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Abstract 

Effective response to vaccination requires activation of the innate immune system, triggering 

the synthesis of inflammatory cytokines. The subjective symptoms related to this, referred to 

as reactogenicity, affect a variable percentage of vaccinated people to different degrees, with 

evidence supporting a relationship between the severity of symptoms a person experiences 

and their eventual immune response. Wearable sensors allow for the identification of 

objective evidence of physiologic changes a person experiences in response to vaccine-

induced inflammation, but as these changes are subtle, they can only be detected when an 

individual’s pre-vaccination normal variability is considered. We used a wearable torso sensor 

patch and a machine learning method of similarity-based modeling (SBM), which learns the 

dynamic interplay between multivariate input sources, to create a physiologic digital twin for 

88 people receiving 104 vaccine doses. By effectively removing expected variations and 

leaving only vaccine-induced differences, we developed a multivariate digital biomarker that 

incorporates changes in multiple continuously monitored physiologic data streams to 

measure the degree and duration of vaccine induced inflammation. This objective measure 

correlated with subjective symptoms, and in a 20-person subset, both humoral and cellular 

immunogenicity. 
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Introduction 

Immune cell activation is essential to a successful vaccination strategy, with inflammation 

being the immune system’s initial response to this activation. The level of vaccine-induced 

inflammation plays an essential role in its tolerability and potentially its efficacy.1,2  Presently, 

the symptomatic tracking of reactogenicity – the physical manifestations of vaccine-related 

inflammation – is the only measure of inflammation that is monitored at any scale.3  For 

example, following the second dose of a mRNA based COVID-19 vaccine nearly 70% of 

individuals participating in the Centers for Disease Control and Prevention’s (CDC) v-safe 

study (<5% of all vaccinated individuals in the US) reported having a systemic symptom such 

as fatigue, myalgias or chills.4  However, the subjective nature of these data limit their value as 

a measure of individual inflammation as they are susceptible to a nocebo effect. An analysis 

of the placebo arms of COVID-19 vaccine randomized trials found that 76% of systemic 

symptoms experienced after the first dose, and 52% after the second dose could be 

attributed to the nocebo effect.5  

Currently, objective measures of vaccine-induced inflammation are dependent on 

intermittent and infrequent sampling of blood-based soluble factors such as chemokines and 

cytokines.6  Most, but not all, of these studies have found significant relationships between 

blood-based inflammatory biomarkers and measures of reactogenicity and/or 

immunogenicity following vaccination against COVID-19 or other pathogens.1,2,7-9 However, 

due to the invasive requirements of these studies, sample sizes are limited, and the frequency 

and duration of testing is minimized. Non-invasive sources of soluble inflammatory 

biomarkers that would allow for the capture of the fuller extent of an individual’s inflammatory 

response to a vaccine, such as urine and saliva, have been evaluated, but have yet to be 

proven effective.6,10 

A potentially novel approach to quantifying the totality of an individual’s inflammatory 

response to vaccination could be through wearable sensors that can continuously track 

individual physiologic and behavioral changes following vaccination to create a digital 
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biomarker.11  Recently, a range of wearable sensors – wrist wearables, rings and torso patches 

- have been shown to be able to detect the subtle physiologic changes associated with 

COVID-19 vaccination-induced inflammation.12-17  The degree of changes are so small that 

without knowledge of a person’s unique pre-vaccine normal levels and natural variability, the 

detection of subtle deviations associated with vaccine-induced inflammation would not be 

possible. Changes that, for example, might be only two beats per minute difference in resting 

heart rate – a change that would never be detectable on a population level due to marked 

inter-individual variability in resting heart rate.12,18  As much of this prior work has utilized 

consumer devices, physiologic and behavioral changes following vaccination have mostly 

been determined based on a single daily summary value for each parameter, with most 

physiologic measures determined during sleep. Even with this limited data density, the one 

study that explored immunogenicity did find a significant correlation between several 

physiologic measures and semi-quantitative antibody levels.13 

In the present study, we sought to develop a personalized digital biomarker for COVID-19 

vaccine-induced inflammation utilizing several advanced technologies; a medical grade 

patch biosensor able to continuously capture multiple parameters, and an analytics platform 

using a machine learning method of similarity-based modeling (SBM), which learns the 

dynamic interplay between multivariate input sources.19 Combined, these technologies 

enabled the development of personalized pre-vaccine baseline models of each participant’s 

unique physiologic dynamics – a physiologic “digital twin.”20  When these models were then 

applied to post-vaccination data to remove expected individual variations, continuous 

vaccine-induced changes were able to be isolated to create a multivariate, personalized 

biomarker of inflammation – an inflammatory multivariate change index (iMCI).  

Here we report the measured inflammatory response using this new iMCI digital biomarker in 

88 individuals undergoing voluntary vaccination for COVID-19 in a real world setting for a 

total of 104 doses. We quantify the relationship between that measure and subjective 

symptoms in all individuals, finding a statistically significant correlation. In addition, in a 

subset of participants, we identified a statistically significant relationship between iMCI and 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 29, 2024. ; https://doi.org/10.1101/2024.01.28.24301887doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.28.24301887
http://creativecommons.org/licenses/by-nc-nd/4.0/


Personalized Digital Biomarker of Vaccine Response 

1/27/24 

4 

the humoral and cellular immune responses early following vaccination. These results 

provide preliminary support for the potential value of a personalized digital biomarker to 

identify individual inflammatory response during immune system activation.  

 

Methods 

Clinical Setting 

Participants were recruited through one of two study protocols. The majority of participants 

were enrolled through the Vaccine Induced Inflammation Investigation (VIII) study protocol. 

The second protocol was the Continuous Physiologic Monitoring for Immune Response via 

Wearable Sensor Data (COmMON SENS) study. The VIII study was approved by the Sterling 

IRB (ID# 8842-SRSteinhubl) in April of 2021. Clinicaltrials.gov registration number was 

NCT05237024. The COmMON SENS study was approved by the Purdue University IRB (ID# 

IRB-2021-453) April, 2021. 

