysiology of CHD, as it extracts features that represent 99 

independent modes of variation across the cohort. We hypothesized that by examining the 100 

sources of variance, we would be able to disentangle the effect of specific cardiac defects on 101 

the developing brain.   102 

To address this challenge, we examined a large cohort of 429 fetuses, including 369 fetuses 103 

with CHD. There are many approaches to categorize CHD cohorts (Sun et al., 2015, Roberts et 104 
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al., 2020) and explore the interplay between cardiovascular physiology and fetal brain 105 

development. For the purpose of this study, we divided the CHD cohort into groups based on 106 

the expected effect of the underlying cardiac defect on the streaming of substrate-rich placental 107 

blood to the cerebral circulation (Cromb et al., 2023). Each subject was reviewed individually, 108 

using fetal phase-contrast MRI flow data and/or contemporaneous echocardiography where 109 

available, as published in previous work (Cromb et al., 2023). This categorization was used to 110 

the test the specific hypothesis that cerebral substrate delivery affects the co-maturation of 111 

SCNs.  112 

We also examined whether gestational age, sex, and CHD diagnosis are underlying sources of 113 

variation in structural brain maturation. With this approach, we stratified our large cohort of 114 

fetuses with CHD, identifying SCNs that vary across the population according to cerebral 115 

substrate delivery and more specifically, CHD diagnosis. We identify networks whose 116 

coordinated maturation is different from healthy controls but shared between multiple subtypes 117 

of CHD. We also find networks that are uniquely different for specific CHD diagnoses. Overall, 118 

this approach identified associations between specific cardiac defects and how they manifest in 119 

the developing fetal brain, which offers crucial insight into the potential structural underpinnings 120 

of neurodevelopmental abnormalities. 121 

 122 

Methods 123 

Ethical approval 124 

The National Research Ethics Service West London committee provided ethical approval 125 

(07/H0707/105, 14/LO/1806, 17/LO/0292). Informed written consent was obtained before fetal 126 

MRI. 127 
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Participants 128 

Mothers were recruited between June 2014 and June 2022 at the Evelina Children’s Hospital in 129 

London, following routine ultrasound during the second trimester. 529 women (maternal age 130 

scan=31.52 (5.73) years) were carrying a fetus with either known or suspected CHD. 131 

Participants were scanned during the third trimester, between 27 and 36 gestational weeks 132 

(GW). Exclusion criteria for mothers included multiple pregnancies, maternal weight over 125 kg 133 

(at time of scan), maternal diabetes, maternal hypertension, inability to give informed consent, 134 

or age under 18 years at the time of referral.  135 

We also excluded fetuses with confirmed genetic diagnosis, such as 22q deletion syndrome, 136 

extracardiac anomalies, such as congenital diaphragmatic hernia or duodenal atresia, or 137 

structural brain abnormalities reported on fetal MRI, including bilateral ventriculomegaly, 138 

cerebellar hypoplasia or absence of the corpus callosum. After applying the exclusion criteria, 139 

the cohort consisted of 429 fetal MR scans (including 67 controls, and 362 fetuses diagnosed 140 

with CHD).  141 

Image acquisition & reconstruction 142 

All scans were acquired on a Philips Ingenia 1.5T scanner, with 28-channel dStream anterior 143 

and posterior built-in coils. The T2-weighted fast-spin-echo sequence was specifically optimised 144 

for fetal imaging (TR = 13 ms, TE = 80 ms, image resolution= 1.25x1.25x2.5mm, slice thickness 145 

= 2.5 mm, slice spacing = 1.25 mm).  A 3D slice-to-volume image reconstruction pipeline 146 

