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Abstract 

Objective: Vancomycin is a widely used antibiotic that requires therapeutic drug monitoring 

(TDM) for optimized individual dosage. The deep learning-based model PKRNN-1CM has 

shown the advantage of leveraging time series electronic health record (EHR) data for 

individualized estimation of vancomycin pharmacokinetic (PK) parameters. While one-

compartment (1CM) PK models are commonly used because of their simplicity and previous 

trough-based clinical practices for dose adjustment, the pre-deep learning literature suggests the 

superiority of two-compartment models (2CM). Motivated by this, we introduce a novel deep-

learning-based approach, PKRNN-2CM, for vancomycin TDM. 

Methods: PKRNN-2CM combines RNN-driven PK parameter estimation with a 2CM PK model 

to predict vancomycin concentration trajectories. Training on both simulated data and real-world 

EHR data allows for a comprehensive evaluation of its performance. 

Results: Experiments based on simulated data highlight PKRNN-2CM's superiority over the 

simpler 1CM model PKRNN-1CM (PKRNN-2CM RMSE=1.30, PKRNN-1CM RMSE=2.50). 

Application to real data showcases significant improvement over PKRNN-1CM (PKRNN-2CM 

RMSE=5.62, PKRNN-1CM RMSE=5.84, two-sample unpaired t-test p-value=0.01), with 

potential further gains expected with non-trough level measurements.  

Conclusion: PKRNN-2CM is an important improvement in vancomycin TDM, demonstrating 

enhanced accuracy and performance compared to the PKRNN-1CM model. This deep learning 

model holds potential for future individualized vancomycin TDM optimization and broader 

application in diverse clinical scenarios.  
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Introduction 

Therapeutic drug monitoring (TDM) is necessary for optimizing individual dosage 

regimens, particularly for drugs with narrow therapeutic ranges and high pharmacokinetic (PK) 

variability, such as vancomycin (Avent et al., 2013; Kang & Lee, 2009). Traditional vancomycin 

TDM methods include trough monitoring, linear regression, population PK, and Bayesian 

estimation (Avent et al., 2013). The most recent national guidelines recommend individualized 

dosing guided by Bayesian methods for TDM, but they may not cover diverse patient 

populations effectively and are often unsuitable for patients with unstable clinical conditions 

(Narayan et al., 2021; Rybak et al., 2020). Furthermore, these models incorporate a limited 

number of patient-specific variables, while neglecting other factors that could enhance 

predictions (Narayan et al., 2021). Deep learning models, particularly recurrent neural networks 

(RNNs), prove to be well-suited for modeling time-series EHR data (Rasmy et al., 2018) due to 

their capacity to analyze sequences of time-related events. When it comes to TDM, which 

inherently involves irregularly sampled and noisy time-series EHR data, RNNs become a fitting 

choice. As an example, the PKRNN model presented by Nigo et al. (2022), is an autoregressive 

RNN model with a PK prediction head, which outperforms a Bayesian vancomycin TDM model. 

However, the prototype PKRNN model only used a one-compartment (1CM) PK model. It is 

unclear if multi-compartment PK models will further improve PKRNN.  

Here, we extend their work, aiming to improve the performance of the PKRNN-1CM 

model by incorporating a two-compartment (2CM) PK prediction head within the model 

framework. The determination of the number of compartments in developing population PK 

models is important for describing the PK of drugs, as highlighted by Shingde et al. (2019). 

While 1CM models assume vancomycin distributes evenly throughout the body right after the 

infusion, multi-compartment models exhibit rapid initial distribution followed by slower 

elimination, offering a more realistic representation of vancomycin distribution. Shingde et al. 

(2019) report that vancomycin PK has been described using one, two, and three-compartment 

models, while most Bayesian approaches use one or two-compartment models. Their preference 

for 2CM models is further supported by studies indicating their superiority in higher accuracy 

and lower bias when predicting vancomycin concentrations (Pryka et al., 1989). 2CM models 

can provide more accurate predictions, especially for critically ill patients with non-steady-state 

kidney functions (Cheng et al., 2022; Goti et al., 2018). Additional evidence from studies like 
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Fernandez de Gatta et al. (1996), Wu & Furlanut (1998), and Shingde et al. (2019) show the 

advantages of 2CM models over 1CM models. 

