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ABSTRACT 

The 12-lead electrocardiogram (ECG) is an integral component to the diagnosis of a multitude of 

cardiovascular conditions. It is performed using a complex set of skin surface electrodes, limiting 

its use outside traditional clinical settings. We developed an artificial intelligence algorithm, 

trained over 600,000 clinically acquired ECGs, to explore whether fewer leads as input are 

sufficient to reconstruct a full 12-lead ECG. Two limb leads (I and II) and one precordial lead (V3) 

were required to generate a reconstructed synthetic 12-lead ECG highly correlated with the original 

ECG. An automatic algorithm for detection of acute myocardial infarction (MI) performed 

similarly for original and reconstructed ECGs (AUC=0.94). When interpreted by cardiologists, 

reconstructed ECGs achieved an accuracy of 81.4±5.0% in identifying ST elevation MI, 

comparable with the original 12-lead ECGs (accuracy 84.6±4.6%). These results will impact 

development efforts to innovate ECG acquisition methods with simplified tools in non-specialized 

settings.  
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INTRODUCTION 

With over 300 million being performed worldwide on an annual basis,1 the 12-lead 

electrocardiogram (ECG) has established itself as a bedrock diagnostic in the assessment of 

cardiovascular disease.2-5 Using a complicated array of 10 individual skin-surface electrodes, a 

series of 12 individual electrical vectors is arranged to assist in the diagnosis of an array of 

cardiopulmonary diseases. However, the acquisition of a 12-lead ECG has not iterated to great 

degree from its initial inception. It can be cumbersome, requiring special equipment available only 

at a hospital or clinic, and specially trained individuals to perform and interpret the ECG.  Over 

the last several years, technological advancements made it possible to monitor specific cardiac 

activity through wearable devices including smart watches, patch monitors and apps with 

improved quality and speed. However, ECG monitoring in this setting is often limited to a single 

lead (typically lead I) or few limb leads, which are inadequate for confidently diagnosing 

abnormalities limited to specific myocardial regions, such as acute myocardial infarction (MI).6 

Since the specific patterns suggestive of an acute MI may be reflected in the limb leads, the 

precordial leads, or a combination of limb and precordial leads, current guidelines require the use 

of a 12-lead standard ECG for clinical interpretation.  

The 12 leads in a standard ECG are not fully independent and are known to be in-part correlated,7 

thus over the last 30 years techniques have been proposed to synthesize a full standardized ECG 

from a limited lead set.8 While initial advancements in this field relied on linear transformation 

models, the diffusion of artificial intelligence (AI) enabled the development of more sophisticated 

approaches. 

Prior studies have primarily relied on patient-specific models9 or have been derived from limited 

datasets,10,11 potentially limiting their generalizability.  In this study, our aim was the development 

of a reconstruction algorithm with the purpose of synthesizing a complete 12-lead ECG from a 

limited subset of leads.  To this end, we leveraged a large retrospective dataset of clinically 

obtained 12-lead ECGs.  Additionally, we assessed the clinical utility of this reconstructed ECG 

involving three cardiologists, using ST-elevation MI (STEMI) as a case study.   
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RESULTS 

Dataset curation and categorization 

We considered a working dataset with 618,880 ECGs from 274,738 unique individuals. In 

particular, 46.19% of the ECGs were recorded from individuals 18-60 years old, 20.22% are 

associated with non-Caucasian individuals, and 50.44% were from female individuals. Normal 

sinus rhythm was present in 57.01% of the ECGs, while the rest was characterized by some form 

of arrythmia, with sinus, atrial, and ventricular arrhythmias present in 26.08%, 17.08%, and 7.24% 

of the ECGs, respectively. Cardiac conduction disorders were present in 30.66% of the ECGs, 

while 25.88% presented a repolarization abnormality in the ST segment or T wave. Ventricular 

hypertrophy, deviations of the cardiac axis and ischemia were present in 7.55%, 14.71%, and 

10.26% of the ECGs, respectively. (Table 1) 

Focusing on the subset of ECGs associated with myocardial infarction (MI), 47.40% of the data 

had signs of past MI, while 18,215 ECGs (2.94%) present evidence of acute MI. Regarding the 

anatomical location of the acute MI, we had 8.25% anterior, 0.37% septal, 5.72% lateral, 5.33% 

anteroseptal, 6.29% anterolateral, 4.08% inferolateral, 32.15% inferior/posterior, and 40.44% 

unspecified. 