(available at https://github.com/SVRTK/SVRTK, https://hub.docker.com/r/fetalsvrtk/svrtk 147 

auto2.20) was used for motion correction, reconstructing the T2w images to 0.5mm3 isotropic 148 

resolution (Kuklisova-Murgasova 2012, Uus et al., 2021).  149 

MRI Quality control  150 
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All MRI scans were reviewed and reported by expert perinatal radiologists. The presence of any 151 

structural abnormalities was recorded, and image quality was scored on a scale from 1-4, based 152 

on the signal:noise ratio, presence of artefacts, field of view and residual motion (4 = High 153 

quality, 3 = Acceptable, 2 = Poor, 1 = Failed). Only subjects scoring 3 or 4 were included in the 154 

study, as previously described (Uus et al., 2022, Cromb et al., 2023).  155 

Cerebral substrate delivery categorisation 156 

To explore the hypothesis that impaired cerebral substrate delivery plays a major role in the 157 

neurodevelopmental abnormalities associated with CHD, we divided the CHD cohort into 4 158 

groups, according to the predicted level of substrate delivery to the developing fetal brain, based 159 

on the expected consequence of the underlying cardiac defect as described previously (Cromb 160 

et al, 2023).  161 

(A) Group 1 = Substrate content of cerebral blood is expected to be normal (n = 232 (113 162 

male),  = 31.81 GW  1.55),  163 

(B) Group 2 = Substrate content of cerebral blood is expected to be mildly reduced (i.e. 164 

some mixing of placental and fetal systemic venous blood) (n = 67 (35 male),  = 32.37 165 

GW  1.52),  166 

(C) Group 3 = Substrate content of cerebral blood is expected to be moderately reduced (i.e. 167 

complete mixing of placental and fetal systemic venous blood) (n = 46 (21 male),  = 168 

32.72 GW  1.74),  169 

(D) Group 4 = Substrate content of cerebral blood is expected to be severely reduced (i.e. 170 

complete reversal of normal placental streaming) (n = 23 (12 male),  = 33.12 GW  171 

2.02) 172 
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In the absence of direct measurements of cerebral substrate delivery, cases were classified by 173 

an expert fetal cardiologist, according to the expected effect of the underlying cardiac defect on 174 

the delivery of oxygen and nutritional content of blood to the carotid arteries, and by extension, 175 

the brain. MRI-derived fetal blood flows were used where available, as described in (Lloyd et., 176 

2021). For cases where information about the direction of blood flow at the aortic isthmus could 177 

not be derived from MRI derived fetal blood flows, and was important for CHD categorization, it 178 

was extracted from the clinical fetal echocardiogram report, acquired as per routine clinical 179 

care. In cases where a diagnosis could potentially fit into more than one category, depending on 180 

severity or underlying hemodynamics, a combination of phase contrast (with metric optimized 181 

gating), fetal flow measurements (described in Lloyd et al., 2021, Janz et al., 2010) and/or 182 

contemporaneously acquired echocardiographic data were used to assign cases individually, 183 

following assessment of the data by a fetal cardiologist (Cromb et al., 2023). 184 

Image registration and Jacobian determinant calculation 185 

Non-linear deformation fields were calculated to transform the native subject T2 to the age- 186 

matched template of the dHCP fetal atlas (https://doi.gin.g-node.org/10.12751/g-node.ysgsy1/) 187 

using ANTs Symmetric diffeomorphic image registration (Avants et al., 2008). Warps were then 188 

concatenated between native T2, the age-matched template and a 30 GW template space, 189 

which represents the median age of the cohort (Avants et al., 2008). The log Jacobian 190 

determinant was calculated on the concatenated warp, which represents the contraction and 191 

expansion of brain regions during image registration. In the resultant log Jacobian maps, higher 192 

log-Jacobian values represent brain regions that contracted during image registration (i.e., 193 

larger global and local brain volume), while smaller values represent smaller volume (Avants 194 

and Gee, 2004). The log Jacobian volumes for all subjects were concatenated to create a single 195 

4D file, which was used as the input for the ICA (Van Rossum and Drake, 1995, Varoquaux et 196 

al., 2010).  197 
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Independent Component Analysis (ICA) of Jacobian determinants 198 

ICA is a data-driven, blind source separation technique that extracts salient patterns embedded 199 

in the data, it reduces the dimensionality of neuroimaging data (from many thousands of 200 

individual voxels) by separating out the multivariate signal into a maximally independent set of 201 

components (Jutten & Hérault, 1991). When applied in the spatial domain to structural imaging 202 

data (the log Jacobian determinants), ICA can detect coordinated growth between spatially 203 

separated brain regions, i.e. SCNs, which are strongly associated with other clinical or 204 

demographic variables (O’Muircheartaigh et al., 2014, Douad et al., 2014, Llera et al., 2019).  205 