Despite convincing evidence supporting the superiority of 2CM PK models, the 1CM 

model is still widely adopted in clinical practice. This preference may be attributed to simplicity 

and previous trough-based common practices for dose adjustment. We hypothesize that 

increasing the number of non-trough-level measurements of the concentration-time curve in the 

development of a 2CM PK model will enhance its performance, resulting in significantly 

improved prediction accuracy compared to a 1CM PK model. This hypothesis is grounded in the 

observations of Shingde et al. (2019), who noted that, for a given patient, the two curves differ 

the most at the peak level and become smaller the closer to the trough level. Testing this 

hypothesis needs a dataset rich in non-trough-level measurements, a challenge given the sparse 

real-world datasets. Therefore, we turn to simulation as a valuable tool, providing a controlled 

environment to explore different sampling strategies and thoroughly examine the impact of 

various factors such as the density and timing of measurements on prediction accuracy to 

comprehensively assess and refine the developed 2CM PK model. This study innovatively 

employs actual patient information in the simulation, ensuring comparability with real-world 

datasets, and distinguishing it from existing works using simulated data for model comparison.   

This study aims to develop an RNN-based 2CM predictive model (PKRNN-2CM) for 

vancomycin TDM. It is anticipated that the combination of an RNN and a 2CM PK model will 

provide better predictions of vancomycin concentrations than the PKRNN-1CM model, 

especially when there is a sufficient number of observations that occur during non-trough levels.  

Our study makes the following contributions: first, our novel implementation of the 2CM 

PK prediction head for the PK RNN model marks an important development in methodology. 

Second, our results show the significantly better performance of the PKRNN-2CM model for 

individualized vancomycin dosing with sparse and irregularly sampled real-world data. Third, 

through the simulation strategy combined with realistic EHR data, we systematically 

benchmarked the performance of different PKRNN models under diverse conditions. Finally, 

different simulation options not only prove the overall superiority of the 2CM model over the 

1CM model but also highlight a particularly substantial performance gap, especially when 

dealing with non-trough-level measurements. These findings provide valuable insights into the 
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potential of the PKRNN-2CM model for enhancing clinical decision-making for individualized 

vancomycin dosing. 

 

Statement of Significance 

Problem: Pharmacokinetic (PK) models that can take in real-world data and generate 

concentration trajectories accurately are desired for the clinical use of drugs that need 

monitoring. 

What is Already Known: Current clinical practice relies on one-compartment (1CM) PK 

models, despite literature suggesting the superiority of two-compartment (2CM) models. The 

deep learning PKRNN-1CM model is developed and showing promise, but faces limitations due 

to simplicity. 

What this Paper Adds: PKRNN-2CM, our novel deep-learning model combines recurrent 

neural networks with a 2CM PK model, outperforms PKRNN-1CM in both simulation and real-

world scenarios, provides wider applicability for deep learning-based therapeutic drug 

monitoring (TDM). 
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Methods 

Model architecture overview 

As with the PKRNN-1CM model (Nigo et al., 2022), the PKRNN-2CM model is an 

autoregressive RNN model containing a PK model as the prediction head. The PKRNN-1CM 

model consists of three components that enable the vancomycin predictions to be evaluated at 

any time point. First, a code embedding layer is used to input information from the EHR into the 

PKRNN-1CM model for every time step. Next, an RNN layer is applied to predict vancomycin 

elimination rates and compartment volumes, and finally, based on the output from the RNN 

layer, a 1CM PK layer uses the PK equation, which is an ordinary differential equation (ODE), 

to compute the predicted vancomycin concentration. For the PKRNN-2CM model, we extend the 

1CM PK model to a 2CM PK model. A schematic representation of the structure of the PKRNN-

2CM model can be found in Figure 1. The input to the model is the time-series EHR data after 

data preprocessing, which contains categorical data, continuous data, vancomycin dose, 

vancomycin serum concentration measurements, and other information relevant to each patient. 

For every time step, the RNN layer predicts four parameters η1, η2, η3, and η4 (Lim et al., 2014) 

that are related to the PK parameters. After that, the PK layer based on the 2CM PK model uses 

an ODE to calculate the estimated PK parameters k1 (elimination rate for the central 

compartment), V1 (volume for the central compartment), V2 (volume for the peripheral 

compartment), and R, which is defined by k2/V2 (k2 is the elimination rate for the peripheral 

compartment), and is using the estimated PK parameters to provide the predicted vancomycin 

concentration as the model output. 
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A schematic that shows the model structure of PKRNN-2CM by every time step (time step is defined by 

vancomycin administration time, vancomycin level obtained, or the end of the day). In this figure, there are N time 

steps. Each time step is fed with the time-series EHR data after preprocessing, which contains categorical data, 

continuous data, doses, measurements, and other information. After the embedding layer, the RNN layer predicts 4 

parameters η1, η2, η3, and η4. The PK layer then computes the predicted vancomycin concentration based on the 

2CM PK model as the model output. 