For the VIII study, individuals who were already voluntarily planning to receive a vaccine 

against COVID-19 were recruited from the general population primarily via email outreach 

disseminated by employees of the study sponsor, physIQ (Chicago, IL, USA, but since 

purchased by Prolaio, Scottsdale, AZ, USA). Employees were encouraged to further 

disseminate recruitment information to their family and friends. The choice by any potential 

participant to get a vaccine was entirely voluntary and only people already planning to be 

vaccinated were approached to enroll in the study. Participants in the immunogenicity 

substudy of the VIII study were recruited in a similar manner with outreach disseminated by 

CellCarta (Montreal, Qc, CA), the cellular immunogenicity lab.  

In the COmMON SENS study, Purdue University students, staff, and faculty were recruited via 

advertising to the general university population, affiliates, and friends. Again, only individuals 

who were voluntarily planning to receive a COVID-19 vaccine were recruited. 

Inclusion & Exclusion Criteria 
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Any individual over age 18 (participants between age 12 and 17 were allowed in the VIII 

study, although none were recruited) who was planning to receive any of the 3 FDA-

approved vaccines against COVID-19 were eligible for enrollment. The only exclusion 

criterion was known allergy to the adhesive of the sensor patch. 

Study Methods 

Individuals enrolled were asked to wear a patch sensor for ~12 to14 days surrounding 

vaccination. Participants could agree to monitor themselves during more than one vaccine 

dose. Volunteers were asked to place the patch on themselves and begin monitoring 5 days 

prior to their planned vaccination and continuing for a total of up to 14 days. As the battery 

life of each disposable patch was ~7 days, each participant was asked to sequentially wear 

two patches at the time of each vaccine. 

All participants received a locked-down Android phone with a preloaded app to enable 

patch and survey data capture. The app enabled participants to mark the day and time they 

received each vaccine dose and respond to daily survey questions for up to 7 days following 

vaccination to track all subjective symptoms. 

Immunogenicity Sub-Study 

Participants in the immunogenicity sub-study followed the identical protocol as all study 

participants with the exception of agreeing to a series of blood draws. For participants who 

had yet to receive their first vaccination (n=3), there were 4 scheduled blood draws. The first 

~5 days prior to their first vaccine, the second ~14 days after their first dose, the third ~14 

days after their second dose, and their final blood draw ~60 days after their second vaccine 

dose. The majority of participants underwent only 3 blood tests - ~5 days before their second 

or third vaccine dose, and again ~14 days and ~60 days after that dose.  

Wearable Sensor 

The VitalPatchTM by VitalConnect (San Jose, CA) is an FDA 510(k)-cleared, wearable, 

disposable adhesive patch with an integral one-time use battery and integrated electronics. 

The battery life of each patch lasts 7 days. The patch was self-applied by the participant to 
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their left upper chest. Guidance for placement and confirmation of connectivity was provided 

via the app. 

The patch transfers biosignal data over Bluetooth low energy protocol to the mobile app. 

Once the mobile app has received the biosignals from the VitalPatchTM, the biosignals are 

uploaded to physIQ’s cloud-based server using digital cellular or Wi-Fi networks. No 

personal identifiers were stored or transmitted with the data either from the sensor or from 

the mobile app. Upload via digital cellular network was secured with Transport Layer Security 

(TLS) cryptographic protocol between the mobile phones and the server. The physIQ 

platform was securely hosted in the Google cloud and the analytics server stored the raw 

physiological telemetry data captured by the study device. All the telemetry waveform data 

were stored only by participant ID. The data could only be obtained or viewed via secure 

authenticated login.  

physIQ Platform and Personalized Physiology Analytics 

The cloud-based analytics platform used a general machine learning method of similarity-

based modeling (SBM), to analyze collected data. SBM models the behavior of complex 

systems (e.g., aircraft engines, computer networks, or human physiology) by learning tandem 

patterns among system variables as they are periodically sampled together.19 Personalized 

baseline models of each participant’s unique physiological dynamics are established, 

creating a “digital twin,” which when compared to new input data following a possible 

immune-stimulator, removes expected variations, leaving only inflammation-induced 

differences. These are the residuals. These residuals are combined into an inflammation 

Multivariate Change Index (iMCI), which is updated on a 15-minute basis, allowing for the 

tracking of the onset, offset and degree of inflammatory change. Patch data was filtered for 

quality using an ECG-based signal quality index (SQI), that is graded 0-1 with 1 as highest 

quality.  

Uni-parametric Analysis: Patch ECG-derived cardiorespiratory features were filtered with a 

threshold of SQI > 0.9. Since activity level and skin temperature derived from the patch are 

not related to the ECG signal, they were not filtered with SQI, however any skin temperature 
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values below 33 C and above 42 C were ignored. Five, 3-hour aggregate parameters were 

derived from 1-minute derived features after baseline normalizing using z-scoring on an 

individual participant basis. The mean and standard deviations used for the z-scoring, were 

calculated from feature data generated during the 48-hour window prior to a vaccine dose. 

The corresponding post vaccine dose aggregate data for each participant were used to 

identify cases where at least one standard deviation of change from baseline occurred. . 

Multiparametric (iMCI) Analyses:  The multivariate iMCI is a personalized modeling algorithm 

that uses coincident heart rate, heart rate variability, respiration rate, activity level and skin 

temperature derived from the patch device as input. A unique model was trained for every 

participant based on data collected prior to vaccine doses. For data to be used as input to 

iMCI, activity level had to be less than 0.05 g (a level corresponding to normal walking), skin 

temperature between 30° C and 40° C, and SQI ³ 0.9. Additionally, during training, heart rate 

was required to be between 40 bpm and 250 bpm, and respiration rate between 8 and 35 

breaths per minute. To train an individual iMCI model, it was required that 2500 1-minute 

samples of input variables be available prior to vaccine doses and that 1-minute samples 

prior to vaccine were distributed over 3 days.  

iMCI Total Response: The metric defined for assessing iMCI total inflammatory response 

(“iMCI Total Response”), employed an area under the curve (AUC) approach. The metric is 

defined for a fixed window of time (Y) starting from the time of administration of a vaccine 

dose. The time window used was Y = 72 hours. The iMCI Total Response was defined as Ai/AT 

as illustrated in Supplemental Figure A, where AT is the total rectangular area within the time 

window and Ai is the area under the curve for iMCI during the window.  

iMCI Detectable Response: A detectable response was defined as a collection of iMCIs with 

persistent, non-zero iMCI values within the fixed 72-hour window following a vaccine. The 72-

hour window was selected to capture as much of the vaccine-induced inflammatory response 

and minimize any potential noise. In addition to being a persistent trend (non-zero iMCI trend 

> 1 hour), the iMCI response had to satisfy conditions that were designed to rule-out small 

magnitude, random fluctuating trends that are likely due to noisy arbitrary inputs. Detectable 
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response was defined as the presence of at least 50% of 15-minute steps within a 6-hour 

sliding window with an iMCIs > 0.10. If any of such occurrences has been found in the fixed 

72-hour window following a vaccine the individual has a detectable inflammatory response. 