A canonical ICA algorithm (Varoquaux et al., 2010) was used, implemented in python using the 206 

nilearn package (Abraham et al., 2014). The ICA algorithm transforms the input data into 207 

components (or SCNs) that represent an ‘unmixing’ of the signal, such that the independent 208 

components have distributions that are non-Gaussian. The optimal number of SCNs (n = 40) for 209 

this case was chosen by surveying previous literature, and to balance robustness and 210 

interpretability (Eyre et al., 2021, Vanes et al., 2021). When the ICA dimensionality was 211 

increased above 40, visual inspection of components showed a division of cortical regions and 212 

splitting bilateral components into left/right lateralised areas.  213 

The criteria for excluding components were (a) majority of the signal occurring in edge voxels, 214 

indicating misregistration (b) sparse, randomly distributed signal with low total area. For this 215 

dataset, all components passed the exclusion threshold and were included in subsequent 216 

analyses.  217 

To extract weights, or ‘modes’, for each network in each individual subject, FSL’s general linear 218 

model was applied to the component maps and the Jacobian input volumes (Winkler et al., 219 

2014, Anderson and Robinson 2001).  220 
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Application of the General Linear Model (GLM) to identify covariates of brain structure. 221 

For each set of SCN weights, we fit a GLM, with SCN weights as the dependent variable, to test 222 

the hypothesis that age, sex, and cerebral substrate delivery were significant predictors 223 

affecting the modes of variation across the cohort.  224 

We fit either 1A) or 1B) depending on whether the relationship between the SCN weights and 225 

GA was linear or 2nd order polynomial (determined by the Akaike Information Criterion (AIC)).  226 

1 A) Modes ~ GA + sex + Cerebral substrate delivery 227 

B) Modes ~ GA + GA2 + sex + Cerebral substrate delivery 228 

We then used a subset of the cohort, to explore the effect of cardiovascular physiology more 229 

specifically for each CHD diagnosis. We selected diagnosis categories with > 10 subjects. 230 

These included Tetralogy of Fallot (ToF) (n = 13), Transposition of the Great Arteries (TGA) (n = 231 

22), Right Aortic Arch (RAA) (n = 88), Hypoplastic Left Heart Syndrome (HLHS) (n = 25), 232 

Double Aortic Arch (DAA) (n = 27), Coarctation (CoA(+)) (n = 58), we also included fetuses with 233 

suspected coarctation prenatally who were not shown to have this condition in the neonatal 234 

period (“false positive” or CoA (-)) (n = 47). We included the CoA(-) group in this analysis, as it 235 

has been shown previously that this group differs significantly from a healthy control population 236 

in terms of the distribution of the fetal circulation, for reasons that remain unclear (Lloyd et al., 237 

2021). Since the purpose of this work was to investigate the effect of cerebral substrate delivery 238 

on brain maturation, this group was included in our analysis. 239 

2 A) Modes ~ GA + sex + CHD Diagnosis 240 

B) Modes ~ GA + GA2 + sex + CHD Diagnosis 241 
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We used FDR correction for multiple comparisons (between 40 models, one for each SCN) to 242 

adjust the p values for all predictors before reviewing whether they were significant in each 243 

model. 244 

Results 245 

Participants 246 

429 subjects met the inclusion criteria, 67 were healthy controls (30 male) and 362 were 247 

diagnosed with CHD (182 male). All fetuses were scanned between 27- and 35-weeks 248 

gestational age (GA) (Figure 1). Histograms showing the distribution of GA at scan for each 249 

group are shown in Figure 1.  250 

A wide spectrum of CHD was represented in this cohort, including 40 different diagnoses 251 

(Figure 1, 2), which were categorised into 4 groups based on expected cerebral substrate 252 

delivery (Cromb et al., 2023), Normal = 232, Mildly reduced = 67, Moderately reduced = 46, 253 

Severely reduced = 23. The range of CHD diagnoses within each group is shown in Figure 2.  254 