12-lead reconstruction algorithm 

The reconstruction algorithm’s performance was assessed in terms of mean squared error (MSE) 

and coefficient of determination (R2) between the original precordial leads and those synthesized 

by the algorithm. When the algorithm used only two limb leads as input, performance was 

relatively poor with MSE = 0.0253 ± 0.0002 mV2 and R2 = 52.54 ± 0.19 %. Adding a single 

precordial lead in input significantly improved the reconstruction accuracy, with the best 

performance observed using lead V3, MSE = 0.0126 ± 0.0001 mV2 and R2 = 72.62 ± 0.13%. 

Replacing lead V3 with either lead V2 or lead V4 resulted in a slight decrease in reconstruction 

accuracy. (Figure 1)  

Classification using the reconstructed signal 

The classification algorithm’s accuracy was evaluated using three distinct versions of 12-lead 

ECG, obtained using as input: the original 12-lead ECG (Original), the 12-lead ECG reconstructed 

from two limb leads (I+II), and the 12-lead ECG reconstructed from limb leads and precordial lead 

(I+II+V3). The area under the operating characteristic curve (AUC) for the classification algorithm 

with input I+II+V3 was AUC=0.94, which is equivalent to the performance obtained using the 

original 12-lead ECG, while the AUC with the I+II version as input was considerably lower. 

(Figure 2) 

Performance of both reconstruction and classification algorithms are reported for all the 

demographic and clinical features described. (Table 1) 

Clinical assessment of the reconstruction algorithm 

The cardiologists involved in the clinical interpretation of our framework were able to correctly 

discriminate between the presence or absence of ST elevation MI (STEMI) in 84.6±4.6% of the 

cases when using the original ECGs, 81.4±5.0% of cases when using the I+II+V3 version, and 

75.5±5.5% of cases when using the I+II version, showcasing the importance of one precordial lead 

for the reconstruction. The specificity remained consistently at 100% in all cases. This means that 

all ECGs identified as STEMI, including those generated synthetically, were confirmed as STEMI 
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cases. The sensitivity was 68.7±8.5% for the original 12-lead ECG, 62.4±8.8% for the synthetized 

12-lead ECG with I+II+V3, and 51.3±9.0% for the synthetized 12-lead ECG with I+II. (Figure 3) 

The results showed that the ability to identify STEMI from a synthesized 12-lead ECG (I+II+V3) 

is not inferior to the one obtained from the original ECG with a margin of error of 10% (p-

value=0.026).  
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DISCUSSION 

In the present study, we designed a novel AI algorithm for the reconstruction of a full 12-lead ECG 

from two limb leads only (I and II) or two limb leads and a single precordial lead (I, II, and V3). 

We assessed the accuracy of the reconstructed 12-lead ECG by using an automatic detection 

model, trained to classify ECG records according to the evidence of acute MI. The detection model 

was equally effective with input of an original 12-lead or reconstructed (I+II+V3) ECG. This result 

provides initial evidence that I+II+V3 leads may be sufficient for reconstructing a 12-lead ECG 

towards the identification of acute MI. 

We also showed that the ECGs reconstructed by our AI algorithm can be effectively interpreted 

by a cardiologist for diagnosing STEMI, with a limited performance reduction with respect to the 

standard 12-lead ECGs. In this test, as seen in earlier findings,14 sensitivity was relatively low for 

both the original and reconstructed 12-lead ECGs. This could be attributed to the cardiologists' 

assessment of the ECGs without additional information about the patient and their lack of prior 

knowledge regarding the elevated prevalence of STEMI cases in the dataset (50%). Consequently, 

they might have been more cautious in diagnosing these ECGs as STEMI. While larger multi-site 

clinical trials are needed to confirm this initial evidence, these results are a promising step towards 

the use of this algorithm when a 12-lead ECG is not available.  

This study builds on our previous work that proposed an AI architecture for the analysis of single-

lead ECGs.15,16 Several approaches in the literature attempted to reconstruct a full 12-lead ECG, 

e.g., leveraging the correlation among different leads included using linear transformation 

matrices,8,17 or temporal-based models.18,19 However, most of these previous works designed an 

individualized algorithm,20 which, in turn, limits the effectiveness of the proposed application. 