In this way we identified 66 (63.5%) vaccine doses for which an inflammatory response was of 

detectable size. To estimate the false positive rate of an algorithm that identifies a detectable 

response we select an independent data consisting of NC = 76 participants from two 

different, healthy, non-vaccine, non-infection cohorts to serve as a control group. These data 

were processed in the same way as the current data set to generate iMCIs. From each of NC 

participants we randomly selected a WC = 100 of 72-hour chunks of iMCI data and tested for 

a presence of a 6-hour sliding window (in steps of 15-minutes) with at least 50% of iMCIs > 

0.10. Each chunk of 72-hour iMCI data was labeled as a positive or negative decision 

depending on whether such a window has been found or not. In each of 1000 bootstraps we 

pull NC x WC estimated decisions (one per each vaccine dose) and compare them to 

decisions labeled as 76 negative for control group and 66 positive from the current study 

cohort to estimate the performance of “detectable response”-identification algorithm and 

corresponding 95% confidence intervals (CI); True Positive Rate (TPR) =  100%, Specificity 

(SPC) = 67.7% (67.4%, 68.0%), False Positive Rate (FPR) = 32.3% (32.0%, 32.6%), Positive 

Predictive Value (PPV) = 73.0% (72.8%, 73.2%), Negative Predictive Value (NPV) = 100%, 

Acceptance (ACC) = 82.7% (82.5%, 82.9%).  

Immunogenicity Studies 

Initial processing of blood samples to isolate peripheral blood mononuclear cells (PBMCs) 

and blood plasma occurred within 2 hours of blood draw. When possible, 1.5 ml of plasma 

was removed from the top of each spun sample tube prior to buffy coat isolation. Aliquots of 

plasma were stored at -80oC. PBMCs, with a target concentration of 10.0x106 PBMC/ml/vial, 

were cryopreserved in liquid nitrogen until batch analysis. 

Flow cytometry-based T-cell assays:  Intracellular cytokine stain assay was performed at 

CellCarta Bioscience, Inc. (Montreal, QC, Canada) similar to as previously described.21  For 

each sample, 4 conditions were used: DMSO, S peptide small pool, non-S peptide pool and 
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staphylococcal enterotoxin B as a positive control. PBMCs were rested and then stimulated 

for 16–18 h at 37 °C, 5%CO2 in the presence of secretion inhibitors. After the stimulation, 

cells were stained with fixable Aqua dead cell stain as well as surface antibodies, followed by 

intracellular staining with cytokine (e.g. IFNγ, IL-2, IL-4 and IL-21) or cytotoxicity marker 

(perforin) using BD Cytofix/ Cytoperm protocol. Samples were acquired on a BD Fortessa 

X20 cytometer and data was analyzed using CellEngine software. The frequency of cytokine-

producing antigen specific T-cells was determined by subtraction of the background cytokine 

response in unstimulated control samples from the positive response in the samples 

stimulated with SARS-CoV-2 peptide pools. All negative values after subtraction of 

background were set to 0.  

Anti-spike IgG:  Humoral immunogenicity was determined from plasma samples and defined 

as SARS-CoV-2 anti-spike IgG titers. Anti-spike IgG concentrations were determined by ELISA 

(reported as ELISA laboratory units [ELU]/mL) at Nexelis (Laval, QC, Canada) similar to as 

previously described.22  

Statistical Analyses 

Population level daily summary changes:  To test for a difference in the pre- and post-

vaccination levels for physiologic and behavioral biometrics over the entire study population, 

medians were calculated using all available pre-vaccine data and 5-day post vaccine data. 

Statistically significant differences were determined based on Wilcoxon signed rank test. 

Post-vaccine inflammatory response by vaccine and individual characteristics: The 

probabilities that the two data sets come from different continuous distribution at the 5% 

significance level are obtained using Kolmogorov–Smirnov (KS) test. 

Relationship of iMCI to Subjective Reactogenicity:  We compared the AUC iMCI between the 

two populations – those that reported systemic symptoms and those that reported have no 

symptoms or local symptoms only - using a two-sample Kolmogorov-Smirnov goodness-of-fit 

hypothesis test (KS test) to see if there is a significant difference between the two populations 

in inflammatory response.  
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Relationship of iMCI to Immunogenicity: The baseline-subtracted amounts of anti-spike 

protein IgG and T-cell assays CD4+/IL-21+ and CD8+/IFNg+ obtained from blood samples 

drawn at day 14 after vaccine was administered were compared to AUC iMCI to assess the 

Spearman correlation between the two. In case of 2nd doses, the baseline values are those 

obtained prior to vaccine dose two (post 1st vaccine) while in case of 3rd doses the baseline 

values were obtained from blood samples drawn prior to third dose (post 2nd vaccine).  

One participant was excluded due to insufficient wearable data. The reasoning for removal of 

another 3 participants’ data in evaluating the relationship between AUC iMCI and cellular 

immunogenicity and 2 participants’ data for humoral immunity is explained in Supplemental 

Figure B.   

The fitted lines were obtained with a robust fit method which is an alternative regression in 

the presence of outliers or influential observations making it less sensitive to outliers than 

standard linear regression. In cases (a) and (b) of Figure 5 we used Welsch weight function 

and for (c) we used Andrews weight function, all with the same tune parameter 0.8. The 

choice of tuning parameter affects the number of data points used in fitting procedure and 

the model statistics. Each data point is weighted differently based on how it affects the model 

statistics i.e., based on the magnitude of the residual for that data point.  