 255 

Structural covariance networks in the developing fetal CHD brain 256 

As shown in Figure 3, we extracted 40 SCNs, each representing independent, coordinated 257 

structural development between brain regions (Figure 4). ICA was effective at extracting 258 

meaningful neuroanatomical structures, and labels were given to each SCN according to the 259 

corresponding anatomy (Figure 4). Almost all networks were either bilateral and symmetrical or 260 

had a complementary contralateral homolog component in the opposite hemisphere (Figure 4). 261 

All tissue types in the brain were represented, including deep grey matter, white matter, cortical 262 

grey matter, and CSF. Certain SCNs were isolated to a specific tissue, and others included 263 

multiple tissue types. Charting the SCN modes against gestational age shows general 264 
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maturational trends (Supplementary info), however there is considerable variability between 265 

subjects of the same age, suggesting that there are other significant sources of variation 266 

between individuals, such as the abnormal fetal hemodynamics, for a large proportion of this 267 

cohort. 268 

Structural covariance is associated with cerebral substrate delivery.  269 

We fitted a GLM to each set of component weightings (also referred to as ‘modes’) to test 270 

whether age, sex and cerebral substrate delivery were underlying sources of variation across 271 

the cohort. 35 SCNs were significantly associated with GA, 9 with sex and 14 with expected 272 

cerebral substrate delivery after FDR correction for multiple comparisons between 40 ICs (q < 273 

0.05) (Table 1). When we examined each substrate delivery group compared to controls, we 274 

found significant variation between controls and CHD where cerebral substrate delivery was 275 

expected to be normal, in 3 SCNs, including the left and right frontal temporal cortex/CSF 276 

networks, and frontoparietal cortex. These networks were also significantly different between 277 

controls and groups 2 and 3 (mildly and moderately reduced). In addition, there were 278 

differences between controls and ‘mildly’ and ‘moderately’ reduced groups in the medial frontal 279 

gyrus. The ‘moderately reduced’ group were uniquely different from controls in the postcentral 280 

gyrus and optic chiasm, and different from the ‘expected normal’ group in these networks. The 281 

‘moderately reduced’ group were also different from the ‘expected normal’ group in the anterior 282 

cingulum, thalamus, and mesencephalon networks.  283 

There were no SCNs that have significantly different modes of variation between controls and 284 

the ‘severely reduced’ cerebral substrate delivery category. This might be due to a relatively 285 

small sample of fetuses in this category (n = 23), limiting our statistical power to detect 286 

differences in this group. However, we did find networks distinguishing the ‘severely reduced’ 287 

CHD group from the ‘expected normal’ and ‘mildly reduced’ groups. These networks included 288 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 31, 2024. ; https://doi.org/10.1101/2024.01.30.24302035doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.30.24302035
http://creativecommons.org/licenses/by/4.0/


13 
 

the precentral gyrus, occipital cortex/CSF, cerebellum & brainstem, and 289 

thalamus/mesencephalon. No significant differences were found between the ‘moderately’ and 290 

‘severely’ reduced groups for any of the networks.   291 

6 of the CHD-sensitive networks included high proportions of CSF, encompassing both extra-292 

axial and infratentorial regions, suggested altered cortical expansion of these areas. These 293 

components also explained the highest proportion of the total variance across the cohort.  294 

We created violin plots to show the model-fitted difference between groups, when accounting for 295 

age and sex, for components where there was a significant effect of expected cerebral substrate 296 

delivery (Figure 5). This highlighted the networks for which there was a gradient, or dose-297 

dependent effect of cerebral substrate delivery, such as both left and right frontotemporal 298 

cortex/CSF networks and the cerebellum.  299 

The effect of specific CHD diagnoses on structural brain maturation 300 

Given the differences in structural covariance across the brain between CHD cerebral substrate 301 

groups, we carried out a sensitivity analysis in a subset of the cohort, to explore whether 302 

specific CHD diagnoses were predictors of variation (Table 1). In this way, we could test the 303 

hypothesis that specific cardiac defects have unique and distinct effects on structural brain 304 

maturation. We used a subset of the cohort (n = 238), only including CHD diagnosis categories 305 

with > 10 subjects (see Methods). We fit a GLM with SCN weights as the dependent variable, 306 

and tested for a combined effect of age, age2, sex and CHD diagnosis. There were 9 different 307 