Figure 1 PKRNN-2CM model architecture 

 

PKRNN-2CM differs from PKRNN-1CM in two aspects: (1) it uses additional PK 

parameters and different initial values; and (2) it uses a first-order ODE system with two ODEs 

in order to calculate vancomycin concentrations. As Figure 2 shows, there are two PK 

parameters in the PKRNN-1CM model, elimination rate k and volume V, while the PKRNN-

2CM model has two elimination rates, k1, k2, and two volumes, V1, V2 for the central and 

peripheral compartments, respectively. Furthermore, empirically we found that the result got 

better by removing the constraints of mass conservation as in PKRNN-1CM. Instead, in 

PKRNN-2CM we make the concentration continuous, which we believe is better because the 

model is allowed to correct its own prediction error in a smoother way.  
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(1) The RNN and PK layers of the PKRNN-1CM model.  

k: elimination rate; V: volume distribution, r: infusion rate; M: mass of the compartment. 

The RNN predicts k and V, where the PK layer uses these two parameters together with r and M into the ODE to 

calculate the vancomycin concentration.  

(2) The RNN and PK layers of the PKRNN-2CM model.  

η1, η2, η3, and η4: PK parameters that satisfy a multivariate Gaussian distribution; k1: elimination rate of the 2CM 

system; k2: exchange elimination rate between the two compartments; MA: mass of the central compartment; MB: 

mass of the peripheral compartment. 

The RNN predicts η1, η2, η3, and η4 to calculate 4 parameters k1, R, V1, and V2 for the 2CM PK model, where 

R=k2/V2. The PK layer uses k1, R, V1, and V2 as PK parameters to calculate the vancomycin concentration. 

Figure 2 The main difference between PKRNN-1CM and PKRNN-2CM 

 

Pharmacokinetics model details  

Based on Lim et al. (2014), the four PK parameters k1, k2, V1, and V2 can be described by 

four related parameters η1, η2, η3, and η4 that follow a multivariate normal distribution (MVN). 

The RNN layer in the PKRNN-2CM predicts η1, η2, η3, and η4 where the initial values are 

determined according to Lim et al. (2014): 

[

𝜂1

𝜂2

𝜂3

𝜂4

] ~𝑀𝑉𝑁 ([

0
0
0
0

] , [

0.120 0 0 0
0 0.149 0 0
0 0 0.416 0
0 0 0 0

]) 

as opposed to PKRNN-1CM which uses RNN to predict k and V directly. In the PK layer, η1, η2, 

η3, and η4 are used to calculate PK parameters: 
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𝑉1(𝐿) = 33.1 ∙ eη1 

𝑉2(𝐿) = 48.3 ∙ eη4 

𝑅(/𝐿 ∙ ℎ𝑟) =
−6.99

48.3
∙ eη3 

𝑘1(/ℎ𝑟) = 3.96 ∙
CrCL

100
∙ eη2 

𝑘2(/ℎ𝑟) = R ∙ 𝑉2 

where CrCL is the creatinine clearance calculated from the Cockcroft-Gault equation: 

CrCL =  
140 − 𝑎𝑔𝑒 (yr) + 𝑤𝑒𝑖𝑔ℎ𝑡 (kg)

72 × 𝑠𝑒𝑟𝑢𝑚 𝐶𝑟 (mg/dL)
 

(× 0.85 for women) 

The vancomycin concentration can then be calculated using the ODE system below: 

{

𝑑𝑀A

𝑑𝑡
=

𝑘2 − 𝑘1

𝑉1
𝑀A −

𝑘2

𝑉2
𝑀B + 𝑟

𝑑𝑀B

𝑑𝑡
= −

𝑘2

𝑉1
𝑀A +

𝑘2

𝑉2
𝑀B             

 

Here 𝑀A represents the mass of the central compartment, and 𝑀B represents the mass of the 

peripheral compartment. A detailed mathematical derivation can be found in the supplementary 

materials. 

Simulation framework 

The simulation was designed to be employed as a valuable tool to guide the development 

and deployment of our PKRNN-2CM model by bridging the gap between the constraints of real-

world data and the requirements of a comprehensive and reliable predictive system. Through this 

approach, we can address the limitations of sparse real-world datasets and gain deeper insights 

into the behavior of the PKRNN-2CM model in comparison to the PKRNN-1CM model. By 

generating simulated data using as much real data as possible, we bridged the gap in current 

works that used simulated data for model comparison. Previous studies either used one simulated 

standard patient to evaluate various model performances (Broeker et al., 2019) or simulated 

patient information for the whole patient population that did not contain any real data (Maung et 

al., 2022). To ensure that the simulated dataset was comparable to the original real-world dataset, 

the simulation was based on actual patient information such as medications and lab results. As 

much patient information as possible was used in the simulation to guarantee the similarity 

between the simulated datasets and the original real-world dataset, with the only simulated data 
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being the measurements. The predicted vancomycin concentrations from the PKRNN-2CM 

model using real-world data were set as simulated measurements, and the PKRNN-2CM model 

that provided measurement values for simulation was defined as the underlying model. The 

PKRNN-1CM or PKRNN-2CM model used to test the simulated datasets was defined as an 

inference model. 