 

Results 

Participants 

A total of 107 individuals consented to participate and included 137 vaccine doses. After 

excluding individuals with insufficient baseline or post-vaccine data, 88 participants were 

included in this analysis with a total of 104 vaccine doses. Forty-two (47.7%) were female and 

the mean age (+SD) for analyzed population was 37.9 (+13.9) years with a range of 19 to 69 

years. Eleven people (10.6%) self-reported prior COVID infection. All participants but one 

received one of the two available mRNA COVID-19 vaccines – Moderna’s mRNA-1273 (43 

doses), Pfizer-BioNTech’s BNT162b2 (48 doses) and for 12 doses participants were not sure 

which mRNA vaccine they received. One person received the Janssen viral vector vaccine. 
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Response to the first vaccine dose (including the 1 Janssen vaccine recipient) was monitored 

in 15 participants, to the second dose in 44 individuals, and a third dose in 45 people. 

Fourteen people provided data around 2 different vaccine doses, and one person for three 

doses.  

Wearable Data 

The torso ECG patch was worn for a mean (±SD) of 4.2 (± 2.1) days prior to vaccination and 

7.6 (± 3.0) days after. A total of 37,279 hours of data were analyzed out of a possible 38,832 

hours of total patch wear time (96% data availability).  

At a population level, small but significant changes relative to individual pre-vaccine 

baselines, consistent with a physiologic response to inflammation, were detectable in heart 

rate (HR), skin temperature, heart rate variability (HRV) and respiratory rate (RR) for up to 3 

days following vaccination. (Figure 1) 

Uni-parametric Physiologic Changes from Baseline 

Individual differences in changes in single physiologic parameters following vaccination were 

evaluated by tracking deviations in each z-scored measured parameter relative to each 

participant’s 48-hour pre-vaccine dose baseline period. Among the 85 participants who had 

data surrounding a second or booster dose, detectable changes greater than one standard 

deviation relative to an individual’s baseline were seen in 28 (33%) of individuals in skin 

temperature, 24 (28%) in HR, 11 (13%) in RR, 7 (8%) in HRV, and 1 (1%) in activity level. In 

total, a change in one or more individual parameters of one standard deviation or greater 

was detected in 46 (54%) of participants following a second or booster vaccine dose. 

As shown in Figure 2, there was significant variability in the onset, duration, and degree of 

change between individuals in each parameter. In addition, a person’s response in one 

parameter did not necessarily predict their response in another parameter. For example, 

participant 024 experienced relatively large changes in all parameters except for activity 

level, whereas participant 004 experienced a large change in only respiratory rate with a 
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moderate change in skin temperature. Also, participant 023 experienced a large change in 

HRV and skin temperature, but only low to moderate change in HR. 

Inflammatory Multivariate Change Index 

The individual differences in multiple parameters are combined into an inflammatory 

Multivariate Change Index (iMCI), which is a personalized modeling algorithm that uses 

coincident heart rate, heart rate variability, respiration rate, activity level and skin temperature 

derived from the patch device as input and is further detailed in the Methods section. To best 

quantify an individual’s total vaccine-associated inflammatory response, the area under the 

iMCI curve (AUC iMCI), which encompasses the duration and degree of measured 

physiologic changes following vaccination, was determined for each participant’s post-

vaccine experience beginning immediately after vaccination up to 3 days (72 hours) after. 

(Supplementary Figure A)  

The first vaccine dose was associated with a less pronounced AUC iMCI response relative to 

those receiving their 2nd or 3rd dose. (Table 1 and Figure 3a) Sixty-five percent of second or 

booster doses led to a detectable increase in iMCI after vaccination compared to only 53% of 

those after a first dose, with ‘detectable’ as defined in the Table and in the Methods section. 

The total response in participants who received the mRNA-1273 vaccine tended to be 

greater and appeared to be of longer duration (Figure 3b) as measured by continuous iMCI 

than those treated with BNT162b2, although between group differences were not significant.  

Relationship of iMCI to Subjective Reactogenicity  

Participants were asked to voluntarily self-report any symptoms following vaccination via an 

in-app survey. No data was entered following 15 of the 104 vaccine doses and were excluded 

from the analysis. Reported symptoms were classified as either systemic or local.4 Of the 89 

doses with post-vaccine symptom data entered, a lack of any symptoms was documented 

following 10 doses (11.2%), local symptoms only following 9 (10.1%) doses, and systemic 

symptoms following 70 (78.6%) of doses. Of the 70 doses with systemic symptoms, 50 also 

reported local symptoms. Compared to vaccine doses associated with no systemic 
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symptoms, those that were had a statistically significantly greater total inflammatory response 

as measured by AUC iMCI (median [IQR] 0.043 [0.039] vs 0.078 [0.14], p=0.008). (Figure 4) 

Relationship of iMCI to Immunogenicity 

Twenty-one individuals participated in the immunogenicity sub-study. Their mean age was 

37.2 years, 65% were female, and 45% received the mRNA-1273 vaccine, and 55% 

BNT162b2. Twenty of the 21 sub-study participants had sufficient wearable data to determine 

their complete physiologic response following a second or booster vaccine dose. For these 

sub-study participants, the median AUC iMCI [IQR] was 0.055 [0.15], which was comparable 

to the overall population. Changes in both T-cell response and SARS-CoV-2 anti-spike 

protein IgG titers from baseline to day 14 were compared to the AUC iMCI response 

following vaccination.  