SCNs where at least one of the CHD diagnosis categories explained a significant amount of the 308 

variation between individuals. The summary of SCNs that were significant for each diagnosis 309 

category after FDR correction (q < 0.05) are shown in Figure 5.  310 
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We found the frontoparietal network was significantly different between controls and all CHD 311 

diagnoses except for TGA (Table 1). We also found certain SCNs, where only one CHD 312 

diagnosis group was significantly different from controls. CoA (+) explained a significant 313 

proportion of the variation in the network corresponding to the medial frontal gyrus. HLHS 314 

explained a significant proportion of the variance in the postcentral gyrus, inferior frontal & 315 

superior temporal gyrus, and occipital cortex/CSF. Fetuses with ToF were uniquely different 316 

from controls in the frontotemporal cortex, medial occipital white matter, and occipital cortex. 317 

Both ToF and TGA were significant predictors of variance in the insula network.  318 

 319 

Discussion 320 

In this study we applied an unsupervised, data-driven analysis technique, ICA, to capture the 321 

dynamic T2w contrast changes across the fetal brain in space and time, summarising them into 322 

an interpretable set of anatomically meaningful networks, or SCNs (Comon 1994). The networks 323 

we derived correspond to recognisable structures in the fetal brain, including regions that are 324 

developmentally critical but transiently present in the fetal period, such as anterior and posterior 325 

periventricular crossroads. We used the networks to stratify the large heterogenous cohort of 326 

different CHD cases, identifying variation across the brain according to cerebral substrate 327 

delivery and specific CHD diagnosis. Of the 40 SCNs we derived, we found a significant effect 328 

of cerebral substrate delivery or CHD diagnosis in 18 of them.  329 

The maturation of specific networks is vulnerable to the effects of reduced cerebral 330 

substrate delivery.  331 

Previous work has demonstrated that hemodynamic alterations in fetuses with CHD contribute 332 

to abnormalities in brain development (Limperopoulos et al., 2010, Sun et al., 2015). Volumetric 333 
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differences correlate with cerebral substrate delivery in the third trimester (Peyvandi et al., 2021, 334 

Cromb et al., 2023), which represents a critical window of accelerated fetal brain growth and 335 

increased cerebral metabolic demands. A reasonable hypothesis to explain these findings is 336 

that reduced cerebral substrate delivery, secondary to altered fetal cardiovascular physiology, is 337 

a driving factor in the emergence of structural brain differences in CHD (Rudolph, 2010). In this 338 

study, we identified networks of brain regions vulnerable to the effects of altered cerebral 339 

substrate delivery which can be broadly grouped as follows, (1) Gyral areas, pre- and post-340 

central, medial frontal (2) Thalamus & brainstem (3) Cerebellum & infratentorial CSF, (4) 341 

Cortical/CSF regions, frontoparietal, frontotemporal and occipital cortex/CSF. The sensitivity of 342 

these particular regions is congruent with results of other studies, also noting the most 343 

significant volumetric changes in CHD in the frontal lobe and the brainstem (Ortinau et al., 344 

2019), impaired expansion of higher cortical areas (Leonetti et al., 2019), altered patterning and 345 

delayed maturation of cortical folds (Ortinau et al., 2019, Dovjak et al., 2022, Clouchoux et al., 346 

2013, Kelly et al., 2017), abnormal cerebellar development (Dovjak et al., 2020) and enlarged 347 

CSF spaces (Limperopoulos et al., 2010, Jorgensen et al., 2018, Schellen et al., 2015, Mlczoch 348 

E et al., 2013, Brossard-Racine et al., 2014, Ng et al, 2020). Studies across multiple different 349 

cohorts, spanning a large gestational age range, between 20 weeks GA and term, have 350 

reported increased extra-axial CSF spaces in the fetal brain with CHD (Limperopoulos et al., 351 

2010, Jorgensen et al., 2018, Schellen et al., 2015, Mlczoch E et al., 2013, Brossard-Racine et 352 

al., 2014), which has been interpreted as a general marker of delayed brain development in this 353 

population (Brossard-Racine et al., 2014). 354 

Cerebral substrate delivery explains some but not all of the variance in CHD 355 

We observed differences between healthy controls and CHD fetuses where cerebral substrate 356 

delivery is expected to be normal, in frontoparietal, frontotemporal and occipital cortical/CSF 357 

networks, suggesting extrinsic factors to this analysis, such as genetic and environmental 358 
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factors, also mediate the differences in early brain growth. Furthermore, when we explored 359 

specific CHD diagnoses in a subset of the cohort, we recapitulated this result, finding CoA (-), 360 