The simulation employed in this study involves the use of vancomycin concentrations 

predicted by the underlying model as labels for testing the performance of the inference 

PKRNN-1CM and PKRNN-2CM models based on different types of simulation. The simulation 

framework includes some sequential steps: firstly, training a PKRNN-2CM model on real-world 

data to establish the underlying model for simulation. Subsequently, the predicted concentrations 

are utilized to generate simulated datasets. These simulated concentrations, along with other 

patient information, are then inputted into the inference models PKRNN-1CM or PKRNN-2CM. 

The final step involves evaluating the performance of the models by comparing the predicted 

concentration-time curve derived from the underlying model with that obtained from the 

inference models.  

Simulation details 

The framework can be technically described into 7 steps:  

Pseudocode: Simulation Framework 

Step 1: Load the real-world data 

Step 2: Train the PKRNN-2CM model and get predicted concentrations by time steps 

PKRNN-2CM_model = train_model(PKRNN-2CM, real_data) 

predicted_concentrations = PKRNN-2CM_model. predict_concentrations(real_data) 

Step 3: Evaluate model performance using RMSE 

if Simulation == False: 

    RMSE = calculate_RMSE(observed_concentrations, predicted_concentrations) 

Step 4: Simulation process 

if Simulation == True: 

    duplicated_data = duplicate_file(real_data) 

    calculated_concentrations = calculate_concentrations(predicted_concentrations) 

    simulated_data = modify_data(duplicated_data, calculated_concentrations, simulation_options) 

Step 5: Train the inference model (PKRNN-1CM or PKRNN-2CM) on simulated data 

inference_model = train_model(inference_model_type, simulated_data) 
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predicted_concentrations_inference = inference_model.predict_concentrations(simulated_data) 

Step 6: Evaluate inference model performance using RMSE 

RMSE_inference = calculate_RMSE(simulated_labels, predicted_concentrations_inference) 

Step 7: Compare RMSEs of PKRNN-1CM and PKRNN-2CM 

if inference_model_type == PKRNN-1CM: 

    PKRNN-1CM_RMSE_inference = RMSE_inference 

elif inference_model_type == PKRNN-2CM: 

    PKRNN-2CM_RMSE_inference = RMSE_inference 

RMSE: Root Mean Square Error 

 

Figure 3 is a schematic diagram showing the complex simulation and evaluation process. 

The simulation begins with Step 1, where the real-world time series EHR data is loaded into the 

system. Moving forward to Step 2, the PKRNN-2CM model is trained on the real data, providing 

predicted concentrations based on time steps. In Step 3, when Simulation is set to False, model 

performance is assessed through the calculation of root mean square error (RMSE), comparing 

observed and predicted concentrations. Conversely, when Simulation is set to True in Step 4, the 

original data is duplicated, and calculated concentrations from the PKRNN-2CM model are 

employed to generate a simulated dataset based on simulation options. In Step 5, training the 

inference model (PKRNN-1CM or PKRNN-2CM) on the simulated data generated in the 

previous step. Step 6 evaluates the inference model's performance using RMSE. The final step, 

Step 7, includes a comparative analysis of RMSEs between PKRNN-1CM and PKRNN-2CM to 

measure the models' efficacy in different evaluation scenarios. 
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The top section portrays pseudocode, detailing the data loading, model training, and performance evaluation. The 

bottom schematic diagram visually illustrates the flow, emphasizing the sequential progression from data 

duplication and concentration calculation to the training and evaluation of inference models. 

Figure 3 Simulation process 

 

Figure 4 provides a comprehensive description of the simulation and evaluation process, 

showcasing three examples of different choices. Two simulation types were considered: moving 

measurements from the real-world dataset to target locations (peak or trough) or adding 

simulated measurements. Within the latter option, two sub-options were considered: adding 

measurements to the first half doses of the patient or adding measurements for every dose. 

Simultaneously, three location options were explored: peak, trough, and both, where the "both" 

option means simulating measurements at both peak and trough levels of the concentration-time 

curve. Addressing real data, two choices were available: to keep or remove measurements from 

the original real-world dataset. Evaluation criteria were also diverse, permitting assessment at 

peak, trough, or both locations. Moreover, there were three evaluation types provided to evaluate  

the early half, later half, or the whole predicted curve. 
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A visual representation of the simulation and evaluation options. It showcases three examples of different choices 

within this framework, highlighting variations in simulation types, location options, and strategies for dealing with 

real data. The figure also delineates how the inference model's predicted curve can be evaluated at peak, trough, or 

both locations. 