Lead interdependency varies from individual to individual and, thus, more advanced models are 

needed to shape the relation between limb and precordial leads. Herein lies the strength of 

supervised techniques that can approximate complex functions by learning from a large amount of 

labeled data, enabling the definition of new tools for synthetizing ECGs from partial information.  

A first example of AI for ECG reconstruction exploited a feed-forward neural network (FNN) 

system to generate a full 12-lead ECG using the limb leads combined with V2 as input.9 More 

sophisticated techniques were also proposed, including convolutional neural networks (CNNs)10 

and long short term memory (LSTM) models,11 both suitable tools for processing time-series like 

an ECG signal. Notably, CNNs provided high-quality results for the identification of atrial 

fibrillation and other rhythm-related abnormalities,21 or for the automatic detection of STEMI from 

limb leads only.22  

Despite these solutions to identify heart diseases in an automatic manner,23-25 the reconstruction of 

a 12-lead ECG represents a fundamental step towards detection of acute coronary syndrome, 

specifically STEMI, that can be effectively verified by a cardiologist. Previous research that 

exploited AI for this goal was based on limited-size datasets (a few hundred records), not suitable 

for the training of complex learning models.9,10,26 In other studies, data from the same patient was 

used both in training and testing, affecting generalizability.11,27   

Our results suggest that it is possible to reconstruct a 12-lead ECG from the measurement of a 

limited set of 1 precordial and 2 limb leads, and that the synthetized signal can be used by a 

cardiologist for the detection of STEMI. While most of previous investigations assumed that septal 

lead V2 is the most important precordial lead,8 we have shown that measuring anterior lead V3 

provides the best accuracy for the reconstruction. This finding may be attributed to the central 

position of V3, resulting in stronger correlations not only with anterior lead V4 but also with septal 

and lateral leads. Our study highlighted how the reconstructed 12-lead ECG is not only useful for 
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an automatic algorithm in the identification of acute MI, but it can also be interpreted by 

cardiologists and used to identify STEMI. Considering that the required input can be obtained 

using commercial sensors without the need for a complete 12-lead ECG, this solution becomes 

particularly valuable in scenarios where acquiring a full 12-lead ECG is impractical. This is 

especially relevant in settings such as care facilities with limited resources or remote locations 

lacking clinical infrastructures. In these scenarios, the proposed system could facilitate early 

diagnosis of acute MI, potentially reducing the time for medical intervention.  

This work (and similar studies) represents a step towards the transitioning from brick-and-mortar 

clinical facilities to remote, direct-to-participant healthcare accessible to everyone. This is now 

possible using more accurate sensor technologies, the use of AI algorithms to learn from massive 

datasets and reproduce clinical-level signals, and the ubiquitous connectivity that enables rapid 

and constant two-way communication from remote locations to the clinic.28-30 The potential of 

digital technologies lies in their capacity to bring healthcare closer to individuals at any time, even 

when accessing a clinical facility may be challenging. 

Using a limited number of leads to capture the essential information of a 12-lead ECG has the 

potential to facilitate the diagnosis of ischemia, arrhythmias, and other heart-related conditions. 

Solutions like the one proposed in this study may enable medical examinations, such as cardiac 

stress tests, to be performed in a home setting, making the health system more agile, especially in 

combination with the other possibilities offered by telemedicine. The reconstruction of a 12-lead 

ECG may serve as a valuable tool also in a hospital setting, preempting the need for a technician, 

reducing the time required to record the standard ECG leads and offering a preliminary diagnosis 

procedure during emergency room admissions or ambulance transports.   

Limitations 

The designed algorithm is based on data recorded through conventional 12-lead ECGs, where only 

lead I, II and V3 are considered as input of the reconstruction algorithm. The measurements are 

indeed performed by highly trained clinical personnel in a hospital system, thus the challenges 

linked to different recording systems, potentially more prone to inaccuracies, performed by non-

clinical personal outside of a clinical setting, are yet to be evaluated. Furthermore,  the dataset is 

sourced exclusively from a single hospital system, with a good gender balance (percentage of 

female is 50.44%) but a higher representation of Caucasian individuals (with a ratio of 4:1 

compared to non-Caucasian individuals). The rate of ECGs diagnosed with acute MI is higher 

among non-Caucasian individuals (4.20%) in comparison to Caucasian individuals (2.68%). 