The change in SARS-CoV-2 anti-spike protein IgG titer (ELU/mL) at day 14 following a 2nd or 

3rd vaccine dose was significantly correlated with their AUC iMCI after the vaccine (Spearman 

𝜌= 0.45, one-sided p=0.03) for the 19 individuals after exclusion of outliers. (Figure 5a) 

Similarly, the AUC iMCI was directly correlated with the increase in frequency of interleukin-

21 expressing CD4+ cells (Spearman 𝜌= 0.56, one-sided p=0.009) at day 14 but was 

inversely correlated with the change in interferon-gamma expressing CD8+ cells (Spearman 

𝜌= -0.47, one-sided p=0.029) for the 17 participants after exclusion of outliers. (Figure 5b 

and c)  

 

Discussion 

In this work, we characterized the interindividual heterogeneity in physiologic response to 

vaccination against COVID-19 collected via a medical-grade, wearable, continuous 

biosensor. Using these data and similarity-based modeling, we developed a digital 

biomarker, iMCI, that captures the entirety of an individual’s unique multivariate vaccine-

induced physiologic response. As inflammatory response to a vaccine is currently only 

measurable at scale by tracking subjective symptoms of reactogenicity, an individualized 
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inflammatory digital biomarker, once prospectively validated, could significantly enhance 

vaccine development and deployment. 

Immune responses are known to vary greatly between people.23 Consistent with that, in the 

current study we identified substantial inter-individual variability in the physiologic response 

to vaccination that was, at least in part, consistent with known differences in vaccination-

induced reactogenicity, such as less symptoms following a first does relative to subsequent 

doses, or greater symptoms in those receiving the mRNA-1273 versus BNT162b2 vaccine.4   

We too found a significantly greater inflammatory response, as measured by AUC iMCI, 

following a second dose relative to a first dose. Those who received a mRNA-1273 vaccine as 

their second or third dose compared to those who received a BNT162b2 vaccine had a 

numerically greater inflammatory response, although not statistically significant. Similarly, 

while prior studies have found female versus male sex and younger versus older age to be 

associated with a greater reactogenicity,24 we were only able to show similar directionality for 

a sex difference, but not statistically significant differences in responses for sex or age, likely 

due to our small sample size.  

In our small sub-study, we also found that an individual’s AUC iMCI response following 

vaccination was significantly associated with both humoral and cellular immune response at 

14 days after vaccination. These results are consistent with multiple studies that have 

correlated higher degrees of vaccine-induced inflammation with a greater immune response. 

For example, using subjective reactogenicity as a measure of individual inflammatory 

response to vaccination, several studies have identified that more symptoms are associated 

with a greater humoral immune response.25-28  However, others have not.29-31  These 

inconsistent findings, and the known confounding by the nocebo affect,5 highlight the need 

for objective measures of individual inflammatory response to vaccination. To date, that has 

been limited to small studies measuring changes in serum cytokine levels following 

vaccination. Two such studies in individuals receiving the BNT162b2 vaccine found a 

correlation between the level of increase of multiple chemokines and cytokines following 
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vaccination, especially interleukin-15 and interferon gamma, and subsequent Spike antibody 

levels.7,32  

Multiple prior studies have also shown that subtle, individualized physiologic changes 

associated with vaccination against COVID-19 are detectable through wearable sensors. 

Most of these studies used consumer device sensor data, with biometrics typically 

summarized as a single data point per day. The majority used wrist- or ring-wearable data, 

evaluating changes post-vaccine in heart rate,12,13,15-17 respiratory rate,13,15 peripheral 

temperature,13 HRV,13,15-17 sleep,12,15 and activity.12   One additional study used a 

multiparametric sensor patch that in addition to the above parameters also included oxygen 

saturation, blood pressure, cardiac output and systemic vascular resistance.14  Our study 

adds to this prior work in several ways. First, we used a medical grade patch sensor that 

provided high-fidelity, beat-to-beat data that were processed to produce 17 source signals at 

a one-minute sampling rate. These data enabled a person’s unique physiologic changes 

associated with inflammation to be objectively tracked in 15-minute intervals. Our analytics 

incorporated all data streams and their interactions simultaneously using a machine learning 

method of  similarity-based modeling to create a ‘digital twin’ of each participant.33  This 

allowed us to continuously compare monitored physiological signals with each participant’s 

baseline model of their unique dynamic physiologic patterns, which effectively removed 

expected activity-related, circadian and other personalized variations and left only vaccine-

induced differences. 

Just under 13.6 billion vaccine doses against COVID-19 have been administered globally 

through June of 2023.34  For the 67% of the world’s population who have received at least 

one dose of a vaccine, the overwhelming majority of them received the same dose, or series 

of doses, depending on the vaccine type, and unrelated to their individual underlying 

immune state. This is despite the fact that a host of personal characteristics influence the 

immune response to vaccination including age and sex,35 race,36 genetic and epigenetic 

factors,37,38 gut microbiome,39 sleep before, and time of day of vaccination,40 previous 

immune system exposures,41 and much more known and unknown.42  The inability to 
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accurately predict a person’s response to vaccination is a major unmet need. Recent multi-

omics and high-level transcriptional profiling studies in hundreds of individuals before and 

after vaccination have confirmed the complexity and broad heterogeneity in immune 

response to vaccination.38,43  In a study including data from 820 adults receiving one of 13 

different vaccines, nearly two-thirds of the transcriptome variance was unexplained by 

identifiable clinical or vaccine characteristics.44  

These results suggest that until a test is available that can reliably identify what an individual’s 

response to a vaccine will be prior to vaccination to enable proactive personalized dosing, a 

biomarker of what that individual’s response was to a received vaccine is needed. 

Recognizing that a person didn’t experience the inflammatory response expected after a 

vaccine could potentially influence the timing or frequency of a booster dose. This might be 

especially important as personalized cancer vaccines continue to be developed.45  Following 

further validation, the personalized digital biomarker described here could enable a method 

to track an individual’s inflammatory response to vaccination using wearables. This could 

enable better objective tracking of reactogenicity and potentially serve as a surrogate for 

immunogenicity.  

Limitations 

While there are advantages to the real-world study design in terms of eventual 

implementation, there are also multiple limitations. The largest limitation, especially for the 

development of an inflammatory biomarker, is the known marked heterogeneity in 

inflammatory response to vaccination and the lack of serum biomarkers to confirm that the 

physiologic changes detected post-vaccination are due solely to inflammation. Another 

limitation is that our analysis is limited to a patch sensor data. While the ECG provides higher 

quality heart rate data and its derivatives than do wrist- or ring-based 

photoplethysmography-based sensors, we are unable to determine if the greater data 

availability improves the clinical value in terms of quantifying reactogenicity or predicting 

immunogenicity. Finally, the inverse relationship between iMCI-detected inflammation and 
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interferon-gamma expressing CD8+ cells is difficult to explain physiologically, which might 

suggest it is a chance finding.  