Figure 4 Simulation and evaluation options overview 

 

Data description 

This study utilized the same dataset as Nigo et al. (2022), which was obtained from an 

EHR data warehouse containing information regarding encounter-level administrative data 

collected from Memorial Hermann Health System (MHHS), a large healthcare system based in 

Houston, Texas, United States. Patients over 18 who got at least one dose of vancomycin during 

the period from August 2019 through March 2020 were included in the study. This study 

excluded patients who received renal replacement therapy and patients with inappropriate timing 

of vancomycin levels. De-identification of the extracted cohort has been conducted in order to 

protect the privacy and security of the patient data. Similar to Nigo et al. (2022), our model was 

trained and evaluated only using encounters with at least one serum vancomycin level measured 

after the first vancomycin dose. 

The EHR data for this study were extracted at the encounter level, including 30 

laboratory tests, 5 vital signs, 324 types of medications, and demographic information. In the 

same manner as Nigo et al. (2022), for each encounter, the start time was determined by the 

earliest record time, while the end time was determined by the timestamp of the last vancomycin 

concentration. Vancomycin administration time, vancomycin level obtained, and the end of the 

day were used as time steps to update the parameters of the PKRNN-2CM model. Within the 
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MHHS dataset, the infusion duration of vancomycin fluctuates based on the dosage: ≤1000 mg is 

infused over 1 hour, 1001–1500 mg over 1.5 hours, 1501–2000 mg over 2 hours, and doses 

exceeding 2000 mg over 2.5 hours. For model simplification, a uniform infusion rate of 1 

gm/hour was adopted. It is also assumed that measurements of vancomycin should not be made 

during the infusion. The values that are missing are estimated with previous values based on the 

assumption that the clinicians did not repeat the test due to patient stability. A mean value was 

used when no values were measured for the patient. Z-scores are used to standardize continuous 

values.  

Implementation details 

To establish the framework for our model implementation, we meticulously configured 

the code embedding and the RNN layers, and also chose training hyperparameters and 

optimization techniques for optimal performance. In configuring the code embedding layer, 

categorical data is represented by 8-dimensional vectors encompassing all medication codes. For 

the initialization of the embedding layer, weights were established using a Gaussian distribution. 

Each time step involves the input of a 48-dimensional vector (40 + 8) into the RNN layer, 

comprising embedded categorical data (8) and normalized continuous data (40). The RNN layer 

utilized a single-layer gated recurrent unit (GRU) with a hidden size of 64. The output layer is 

characterized by a linear layer of size (64, 4), mapping the GRU's hidden layer to the parameters 

η1, η2, η3, and η4 at each time step.  For model training, we employ the Adamax optimizer with a 

learning rate and weight decay set at 1e-1 and 0.2, respectively. The training minibatch size is 

configured at 50, and an early stopping mechanism, governed by the hyperparameter "patience" 

set to 10, is implemented to mitigate overfitting risks. The mean squared error serves as the 

chosen loss function for training the model. Additionally, we incorporate two regularization 

mechanisms. Firstly, we impose a penalty on the deviation of the predicted parameters η1, η2, η3, 

and η4 from the initial values in the RNN layer. The second regularization term uses the L2 norm 

of the first-order difference to discourage abrupt changes in the output of the RNN layer. 

For the simulation implementation, several datasets were simulated from the underlying 

model based on different simulation options, and the sampling strategy of the simulation was 

based on the infusion cycle. In the simulated peak datasets, for every time step, a measurement 

was simulated at the next time step when a dose was present. The time intervals between these 

two time steps were determined based on the dose, the simulated measurements were made after 
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2 hours if the dose was less than or equal to 1000mg or after 3 hours if the dose was greater than 

1000mg. The trough datasets simulated each measurement 1 hour before the dose. Additionally, 

the interval between the next time step and the simulated time step was reduced to maintain the 

patient's time length unchanged. 

For consistency and comparability, the PKRNN-2CM model evaluation remains the same 

as the PKRNN-1CM model. Depending on patient identification, the data were divided into 

training, test, and validation sets in a ratio of 70:15:15. A comparison of the model performance 

between PKRNN-2CM and PKRNN-1CM from both the original MHHS dataset and also the 

simulated datasets were made using RMSE. The statistical analysis to compare the PKRNN-

2CM model and the PKRNN-1CM model was completed by a two-sample unpaired t-test. 

Additionally, the simulation evaluation was based on hours and followed the same peak and 

trough definitions for the sampling strategy. We ran the inference models with different 

simulation options to evaluate how the inference models captured the entire vancomycin 

concentration curve (not only the points similar to where the input measures were sampled). This 

study was conducted with Python 3.8 (Python Software Foundation), primarily using PyTorch 

1.9.0. 