Although there is currently no substantial evidence indicating significant disparities in ECG 

interpretation based on race, further investigation with data from individuals with diverse 

demographic characteristics is needed to exclude this potential bias. Finally, the algorithm should 

be evaluated in a multi-site study, where different ECG systems are included, and potentially it 

should be re-trained accordingly.  

Conclusions 

These results illustrate the fidelity of a fully reconstructed 12-lead ECG using two limb leads (I 

and II) and one precordial lead (V3), which could be collected using a simple mobile sensing 

platform, promoting future innovation. Such algorithm and technology may be used outside of a 

clinical setting, allowing for time-sensitive STEMI diagnoses, thereby potentially facilitating 

prompt emergency procedure.  
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METHODS 

Study population 

This work was based on an initial dataset of 1,718,909 de-identified ECG performed in-clinic, 

collected from 554,120 unique individuals from 2008 to 2019 using the Scripps Health GE MUSE 

system (GE Healthcare, Chicago, IL). All ECGs were exported in their raw form and processed in 

a standardized manner for the retrospective analysis. The ECGs from individuals younger than 18 

years or associated with recording errors were excluded. For the training and evaluation of all the 

algorithms, we considered a subset of the data, namely the working dataset, with 618,880 ECGs, 

which were obtained considering all available ECGs with a diagnosis of MI in the ECG 

(n=309,440), and an equal number of non-MI ECGs selected at random. 

Ethical considerations 

The protocol for this project was reviewed and approved by the Scripps Office for the Protection 

of Research Subjects (IRB-20-7504).  

Dataset description 

Each element in the dataset was composed of 12 electrical signals of length 10 seconds, recorded 

with a sampling frequency of 250 or 500 Hz. All signals were resampled at a frequency of 250 Hz. 

The ECG leads were divided into two classes: limb (I, II, III, aVR, aVL, aVF) and precordial (V1, 

V2, V3, V4, V5, V6) leads. Limb leads are linearly dependent, all six limb leads can be obtained 

by measuring only two of them.29 The relationships between limb leads are detailed in the 

following equations. 

𝐼𝐼𝐼 = 𝐼𝐼 − 𝐼 

𝑎𝑉𝐿 =  
𝐼 − 𝐼𝐼𝐼

2
 

𝑎𝑉𝑅 =  −
𝐼 + 𝐼𝐼

2
 

𝑎𝑉𝐹 =  
𝐼𝐼 + 𝐼𝐼𝐼

2
 

Each element of the dataset was associated with an automatic diagnosis, revised by the clinician 

that analyzed and finalized the ECG recording. These final diagnoses were utilized to run a text 

mining algorithm and define the clinical features of each element. These features described the 

characteristics of the ECG signal, considering both the cardiac conduction and features consistent 

with structural and clinical diagnoses.  

We divided the working dataset into three mutually exclusive subsets, which were then used as 

training (n=433,554), validation (n=46,371), and testing (n=46,292) data for our analysis. The 

proportion between MI and non-MI labels was maintained in each subset, ensuring that 

approximately half of the ECGs used for the training were associated with evidence of MI. 

Moreover, in cases where more than one ECG was associated with the same individual, all of the 

ECGs for that individual were grouped into the same subset. 

Algorithm architecture 

The main goal of this work was the design of a reconstruction algorithm to produce a 12-lead ECG 

from a subset of the signal leads. The algorithm was based on an AI architecture leveraging 

residual convolutional neural networks (RCNNs). The architecture could take any combination of 

the signal leads, whether limb or precordial, as input, while consistently producing the full 12-lead 
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ECG as output.  The input leads were processed according to a feature scaling approach,30 which 

preserves the mathematical differences among different data. Each lead was mapped in the interval 

between 0 and 1, in order to facilitate the learning phase of the algorithm. We considered a 

minimum and maximum value of -2.5 and 2.5 mV for each lead, where values larger than 2.5 mV 

were mapped to 1, while values lower than -2.5 mV were mapped to 0. 