Conclusion 

There is an unmet need to for a noninvasive method to monitor the totality of inflammation 

following vaccination to aid in the development and potential personalization of vaccines to 

enhance both safety and efficacy. In this work we show the potential for developing a 

personalized digital biomarker for vaccine-induced inflammation by combining medical-

grade wearable sensor data and machine learning-enabled digital twin technology in the 

setting of real-world vaccination against COVID-19. We found that that our digital biomarker, 

iMCI, correlated with both subjective reactogenicity and immunogenicity. If confirmed in 

further studies, a personalized digital biomarker for inflammation could play an important 

role in improving vaccine safety and efficacy.  

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 29, 2024. ; https://doi.org/10.1101/2024.01.28.24301887doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.28.24301887
http://creativecommons.org/licenses/by-nc-nd/4.0/


Personalized Digital Biomarker of Vaccine Response 

1/27/24 

18 

Conflicts of Interest 

The current study was sponsored by physIQ, Inc. (Chicago, IL, USA) a company that has since 
been purchased by Prolaio, Inc. (Scottsdale, AZ, USA). A patent was filed by physIQ for the 
digital biomarker described.  Some co-authors are employees of the company (JS, MG, SW) 
or a paid consultant (SRS).  HG and EP are employees of CellCarta Bioscience, Inc. (Montreal, 
QC, Canada).  

 
 
  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 29, 2024. ; https://doi.org/10.1101/2024.01.28.24301887doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.28.24301887
http://creativecommons.org/licenses/by-nc-nd/4.0/


Personalized Digital Biomarker of Vaccine Response 

1/27/24 

19 

Table 1: Total post-vaccine inflammatory response following 104 vaccines as determined by 
the Area Under the iMCI curve based on vaccine dose, vaccine type, sex and age.  

 n (%) with a 
detectable* 

response 
Median (IQR) Area Under 

the iMCI Curve 

p-value** of comparison 
of Area Under the iMCI 

Curve 

1st Dose (n=15) 8 (53.3) 0.043 (0.04) 
1st vs 2nd dose:  p=0.01 
1st vs 3rd dose: p=0.06 
2nd vs 3rd dose: p=0.41 

2nd Dose (n=44) 31 (70.5) 0.083 (0.18) 

3rd Dose (n=45) 27 (60.0) 0.063 (0.13) 

mRNA-1273 (n=36)  
(2nd or higher dose) 26 (72.2) 0.116 (0.19) 

p=0.06 
BNT162b2 (n=41) 
(2nd or higher dose) 24 (58.5) 0.055 (0.096) 

Females (n=41)  
(2nd or higher dose) 25 (61.0) 0.070 (0.15) 

p=0.60 Males (n=48)  
(2nd or higher dose) 33 (68.8) 0.065 (0.14) 

Lowest Tertile Age 
(range 19-28) (n=31) 
(2nd or higher dose) 

21 (67.7) 0.070 (0.13) Lowest vs Middle Tertile:  
p=0.99 

Middle vs Highest Tertile: 
p=0.13 

Lowest vs Highest Tertile: 
p=0.08 

Middle Tertile Age 
(range 28-45.8) (n=26) 
(2nd or higher dose) 

20 (76.9) 0.056 (0.12) 

Highest Tertile Age 
(range 45.8 - 69) (n=29) 
(2nd or higher dose) 

16 (55.2) 0.077 (0.20) 

* Detectable was defined as the presence of at least 50% of 15-minute steps within a 6-hour 
sliding window had an iMCIs > 0.10. 

** p-values obtained using Kolmogorov–Smirnov (KS) test 
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Figure Legends 

Figure 1 – Population level daily summary changes in heart rate (HR), heart rate variability 

(HRV), respiratory rate (RR), activity level (labeled as “trailing activity”, which indicates that the 

activity level is filtered using a 20-second moving average at the 1-minute level to remove 

higher frequency variability over time), and skin temperature following any vaccination dose 

relative to pre-vaccine baseline with significant changes circled in red. HR changes are in 

beats per minute, HRV in seconds, RR in breaths per minute and skin temperature in oC.  

Figure 2 – Heat maps of the 25 participants with the greatest changes relative to their pre-

vaccination baselines in each of 5 individual parameters in order of degree of change from 

higher to lower. Several participants (numbers 04, 23 and 24) are highlighted as examples of 

how the relative change in one parameter is not predictive of the change in another. 

Figure 3 – a) Heatmap showing inter-individual variation in the onset, degree, and duration 

of the inflammatory multivariate change index (iMCI) following 104 vaccine doses, 

aggregated by first, second or third vaccine dose. b) Similar heatmaps following 91 vaccine 

doses, aggregated by first, second or third vaccine dose for 43 Moderna and 48 

Pfizer/BioNTech vaccine doses. 

Figure 4 – The distribution of AUC iMCI levels from 89 doses classified by whether they were 

associated with the participant experiencing systemic symptoms (70) or just local or no 

symptoms (19). 

Figure 5 - a) AUC iMCI total response versus change from baseline of Anti-SARS-CoV-2 anti-

spike protein IgG titer in 19 participants following a 2nd or 3rd mRNA vaccine dose. The 

individual designated by the star had a lower titer at day 14 than at baseline. b) AUC iMCI 

total response versus change from baseline of frequency of interleukin-21 (IL-21+) expressing 

CD4+ cells and c) iMCI AUC total response versus change from baseline of frequency of 

interferon-gamma (IFN-g+) expressing CD8+ cells in 17 participants14 days following 2nd or 

3rd mRNA vaccine dose.  

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 29, 2024. ; https://doi.org/10.1101/2024.01.28.24301887doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.28.24301887
http://creativecommons.org/licenses/by-nc-nd/4.0/


Personalized Digital Biomarker of Vaccine Response 

1/27/24 

21 

References 
1. Burny, W., et al. Inflammatory parameters associated with systemic reactogenicity 

following vaccination with adjuvanted hepatitis B vaccines in humans. Vaccine 37, 
2004-2015 (2019). 