A detailed code repository to reproduce our experiment can be found at: 

https://github.com/ZhiGroup/PK-RNN/tree/PKRNN-2CM.   
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Results 

This study consisted of 5,483 patients with 8,689 encounters in total. There were two 

parts to the descriptive analysis of the dataset, namely basic characteristics and demographics, as 

shown in Table 1. There was a median weight of 82.9 kg and a median height of 172cm among 

all patients. Age, gender, and race/ethnicity were included in the demographics data analysis. 

Out of 5,483 patients, 3,069 were males, which represented 55% of the population, and the 

median age was 61. In the patient population, 36.4% were white, which was the largest racial 

group when compared to less than 20% African Americans and less than 2% Asians. Moreover, 

783 (14.2%) patients were Hispanic. 

Characteristics Number (%) or median (IQR) 

Basic Characteristics 

Patients 5,483 

Encounters 8,689 

Weight (kg) 82.9 (65.5 – 101.6) 

Height (cm) 172 (165.1 – 181.1) 

Demographics 

Age 61 (48-73) 

Gender  

      Male 3,069 (55%) 

Race and ethnicity  

      White  2,003 (36.4%) 

      African American  1,069 (19.5%) 

      Asian  83 (1.5%) 

      Non-Hispanic  3,905 (71.2%) 

      Hispanic  783 (14.2%) 

IQR: Interquartile range.  

Table 1 Descriptive statistics for the study cohort 

 

Model Average RMSE (STD) P-value 

PKRNN-1CM 5.84 (0.10) N/A 

PKRNN-2CM 5.62 (0.02) 1.00e-2 
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RMSE: root mean square error; STD: standard deviation over 5 repeats. 

N/A: not applicable. 

Table 2 Results and comparison for PKRNN-1CM and PKRNN-2CM 

 

Table 2 shows that the PKRNN-2CM model exhibited improvement over the PKRNN-

1CM model (the two-sample unpaired t-test p-value=1.00e-2).  

Simulation results were reported using average RMSEs from test sets. For each dataset 

simulated from the underlying model, we tested and compared the model performance of the 

inference PKRNN-1CM and the PKRNN-2CM models. Table 3 presents the summarized 

simulation results while additional outcomes from diverse simulation options and evaluation 

settings are reserved for the supplementary materials. 

Add measurements 

for first half doses 

Average RMSE (STD) P-value 

Simulation location PKRNN-1CM PKRNN-2CM  

Peak* 2.60 (0.36) 1.47 (0.19) 5.07e-04 

Trough** 3.42 (0.18) 2.66 (0.09) 5.20e-05 

Both*** 3.23 (0.36) 1.59 (0.15) 3.03e-05 

Add measurements 

for all doses 

Average RMSE (STD) P-value 

Simulation location PKRNN-1CM PKRNN-2CM  

Peak* 2.50 (0.24) 1.30 (0.09) 1.40e-05 

Trough** 2.63 (0.18) 1.53 (0.16) 1.69e-05 

Both*** 3.04 (0.29) 1.48 (0.15) 1.24e-05 

RMSE: root mean square error; STD: standard deviation over 5 repeats. 

*Peak: 2 or 3 hours post every infusion, 2 hours for infusion <= 1000mg, 3 hours for infusion > 1000mg;  

**Trough: 1 hour pre every infusion;  

***Both: two measurements (peak and trough) for every infusion. 

Table 3 Simulation results for simulated datasets with removing real data 

 

Upon interpreting the results in Table 3, several noteworthy observations emerged. 

Firstly, simulated data consistently provided lower RMSEs than real-world data for both models, 

showing the regularity of the simulated datasets helps to improve the model performance. Both 
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moving and adding measurements showed significant differences between RMSEs from the two 

models, particularly when adding measurements for every dose at the peak level, favoring 

PKRNN-2CM with more statistically significant p-values. Peak options consistently 

outperformed trough options for both models, emphasizing the importance of peak 

measurements in enhancing predictive accuracy. The strategic decision to remove real data from 

simulated datasets, combined with adding measurements for every dose at the peak level, 

resulted in the lowest RMSEs for both models, with PKRNN-2CM exhibiting superiority over 

PKRNN-1CM. Furthermore, PKRNN-2CM consistently demonstrated lower standard deviation 

across multiple runs, indicating a higher level of consistency and performance stability compared 

to PKRNN-1CM. 

Detailed results from different evaluation options can be found in the supplementary 

materials, which revealed statistical significance favoring PKRNN-2CM over PKRNN-1CM. 

Notably, peak-level evaluations consistently gave smaller p-values than trough-level evaluations 

even when the simulation location was at the trough level, emphasizing the superior performance 

of the PKRNN-2CM model.  

 

(1) 
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Comparison of the performance of PKRNN-1CM and PKRNN-2CM models across diverse patient scenarios. In the 

top panel of each subfigure, the models' performance using real data is compared. The bottom panel assesses the 

models' ability to capture simulated observations, highlighting differences in their predictive accuracy. 