The algorithm architecture was organized into three sections. The first included three independent 

RCNN blocks, each taking a single lead as input and returning the lead features as output, which 

were encoded in multi-dimensional vectors of 2500 samples and 32 channels. In the second 

section, the lead features were aggregated and processed through a RCNN block returning a multi-

dimensional vector of 2500 samples and 192 channels as output. Finally, the third section included 

six independent blocks, each receiving a copy of the aggregated features and computing one of the 

six precordial leads of the reconstructed ECG. (Figure 4) 

To evaluate the accuracy of the reconstructed signals, we designed a separate classification 

algorithm to automatically detect acute MI from a 12-lead ECG. The architecture of the 

classification algorithm received eight leads (I+II and V1-V6) as input. Each lead was encoded as 

a vector of 2500 samples, with values normalized between 0 and 1. In the first step of the 

architecture, these vectors were processed individually, obtaining eight multi-dimensional vectors 

of 2500 samples and 32 channels. In the second section, features were aggregated and processed 

through a single RCNN block returning a single-dimensional vector of 128 values. In the last 

section, a feedforward neural network transformed this vector into a single scalar value, which is 

processed through a sigmoid function. The final output represented the probability of acute MI. 

(Figure 5) 

Algorithm training and evaluation 

During the training phase, the reconstruction algorithm was encouraged to minimize the 

mathematical distance between the original precordial leads and the precordial leads generated by 

the learning architecture, considering R2 as the loss function. During the testing phase, we assessed 

the performance of the reconstruction algorithm in terms of MSE and R2. The MSE quantified the 

average squared difference between the original precordial leads and those reconstructed with our 

approach. Instead, R2 was utilized to assess how effectively the reconstructed signal captures the 

variance of the original signal, regardless of its amplitude. In the case of a perfect reconstruction, 

we would obtain MSE=0 and R2=100%.  

The goal of the classification algorithm was to associate each ECG to a label denoting the presence 

or absence of acute MI. Hence, during the training phase, the algorithm was trained to minimize 

the cross-entropy (CE) between the true labels of the data and the labels predicted by the learning 

architecture. During the testing phase, we evaluated the performance of the classification algorithm 

by calculating the AUC for each input configuration. 

Cardiologist interpretation of the reconstructed ECGs 

To assess the interpretability of the reconstructed signal, three board-certified cardiologists were 

asked to analyze a set of multiple ECGs, including both original and synthetized signals, 

identifying the ECG consistent with a STEMI diagnosis. In determining the sample size for the 

clinical interpretation of our system, we hypothesized that a cardiologist's accuracy in assessing 

the original ECGs and the signals reconstructed from the limb leads was 95% and 90%, 

respectively. Therefore, we considered a sample of 238 ECGs, with 119 of them showing 

indications of STEMI, while the remaining 119 comprised normal ECGs or exhibited other non-

MI abnormalities. The correct diagnoses of these data were verified by two expert cardiologists 
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(not involved in the test) before the test, who analyzed all the ECGs and agreed on the correct 

label. 

Using our reconstruction algorithm, we generated three versions for each of the selected ECGs. 

The first version was the original 12-lead ECG (Original), the second version was the 12-lead ECG 

synthetized by our reconstruction algorithm considering two limb leads (I+II) as input, and the 

third version was the synthetized 12-lead ECG considering limb leads and precordial lead 

(I+II+V3) as input. For each ECG, each of the three versions (I+II, I+II+V3, and Original) was 

randomly assigned to one of the three cardiologists, so that each cardiologist was evaluating 238 

ECGs, without knowing which of them were original 12-lead ECG, and which were synthetized.  

The ECGs were presented one by one using MyDataHelps, an online platform provided by 

CareEvolution. After enrolling to the platform, each cardiologist was asked to examine the 238 

assigned ECGs, associating to each signal a diagnosis among: "STEMI", “non-STEMI”, and 

“Unable to determine”. The cardiologist could complete the test at their own pace, interrupting it 

at their own will. 

Comparing the answers of the cardiologists with the original data labels, we estimated the detection 

accuracy, sensitivity, and specificity, associated with each input configuration of the 

reconstruction algorithm (I+II, I+II+V3, and Original). We then proved the non-inferiority of the 

I+II+V3 system with respect to the original ECG using an unpooled z-test and considering 10% as 

margin of error. We considered the z-test’s outcome statistically significant if associated with a p-

value smaller than 0.05. The p-value is the probability of observing a given event given that the 

null hypothesis is true; in our work, the null hypothesis is that the accuracy of the I+II+V3 system 

is more than 10% lower than that obtained when using the original ECGs as input. Hence, a smaller 

the p-value corresponds to a stronger evidence that I+II+V3 does not lead to relevant performance 

degradation.   
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All code used to develop the deep learning algorithm can be requested by contacting the 
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FIGURES  