2. Takano, T., et al. Distinct immune cell dynamics correlate with the immunogenicity and 
reactogenicity of SARS-CoV-2 mRNA vaccine. Cell Rep Med 3, 100631 (2022). 

3. Hervé, C., Laupèze, B., Del Giudice, G., Didierlaurent, A.M. & Tavares Da Silva, F. The 
how's and what's of vaccine reactogenicity. NPJ Vaccines 4, 39 (2019). 

4. Chapin-Bardales, J., Gee, J. & Myers, T. Reactogenicity Following Receipt of mRNA-
Based COVID-19 Vaccines. Jama 325, 2201-2202 (2021). 

5. Haas, J.W., et al. Frequency of Adverse Events in the Placebo Arms of COVID-19 
Vaccine Trials: A Systematic Review and Meta-analysis. JAMA Netw Open 5, e2143955 
(2022). 

6. Lim, P.W., Garssen, J. & Sandalova, E. Potential Use of Salivary Markers for 
Longitudinal Monitoring of Inflammatory Immune Responses to Vaccination. 
Mediators Inflamm 2016, 6958293 (2016). 

7. Bergamaschi, C., et al. Systemic IL-15, IFN-&#x3b3;, and IP-10/CXCL10 signature 
associated with effective immune response to SARS-CoV-2 in BNT162b2 mRNA 
vaccine recipients. Cell Reports 36(2021). 

8. Chan, C.Y., et al. Early molecular correlates of adverse events following yellow fever 
vaccination. JCI Insight 2(2017). 

9. Burny, W., et al. Different Adjuvants Induce Common Innate Pathways That Are 
Associated with Enhanced Adaptive Responses against a Model Antigen in Humans. 
Front Immunol 8, 943 (2017). 

10. Burny, W., Hervé, C., Caubet, M., Yarzabal, J.P. & Didierlaurent, A.M. Utility of urinary 
cytokine levels as predictors of the immunogenicity and reactogenicity of AS01-
adjuvanted hepatitis B vaccine in healthy adults. Vaccine 40, 2714-2722 (2022). 

11. Vasudevan, S., Saha, A., Tarver, M.E. & Patel, B. Digital biomarkers: Convergence of 
digital health technologies and biomarkers. npj Digital Medicine 5, 36 (2022). 

12. Quer, G., et al. Inter-individual variation in objective measure of reactogenicity 
following COVID-19 vaccination via smartwatches and fitness bands. NPJ Digit Med 5, 
49 (2022). 

13. Mason, A.E., et al. Metrics from Wearable Devices as Candidate Predictors of 
Antibody Response Following Vaccination against COVID-19: Data from the Second 
TemPredict Study. Vaccines (Basel) 10(2022). 

14. Gepner, Y., et al. Utilizing wearable sensors for continuous and highly-sensitive 
monitoring of reactions to the BNT162b2 mRNA COVID-19 vaccine. Commun Med 
(Lond) 2, 27 (2022). 

15. Presby, D.M. & Capodilupo, E.R. Biometrics from a wearable device reveal temporary 
effects of COVID-19 vaccines on cardiovascular, respiratory, and sleep physiology. J 
Appl Physiol (1985) 132, 448-458 (2022). 

16. Guan, G., et al. Higher sensitivity monitoring of reactions to COVID-19 vaccination 
using smartwatches. NPJ Digit Med 5, 140 (2022). 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 29, 2024. ; https://doi.org/10.1101/2024.01.28.24301887doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.28.24301887
http://creativecommons.org/licenses/by-nc-nd/4.0/


Personalized Digital Biomarker of Vaccine Response 

1/27/24 

22 

17. Yechezkel, M., et al. Safety of the fourth COVID-19 BNT162b2 mRNA (second booster) 
vaccine: a prospective and retrospective cohort study. Lancet Respir Med 11, 139-150 
(2023). 

18. Quer, G., Gouda, P., Galarnyk, M., Topol, E.J. & Steinhubl, S.R. Inter- and 
intraindividual variability in daily resting heart rate and its associations with age, sex, 
sleep, BMI, and time of year: Retrospective, longitudinal cohort study of 92,457 adults. 
PLoS One 15, e0227709 (2020). 

19. Pipke, R.M., Wegerich, S.W., Saidi, A. & Stehlik, J. Feasibility of personalized 
nonparametric analytics for predictive monitoring of heart failure patients using 
continuous mobile telemetry. in Proceedings of the 4th Conference on Wireless Health 
1-8 (2013). 

20. Venkatesh, K.P., Raza, M.M. & Kvedar, J.C. Health digital twins as tools for precision 
medicine: Considerations for computation, implementation, and regulation. NPJ Digit 
Med 5, 150 (2022). 

21. Hvidt, A.K., et al. Long-term humoral and cellular immunity after primary SARS-CoV-2 
infection: a 20-month longitudinal study. BMC Immunol 24, 45 (2023). 

22. Munro, A.P.S., et al. Safety, immunogenicity, and reactogenicity of BNT162b2 and 
mRNA-1273 COVID-19 vaccines given as fourth-dose boosters following two doses of 
ChAdOx1 nCoV-19 or BNT162b2 and a third dose of BNT162b2 (COV-BOOST): a 
multicentre, blinded, phase 2, randomised trial. Lancet Infect Dis 22, 1131-1141 
(2022). 

23. Pulendran, B. & Davis, M.M. The science and medicine of human immunology. 
Science 369(2020). 

24. Beatty, A.L., et al. Analysis of COVID-19 Vaccine Type and Adverse Effects Following 
Vaccination. JAMA Network Open 4, e2140364-e2140364 (2021). 

25. Kanizsai, A., et al. Fever after Vaccination against SARS-CoV-2 with mRNA-Based 
Vaccine Associated with Higher Antibody Levels during 6 Months Follow-Up. Vaccines 
10, 447 (2022). 