RAA, and DAA subtypes predicted the variance in the same frontoparietal cortex/CSF networks. 361 

These diagnoses are considered milder forms of CHD where cerebral substrate delivery is 362 

expected to be normal (Rudolph 2010). An alternative explanation for the difference in brain 363 

development is genetic variation among the milder phenotypes, which has not been accounted 364 

for in this analysis. Previous work has highlighted shared underlying genetic pathways between 365 

the heart and brain which may account for the phenotype of altered structural brain 366 

development in CHD (Unolt et al., 2018, Richards & Garg 2010). Genetic abnormalities are also 367 

highly prevalent in the CHD population (Blue et al., 2017), and protein-damaging de novo 368 

mutations have been identified for genes highly expressed in both the developing heart and 369 

brain (Homsy et al., 2015, Ji et al., 2020).  370 

The residual variation in brain development between individuals in this work may also be 371 

mediated by differences in placental function. The parallel development between fetal and 372 

maternal organs, and the shared genetic and developmental pathways between the heart, brain, 373 

and placenta, are emerging as important contributing factors to the vulnerability of this patient 374 

group (Steinweg et al., 2021, Rychik et al., 2018, Jones et al., 2015, Matthiesen et al., 2016). 375 

Placental imaging studies have highlighted a critical relationship between placental size and 376 

overall fetal growth, in both healthy and at-risk populations, suggesting that over a third of birth 377 

weight variation is due to placental weight (Salafia et al., 2008). A growing body of evidence 378 

implicates abnormal placental structure and function in CHD pathology (Steinweg et al., 2021, 379 

Rychik et al., 2018, Jones et al., 2015, Matthiesen et al., 2016), and future work would benefit 380 

from investigating these effects on the structural brain.  381 

Specific diagnoses were better predictors of variance than others.  382 
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When examining the differences between CHD diagnoses, HLHS and ToF were the most 383 

significant predictors of variance across different networks, in 4 and 5 SCNs respectively.  We 384 

found a unique effect of HLHS diagnosis on three structural networks, including the postcentral 385 

gyrus, inferior frontal and superior temporal gyrus, and occipital cortical/CSF. In ToF fetuses, 386 

the medial occipital white matter, the insula, and the frontotemporal and occipital cortex were 387 

also significantly different from healthy controls. Previous studies have also observed a severe 388 

effect on brain development in fetuses and neonates diagnosed with either ToF (Schellen et al., 389 

2015) or HLHS (Glauser et al., 1990, Clouchoux et al., 2013). One study reported significantly 390 

reduced cardiac output in HLHS fetuses and a dose-dependent effect on delayed brain 391 

maturation (Sun et al., 2015). Our analysis also highlighted the insula network as significantly 392 

different for fetuses with ToF or TGA compared to controls, in accordance with previous work 393 

noting delayed opercular development in term infants with complex CHD (Glauser et al., 1990, 394 

Masoller et al., 2016, Ortinau et al., 2019, Peng et al., 2016). Operculation of the insula is 395 

usually complete at term (Goldstein et al., 2017), however an open operculum and exposed 396 

insular cortex have been associated with neurodevelopmental delays in CHD and more broadly 397 

in other patient populations (Mahle et al., 2000, Licht et al., 2009, Tatum et al., 1989, Chen et 398 

al., 1996). Interestingly, TGA was not significantly different from controls for any of the networks 399 

except the insula. Although previous work has shown that whole brain volume is reduced in 400 

fetuses with TGA, and disproportionately smaller than the volume of the fetal body (Jorgensen 401 

et al., 2018, Cromb et al., 2023), our results suggest that the local effects across the brain are 402 

minimal. It is plausible that although the global brain size is smaller for this subtype, coordinated 403 

growth at the local level between brain structures is normal.  404 

CHD-sensitive networks in frontal cortical regions 405 

Specific networks emerged as being affected by both cerebral substrate delivery and CHD 406 

diagnosis categories. These included frontoparietal, frontotemporal and occipital cortex. In the 407 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 31, 2024. ; https://doi.org/10.1101/2024.01.30.24302035doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.30.24302035
http://creativecommons.org/licenses/by/4.0/