Figure 5 Model performance across patient scenarios 

 

Figure 5 illustrates three different patient scenarios from the underlying model, and the 

inference models provided comparable results across these scenarios. The simulated dataset 

employed for inference models contained observations at the peak level after each infusion, with 

the option of removing real data.  In Figure 5(1), the top panel showcases a patient for whom the 

PKRNN-2CM model, when using real data, outperformed the PKRNN-1CM model (PKRNN-

1CM RMSE: 27.18; PKRNN-2CM RMSE: 21.32). Specifically, out of four observations, the 

PKRNN-2CM model captured three, while the PKRNN-1CM model captured none. In the 

bottom panel, it is evident that the inference PKRNN-2CM model captured most of the simulated 

observations also provide a lower RMSE (PKRNN-1CM: 17.54; PKRNN-2CM: 15.20), whereas 

the inference PKRNN-1CM model missed over half of them, with consistent RMSEs (PKRNN-

1CM: 17.54; PKRNN-2CM: 15.20). In Figure 5(2), the PKRNN-2CM model with real data 

performs similarly to the PKRNN-1CM model (PKRNN-1CM RMSE: 18.28; PKRNN-2CM 

RMSE: 16.97). Both models missed one out of three observations, the PKRNN-1CM model 

caught the second observation, while the PKRNN-2CM model caught the last. The bottom panel 

shows that the inference PKRNN-2CM model captured simulated observations from the first 

dose with a lower RMSE, while the PKRNN-1CM model started capturing them nearly at the 

end of the curve (PKRNN-1CM RMSE: 13.24; PKRNN-2CM RMSE: 11.46). In Figure 5(3), the 

top panel describes a patient wherein the PKRNN-2CM model, using real data, performed less 

effectively than the PKRNN-1CM model (PKRNN-1CM RMSE: 14.57; PKRNN-2CM RMSE: 

16.19). Out of three observations, PKRNN-1CM captured one, PKRNN-2CM captured one, and 

the other, missed by both models, is closer to the curve from the PKRNN-1CM model. The 

bottom panel indicates that the inference PKRNN-2CM model performed better on the simulated 

dataset (PKRNN-1CM RMSE: 11.14; PKRNN-2CM RMSE: 9.74). 
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Discussion 

PKRNN-2CM is a novel deep-learning model that combines an RNN for vancomycin PK 

parameter estimation with a 2CM PK model for generating concentration trajectories, offering an 

innovative approach for individualized vancomycin TDM using time series EHR data. Our 

results demonstrate a significant improvement in the PKRNN-2CM model's performance 

compared with the PKRNN-1CM model in real-world data. The results from our comprehensive 

simulation studies documented not only the overall superiority of the PKRNN-2CM model over 

the PKRNN-1CM model, but also highlighted a greater performance gap in scenarios involving 

non-trough-level measurements.    

To the best of our knowledge, this study marks an advancement by being the first in the 

literature to prove the superior predictive accuracy of a 2CM PK model over the 1CM PK model 

using a large real-world dataset. Current experiments that compare the 1CM and 2CM PK 

models for prediction tasks are based either on a richly sampled small dataset (Shingde et al., 

2019) or on simulated data (Broeker et al., 2019; Maung et al., 2022). While these approaches 

provided valuable insights, they lacked the robustness to capture the complexities in large real-

world datasets with sparse measurements. In contrast, our work addresses this gap by 

showcasing the enhanced predictive capabilities of the 2CM PK model even under conditions of 

data sparsity. By validating the superiority of the PKRNN-2CM model on sparse data, our study 

provides a more realistic and applicable insight into the model's performance, offering valuable 

implications for the clinical implementation of 2CM PK models in scenarios characterized by 

limited data availability. This contribution underscores the robustness of 2CM models, extending 

their utility to a broader range of clinical situations beyond the constraints of previous 

experimental settings. 

To the best of our knowledge, our simulation framework is the first real-world-based 

simulation framework to compare the performance of 1CM and 2CM PK models. Existing 

studies using simulated data to compare the 1CM and 2CM PK models are either using one 

simulated standard patient to evaluate different model performances (Broeker et al., 2019) or 

simulating all the patient information for the patient population which does not contain any real 

data (Maung et al., 2022). The simulation in this work strives for a more realistic representation 

by using as much actual patient information as possible, with the only simulated components 

being the measurements. By grounding our simulation in real-world patient demographics, 
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medications, and lab results, we ensure that the simulated datasets retain a level of reality to the 

complexities observed in actual clinical scenarios. Consequently, our simulation method bridges 

the gap between purely synthetic scenarios and the complex realities of clinical practice, adding 

credibility to our model comparisons and supporting the transferability of our findings to diverse 

healthcare settings. 