26. Held, J., et al. Reactogenicity Correlates Only Weakly with Humoral Immunogenicity 
after COVID-19 Vaccination with BNT162b2 mRNA (Comirnaty®). Vaccines 9, 1063 
(2021). 

27. Lin, T.-Y., Hung, N.-K. & Hung, S.-C. Association of Reactogenicity with 
Immunogenicity of the ChAdOx1 nCoV-19 Vaccine in Patients Undergoing 
Hemodialysis. Vaccines 10, 1366 (2022). 

28. Jubishi, D., et al. The association between adverse reactions and immune response 
against SARS-CoV-2 spike protein after vaccination with BNT162b2 among healthcare 
workers in a single healthcare system: a prospective observational cohort study. Hum 
Vaccin Immunother 18, 2048559 (2022). 

29. Coggins, S.A.A., et al. Adverse Effects and Antibody Titers in Response to the 
BNT162b2 mRNA COVID-19 Vaccine in a Prospective Study of Healthcare Workers. 
Open Forum Infectious Diseases 9(2021). 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 29, 2024. ; https://doi.org/10.1101/2024.01.28.24301887doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.28.24301887
http://creativecommons.org/licenses/by-nc-nd/4.0/


Personalized Digital Biomarker of Vaccine Response 

1/27/24 

23 

30. Takeuchi, M., Higa, Y., Esaki, A., Nabeshima, Y. & Nakazono, A. Does reactogenicity 
after a second injection of the BNT162b2 vaccine predict spike IgG antibody levels in 
healthy Japanese subjects? PLoS One 16, e0257668 (2021). 

31. Hwang, Y.H., et al. Can reactogenicity predict immunogenicity after COVID-19 
vaccination? Korean J Intern Med 36, 1486-1491 (2021). 

32. Bergamaschi, C., et al. Reduced Antibodies and Innate Cytokine Changes in SARS-
CoV-2 BNT162b2 mRNA Vaccinated Transplant Patients With Hematological 
Malignancies. Front Immunol 13, 899972 (2022). 

33. Tarassenko, L. & Topol, E.J. Monitoring Jet Engines and the Health of People. JAMA 
320, 2309-2310 (2018). 

34. World Health Organization. WHO Coronavirus (COVID-19) Dashboard.  (World Health 
Organization, 2023). 

35. Bai, J., et al. Sex, Age, and Ethnic Background Shape Adaptive Immune Responses 
Induced by the SARS-CoV-2 mRNA Vaccine. Frontiers in Immunology 13(2022). 

36. Kurupati, R., et al. Race-related differences in antibody responses to the inactivated 
influenza vaccine are linked to distinct pre-vaccination gene expression profiles in 
blood. Oncotarget 7, 62898-62911 (2016). 

37. Kimman, T.G., Vandebriel, R.J. & Hoebee, B. Genetic variation in the response to 
vaccination. Community Genet 10, 201-217 (2007). 

38. Moorlag, S., et al. Multi-omics analysis of innate and adaptive responses to BCG 
vaccination reveals epigenetic cell states that predict trained immunity. Immunity 57, 
171-187.e114 (2024). 

39. Lynn, D.J., Benson, S.C., Lynn, M.A. & Pulendran, B. Modulation of immune responses 
to vaccination by the microbiota: implications and potential mechanisms. Nature 
Reviews Immunology 22, 33-46 (2022). 

40. Rayatdoost, E., et al. Sufficient Sleep, Time of Vaccination, and Vaccine Efficacy: A 
Systematic Review of the Current Evidence and a Proposal for COVID-19 Vaccination. 
Yale J Biol Med 95, 221-235 (2022). 

41. Murray, S.M., et al. The impact of pre-existing cross-reactive immunity on SARS-CoV-2 
infection and vaccine responses. Nature Reviews Immunology 23, 304-316 (2023). 

42. Falahi, S. & Kenarkoohi, A. Host factors and vaccine efficacy: Implications for COVID-
19 vaccines. J Med Virol 94, 1330-1335 (2022). 

43. Fourati, S., et al. Pan-vaccine analysis reveals innate immune endotypes predictive of 
antibody responses to vaccination. Nat Immunol 23, 1777-1787 (2022). 

44. Fourati, S., et al. Pan-vaccine analysis reveals innate immune endotypes predictive of 
antibody responses to vaccination. Nature Immunology 23, 1777-1787 (2022). 

45. Sellars, M.C., Wu, C.J. & Fritsch, E.F. Cancer vaccines: Building a bridge over troubled 
waters. Cell 185, 2770-2788 (2022). 

  

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 29, 2024. ; https://doi.org/10.1101/2024.01.28.24301887doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.28.24301887
http://creativecommons.org/licenses/by-nc-nd/4.0/


Personalized Digital Biomarker of Vaccine Response 

1/27/24 

24 

Figure 1 
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Figure 2 
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Figure 3a 
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Figure 4 
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Figure 5 
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Supplementary Information for: 
Wearable Sensor and Digital Twin Technology for the Development of a Personalized 

Digital Biomarker of Vaccine-Induced Inflammation  
 

Supplemental Figure A: The iMCI Total Response was defined as Ai/AT as illustrated in the 
figure, where AT is the total rectangular area within the time window (the green box) and Ai is 
the area under the curve for iMCI during the window (red area). 

 
 
 
Supplemental Figure B:  The two top figures (a) and (b) of Supplemental Figure (inserted 
above for reference) reveal an existence of few outliers. Using the statistical methods such as 
“median” for anti-spike protein IgG and “generalized extreme studentized deviate test” for T-
cell assays we identified outliers and removed them from correlation analyses. There were 
two outliers in anti-spike protein IgG and three in case of each T-cell assay. One of outliers is 
common for both T-cell assays and anti-spike protein IgG. This resulted in 17 clinical data 
points for anti-spike protein IgG and T-cell assays to compare. The resulting correlation 
between anti-spike protein IgG and T-cell assays in clinical data after outlier removal is shown 
in two bottom figures (c) and (d) of Supplemental Figure (anti-spike protein IgG and T-cell 
assay IL-21+: 0.75, one-sided p=0.0003; anti-spike protein IgG and T-cell assay: -0.60, one-
sided p=0.007).  
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