 Number of elements 

in the overall dataset 

R2 [%] in the test 

set (average ± 

confidence interval) 

MSE [mV2] in the 

test set (average ± 

confidence interval) 

Area Under the Curve (AUC) 

in the test set 

Number of 

individuals 

Number 

of ECGs 

Percentage of 

acute MI 

Using 

I+II 

Using 

I+II+V3 

Using 

I+II 

Using 

I+II+V3 

Using 

I+II 

Using 

I+II+V

3 

Using 

12-leads 

 

Total 
274738 618880 2.94 

52.54 ± 

0.19 

72.62 ± 

0.13 

0.0253 ± 

0.0002 

0.0126 ± 

0.0001 
0.92 0.94 0.94 

D
em

o
g

ra
p

h
ic

 f
ea

tu
re

s 

18-60 

years old 
126902 208795 3.71 

52.57 ± 

0.34 

72.62 ± 

0.23 

0.0252 ± 

0.004 

0.0126 ± 

0.0002 
0.91 0.94 0.95 

60-80 

years old 
120787 269483 2.79 

52.38 ± 

0.28 

72.59 ± 

0.20 

0.0254 ± 

0.004 

0.0125 ± 

0.0002 
0.92 0.94 0.94 

More than 80 

years old 
53092 140602 2.09 

52.79 ± 

0.38 

72.67 ± 

0.28 

0.0254 ± 

0.0005 

0.0127 ± 

0.0003 
0.91 0.95 0.95 

Female 
138567 295049 1.81 

52.43 ± 

0.27 

72.59 ± 

0.19 

0.0255 ± 

0.0003 

0.0127 ± 

0.0002 
0.91 0.94 0.94 

Male 
136370 323817 3.98 

52.63 ± 

0.25 

72.65 ± 

0.19 

0.0252 ± 

0.0003 

0.0125 ± 

0.0002 
0.92 0.94 0.94 

Caucasian 
207472 477763 2.68 

52.56 ± 

0.21 

72.62 ± 

0.15 

0.0253 ± 

0.0003 

0.0126 ± 

0.0001 
0.92 0.94 0.94 

Non-Caucasian 
55564 103664 4.20 

52.24 ± 

0.46 

72.72 ± 

0.32 

0.0250 ± 

0.0006 

0.0128 ± 

0.0003 
0.91 0.95 0.94 

R
h

y
th

m
 f

ea
tu

re
s 

Normal 

sinus rhythm 
218589 352849 2.86 

52.59 ± 

0.24 

72.62 ± 

0.17 

0.0251 ± 

0.0003 

0.0126 ± 

0.0002 
0.92 0.94 0.94 

Sinus 

arrhythmia 
142354 161373 3.27 

52.37 ± 

0.38 

72.51 ± 

0.27 

0.0257 ± 

0.0005 

0.0125 ± 

0.0002 
0.92 0.94 0.95 

Atrial 

arrhythmia 
69295 105720 2.53 

52.59 ± 

0.44 

72.58 ± 

0.34 

0.0253 ± 

0.0006 

0.0127 ± 

0.0003 
0.91 0.93 0.93 

Ventricular 

arrhythmia 
44664 44830 2.96 

52.80 ± 

0.69 

72.68 ± 

0.58 

0.0252 ± 

0.0008 

0.0126 ± 

0.0005 
0.94 0.93 0.93 

M
o

rp
h

o
lo

g
ic

a
l 

fe
a

tu
re

s 

Conduction 

disorders 
113936 189766 3.03 

52.51 ± 

0.33 

72.57 ± 

0.24 

0.0254 ± 

0.0004 

0.0126 ± 

0.0002 
0.91 0.94 0.94 

Repolarization 

abnormality 
114233 160170 7.62 

52.50 ± 

0.36 

72.45 ± 

0.28 

0.0253 ± 

0.0004 

0.0126 ± 

0.0002 
0.91 0.95 0.94 

Cardiac 

hypertrophy 
44387 46730 3.78 

52.49 ± 

0.66 

72.40 ± 

0.51 

0.0248 ± 

0.0008 

0.0127 ± 

0.0004 
0.92 0.95 0.95 

Axis deviation 
56787 91060 2.85 

52.72 ± 

0.54 

72.51 ± 

0.32 

0.0245 ± 

0.0006 

0.0127 ± 

0.0003 
0.90 0.94 0.95 

Ischemia 
48877 63486 3.59 

52.42 ± 

0.57 

72.54 ± 

0.48 

0.0255 ± 

0.0007 

0.0127 ± 

0.0004 
0.92 0.94 0.95 

Prior infarct 
117135 293277 2.11 

52.28 ± 

0.29 

72.61 ± 

0.20 

0.0256 ± 

0.0003 

0.0126 ± 

0.0002 
0.92 0.94 0.94 

 