18 
 

fetal period, these networks likely represent altered volumes of CSF, in conjunction with the 408 

areal expansion and gyrification of the cortices. Previous work using a porcine model, explored 409 

the developmental processes effected by both transient and chronic disturbances in fetal 410 

oxygen delivery (Xuegang et al., 2011, Ishibashi et al., 2012, Morton et al., 2017), resolving that 411 

this may provide a mechanistic explanation for the effect of CHD on the development of higher 412 

order cortical areas. They established that inducing chronic hypoxic exposure decreases 413 

neuronal proliferation, migration, interneuron populations and overall volume in the insula and 414 

prefrontal cortices (Morton et al., 2017). In the same study, a parallel analysis of post-mortem 415 

brain tissue from infants with complex CHD revealed less mature astrocytic processes, and a 416 

depletion of neuroblasts within the subventricular zone in frontal areas (Morton et al., 2017). The 417 

authors speculate that this cellular phenotype may propagate to the level of neuronal circuits, 418 

creating an excitatory/inhibitory imbalance in the developing cortex in CHD (Morton et al., 2017). 419 

Excitatory/inhibitory imbalance has been investigated across a wide spectrum of intellectual and 420 

behavioural disabilities, potentially explaining why children with CHD show deficits in cognitive 421 

domains associated with higher order cortices (Leonetti et al., 2019).  422 

White matter dominated networks were largely not affected by CHD diagnosis 423 

Many white matter networks were extracted by this analysis, reflecting the growth of key white 424 

matter structures and development of fibre connectivity over the third trimester (Kostovic & 425 

Milosevic 2006, Wilson et al., 2021), including both the anterior and posterior periventricular 426 

crossroads, and the corpus callosum/cingulum components. However, in most of these 427 

networks we did not detect significant differences between CHD and the control population. 428 

Previous studies characterising white matter development in utero in fetuses with CHD 429 

(Clouchoux et al., 2013, Ortinau et al., 2018), show smaller white matter volumes, which may 430 

just reflect the overall reduction in brain size in this group. Diffusion weighted imaging (DWI) 431 

may be more appropriate to elucidate any aberrant white matter development in CHD, as 432 
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changes can be examined at the microstructural level. To the best of our knowledge, there is 433 

one previous study using in utero DWI in CHD, which suggests a group level reduction in 434 

fractional anisotropy in the body and splenium of the corpus callosum (Khan et al., 2018). 435 

However, a larger cohort of patients over a wider gestational age range is necessary to improve 436 

understanding of group level differences, as diffusion metrics show a non-linear relationship with 437 

gestational age in fetal white matter (Wilson et al., 2021).  438 

Conclusions 439 

Overall, this analysis framework offers an alternative approach to studying a heterogenous 440 

patient group, capturing variation associated with age, cerebral substrate delivery and CHD 441 

diagnosis. This work contributes to building a more comprehensive understanding of brain 442 

development in CHD before birth, in utero, highlighting regions that maturing differently in this 443 

vulnerable population. The significant effect of cerebral substrate delivery and CHD diagnosis 444 

on deep grey matter, cortical regions, cerebellum and CSF supports the view that a lower 445 

oxygen environment can lead to adverse neurodevelopment. However, we also demonstrate 446 

that there is a lot of variation between individuals not attributable to fetal hemodynamic 447 

alterations, supporting the hypothesis that in utero neurodevelopment in CHD is impacted by a 448 

complex combination of factors, including genetics, maternal stress, and placental function. Our 449 

unconstrained data-driven approach identified the same vulnerable brain regions as previous 450 

work (Ortinau et al., 2019, Dovak et al., 2022, Clouchoux et al., 2013, Limperopoulos et al., 451 

2010, Jorgensen et al., 2018, Schellen et al., 2015, Claessens et al., 2019, Mlczoch E et al., 452 

2013, Brossard-Racine et al., 2014, Glauser et al., 1990, Masoller et al., 2016, Peng et al., 453 