Our simulation framework, with its diverse simulation and evaluation options, enables  

evaluations of PK models in real-world scenarios. The inclusion of several different options 

within our simulation design allows for flexibility and adaptability, making it a valuable resource 

for addressing various tasks related to sampling or measurement strategies. While our primary 

focus is on the comparative evaluation of 1CM and 2CM PK models for vancomycin prediction, 

the multitude of options embedded in our simulation methodology positions it as a versatile tool. 

This simulation framework can be used to investigate and assess different sampling or 

measurement strategies in distinct clinical settings and applications. In addition to different 

simulation options, our evaluation strategy of the simulation has a significant advantage in its 

ability to overcome the limitations imposed by the availability of real-world measurements. In 

real-world scenarios, the evaluation of PK model performance is constrained by the availability 

of real measurements, leaving gaps in understanding the model's efficacy at specific levels of the 

concentration-time curve.  However, the strategic inclusion of different evaluation options in our 

simulation framework circumvents these constraints, offering a comprehensive evaluation of PK 

model performance across various scenarios. This approach not only fills the gaps left by 

missing real-world measurements but also offers a forward-looking perspective for future 

studies. The versatility of our evaluation options opens avenues for exploring the inference 

model's behavior under various conditions, enriching our understanding of its performance in a 

detailed manner. This adaptability positions our simulation-based evaluation as a valuable 

methodological advancement with broad implications for enhancing the robustness and 

reliability of PK model assessments. 

The study conducted has some limitations that should be acknowledged. Firstly, our work 

explores the PKRNN-2CM model framework, a departure from the PKRNN-1CM model, 

introducing an additional set of parameters. In the PKRNN-1CM model, the RNN directly 

predicts two 1CM PK parameters. However, in the PKRNN-2CM model architecture, the RNN 

outputs four parameters linked to 2CM PK parameters, following an MVN (Lim et al., 2014). 
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We did not explore the case where the RNN directly predicts 2CM PK parameters, leaving it as a 

potential direction for future research to compare the performance differences between the two 

parameterization approaches. Secondly, our simulation results suggest that peak measurements 

are more informative than trough measurements for model predictions, which contradicts the 

clinical practice of tend to use trough measurements for vancomycin TDM. We hypothesize that 

this paradox occurs because of the noise in real-world data that affects trough measurements 

more than peak measurements. Further research is needed to test this hypothesis and to explore 

the optimal sampling strategy for vancomycin TDM. Lastly, the PKRNN-2CM model employed 

in this study lacked the capacity to predict the area under the curve (AUC) of vancomycin level 

due to the unavailability of AUC measurements in the MHHS dataset. This poses a challenge in 

directly comparing our model's performance with other existing models that use AUC as the 

evaluation metric. 

This study has several important impacts: first, the demonstrated superior predictive 

accuracy of the PKRNN-2CM model over the PKRNN-1CM model, both on real-world and 

simulated data, signifies the ability of the PKRNN-2CM model to provide more accurate 

predictions from the first dose, which enables clinicians to make timely and informed dose 

adjustments, contributing to enhanced patient outcomes. Second, the reliance on a 2CM PK 

model in the PKRNN-2CM model enhances its potential for generalization to other drugs that 

require TDM. The more realistic PK representation in a 2CM model broadens the applicability of 

the PKRNN-2CM approach beyond vancomycin, laying the foundation for improved 

personalized TDM across various medications. Third, this study's finding that accurate peak-

level measurements exceed trough-level measurements in informativeness has implications for 

future clinical guidelines. While accurate peak-level measurements prove more valuable than 

trough-level measurements, the study recommends the concurrent use of a 2CM PK model to 

ensure optimal predictive accuracy, particularly for peak-level measurements. Finally, the 

success in developing the PKRNN-2CM model hints at a future direction for advancing model 

accuracy and generalizability by exploring multi-compartment models with three or more 

compartments. This trajectory promises further improvement in predicting the concentration-

time curve for drugs that require TDM, paving the way for more realistic PK models with 

broader applications in clinical practice.  
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In conclusion, we developed the PKRNN-2CM model, which can be viewed as an 

improved version of the PKRNN-1CM model, and demonstrated that the 2CM PK model 

provides more accurate vancomycin concentration prediction than the 1CM PK model when 

using deep learning techniques as part of the predictive model. As far as we are aware, our 

PKRNN-2CM model is the first that demonstrates the 2CM PK model is significantly better than 

the 1CM PK model by using sparse, irregularly sampled EHR data obtained from the real world. 

Overall, our findings suggest that the PKRNN-2CM model has the ability to improve the 

accuracy of vancomycin concentration predictions and could be applied to other PK modeling 

tasks using time series EHR data. The results have important implications for clinical practice 

and highlight the potential of our PKRNN-2CM model for improving personalized vancomycin 

TDM. 
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