Table 1. Reconstruction and classification performance according to the demographic and 

clinical features of the dataset. 
The table describes the system performance associated with different classes of data, depending 

on demographic characteristics  of the population and features of the ECGs. For each class, the 

table reports total number of individuals, total number of ECGs, and percentage of ECGs 

associated with acute MI. The reconstruction performance is assessed in terms of coefficient of 

determination (R2), and mean squared error (MSE), while the classification performance (MI 

identification) is assessed in terms of area under the curve (AUC) or the receiver operating 

characteristic (ROC). The confidence intervals for R2 and MSE were computed considering a 

confidence level of 95%.  
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Figure 1. Distributions of mean square error and coefficient of determination in 12-lead ECG 

reconstruction. 

Boxplot of the mean squared error (MSE) and the coefficient of determination (R2) distribution 

according to various input configurations for the reconstruction of a 12-lead ECG. The white line 

in the middle of each box represents the distribution median, the box edges are the 25th and 75th 

percentiles, while the box whiskers are the 5th and 95th percentiles. The MSE is given by the sum 

of the squared difference between the original ECG values and those reconstructed by the designed 

algorithm. Instead, the R2 represents the fraction of variance of the original ECGs captured by the 

reconstruction model and is independent of the actual scale of the data.   
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Figure 2. Receiver operating characteristics curves for acute MI detection.  

Receiver operating characteristic (ROC) curves for acute MI detection according to various input 

configurations. The ROC curve depicts the performance of the detection system while varying the 

discrimination threshold between sensitivity and specificity. In our case, the sensitivity, also 

known as true positive ratio, corresponds to the probability that an ECG is diagnosed as acute MI, 

conditioned on the fact the original signal was labelled as acute MI. Instead, the specificity, also 

known as true negative ratio, corresponds to the probability that an ECG is not diagnosed as acute 

MI, conditioned on the fact that original signal was not labelled as acute MI.   
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Figure 3. Detection accuracy of the original and reconstructed ECGs in clinical validation.  

Sensitivity, specificity and accuracy obtained during the clinical validation of the proposed 

reconstruction model. The sensitivity, also known as true positive ratio, corresponds to the 

probability that an ECG is diagnosed as STEMI, conditioned on the fact the original signal presents 

STEMI evidence. The specificity, also known as true negative ratio, corresponds to the probability 

that an ECG is diagnosed as not-STEMI, conditioned on the fact that the original signal does not 

present STEMI evidence. Finally, the accuracy is given by the ratio between the number of correct 

diagnoses and the total number of ECGs analyzed. 
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Figure 4. 12-lead ECG reconstruction algorithm architecture. 
The architecture of the 12-lead ECG reconstruction algorithm includes two modules. The upper 

module takes limb I and II as input and exploits a linear combination to generate the limb leads. 

The lower module takes lead I, II and V3 as input, and exploits a deep Neural Network (NN) 

architecture to generate the precordial leads. Particularly, the NN architecture is organized into 

three different sections, each including a different number of NN blocks. The first section includes 

three RCNN blocks with the function of extracting the features of each of the input leads. The 

second section includes a single RCNN block receiving the aggregated lead feature as input and 

returning a unique multi-dimensional vector as output. In the last section, the same vector is 

processed through six independent RCNN blocks, each of which returns a different precordial lead 

of the reconstructed signal. The aggregated output of the two modules returns the 12-lead ECG. 
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Figure 5. Acute MI detection algorithm architecture. 
The architecture of the acute MI detection algorithm is organized into three different sections. The 

first section includes eight recurrent convolutional neural network (RCNN) blocks extracting the 

features of each of the eight input leads. The second section includes a single RCNN block 

receiving the aggregated lead feature as input and returning a unique multi-dimensional vector as 

output. In the last section, the vector obtained is processed through a Feed-Forward Neural 

Network (FNN) and, finally, a sigmoid function, returning the probability of detecting an acute 

MI. 
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