2016), which was reliant on a-priori segmentations. The reproducibility of this result supports 454 

that these findings are a meaningful reflection of biological differences between the patient and 455 

control group. The results highlight the potential for neuroimaging data in the fetal period to 456 

provide biomarkers for CHD subtypes, disentangling the unique effects of different CHD 457 
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diagnoses on structural neurodevelopment. Earlier identification of the structural brain networks 458 

that confer neurodevelopmental risk increases the likelihood of successful targeted intervention 459 

to improve outcomes later in life. 460 

 461 

Limitations 462 

There are some important limitations to note with this study. Firstly, the distribution of 463 

gestational ages between controls and fetuses with CHD was different. Although our model 464 

included GA, this may still result in some false positive or false negative significant networks. 465 

We were unable to discern the delivery of specific substrates, or measure substrate delivery 466 

quantitatively for every fetus. The cerebral substrate delivery groups also had uneven sample 467 

sizes, with a much higher proportion of subjects in the ‘expected normal’ group than any other 468 

group. This gave us more statistical power to detect differences between group 1 and controls 469 

compared to other groups, which may have led to some false negatives, as we would expect to 470 

find more differences between controls and more severe forms of CHD (Group 4 cases).  471 

Similarly for CHD diagnoses, more severe subtypes (TGA, ToF and HLHS) were less common, 472 

therefore our statistical tests were under powered, hampering our ability to detect differences. 473 

All imaging data was acquired on the same scanner, in the same hospital catchment area in 474 

central London, and despite the socioeconomic and racial diversity of London, our result may 475 

not be generalizable to other populations.  476 
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 784 

Figure 1. Distribution of covariates and cohort information (a) Gestational age (GA) 785 

distribution for controls and CHD patient populations (b) Sex and Cerebral substrate delivery 786 

grouping (0 = control, 1 = expected normal, 2 = mildly reduced, 3 = moderately reduced, 4 = 787 

severely reduced). See Methods section ‘CHD categorisation’. (c) Distribution of CHD 788 

Diagnoses within the patient cohort. 789 
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 790 

Figure 2. CHD grouping according to cerebral substrate delivery ICA separates a 791 

multivariate signal (the T2w log jacobians) into additive, independent subcomponents that 792 

represent brain regions covarying between individuals. 793 

 794 
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Figure 3. Methods pipeline to extract Structural Covariance Networks  795 

(A) Reconstructed motion corrected T2w fetal MRI is registered to the 30 GW Atlas, using 796 

non-linear registration (B) The log Jacobian of the warp is calculated (C) Jacobians are 797 

concatenated across all subjects and used as input to the canonical ICA algorithm, to 798 

extract 40 SCNs (D) A GLM is fit to the Jacobians & the SCNs, to extract an SCN 799 

weighting (or ‘modes’) for each subject. (E) To examine the underlying sources of 800 

variation between modes for each SCN, two GLMs were fit, testing the effect of GA, 801 

GA2, sex and either (i) cerebral substrate grouping or (ii) CHD Diagnosis. 802 
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Figure 4. Structural covariance networks identified by ICA. 40 independent SCNs overlayed 803 

on a 30 GW fetal atlas. Table contains labels summarising their neuroanatomy. 804 
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 805 

 806 

Table 1. 18 SCNs where Cerebral Substrate Delivery and CHD Diagnosis are significant 807 

predictors of variance. Adjusted p values after FDR correction for multiple comparisons 808 

between components (q < 0.05). Significant comparisons are indicated with coloured box. Table 809 

also contains column of the proportion of total variance across the cohort explained by each 810 

SCN, whether there was a relationship with GA, (0 = No relationship, 1 = linear, or 2 = 2nd order 811 

polynomial), and if GA/sex were significant predictors of variance in the GLM.  812 
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Figure 5. Structural covariance explained by cerebral substrate delivery. For each 813 

significant component, the GLM predicted modes are shown (when accounting for gestational 814 

age, sex and cerebral substrate delivery group), arranged along the x axis by cerebral substrate 815 

delivery groups (key shown in top left hand corner). (*) denotes significant difference between 816 

groups after correcting for multiple comparisons (FDR, q < 0.05).  817 
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