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SUMMARY 1 

Metabolic dysfunction-associated steatotic liver disease (MASLD) prevalence is increasing in 2 

parallel with an obesity pandemic, calling for novel strategies for prevention and treatment. We 3 

defined a circulating proteome of human MASLD across ≈7000 proteins in ≈5000 individuals 4 

from diverse, at-risk populations across the metabolic health spectrum, demonstrating 5 

reproducible diagnostic performance and specifying both known and novel metabolic pathways 6 

relevant to MASLD (central carbon and amino acid metabolism, hepatocyte regeneration, 7 

inflammation, fibrosis, insulin sensitivity). A parsimonious proteomic signature of MASLD was 8 

associated with a protection from MASLD and its related multi-system metabolic consequences 9 

in >26000 free-living individuals, with an additive effect to polygenic risk. The MASLD proteome 10 

was encoded by genes that demonstrated transcriptional enrichment in liver, with spatial 11 

transcriptional activity in areas of steatosis in human liver biopsy and dynamicity for select 12 

targets in human liver across stages of steatosis. We replicated several top relations from 13 

proteomics and spatial tissue transcriptomics in a humanized “liver-on-a-chip” model of MASLD, 14 

highlighting the power of a full translational approach to discovery in MASLD. Collectively, these 15 

results underscore utility of blood-based proteomics as a dynamic “liquid biopsy” of human liver 16 

relevant to clinical biomarker and mechanistic applications. 17 

 18 

Keywords: metabolic dysfunction-associated steatotic liver disease, proteomics, diabetes  19 
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INTRODUCTION 1 

Metabolic dysfunction-associated steatotic liver disease (MASLD) is present in >30% of 2 

individuals worldwide1 and has emerged as a predominant driver of end-stage liver disease and 3 

an important contributor to a range of other chronic, life-limiting illnesses (e.g., cancer, 4 

cardiovascular disease, renal dysfunction)2. The heterogeneous progression from MASLD to 5 

chronic steatohepatitis—and limited effectiveness of therapies that interrupt this process—have 6 

fueled efforts to identify at-risk populations early for prevention. While large studies of genetic 7 

propensity for MASLD have yielded promising targets (e.g., PNPLA33), genetic variation alone 8 

may not capture dynamic behavioral and environmental contributions (diet, obesity, diabetes, 9 

etc.) that may be reflected in molecular states that precede MASLD. Circulating proteomics4-6 10 

and hepatic tissue profiles7 have been at the forefront of resolving these limitations in MASLD, 11 

though limited by lack of integration of circulating “omics” and liver characterization or reliance 12 

on invasive biopsy-guided approaches. In response, a few recent studies have begun to 13 

integrate liver phenotypes and circulating proteomics in humans with some promising results, 14 

albeit in small cohorts with available liver tissue and in targeted populations with specific 15 

exposures (e.g., alcohol)8,9. Integrative studies that link the circulating proteome to dynamic 16 

hepatic tissue states across the MASLD spectrum (at single cell and spatial resolution) and 17 

large clinical longitudinal studies to assess clinical susceptibility and consequences of MASLD 18 

will provide the broad translational landscape necessary to simultaneously specify diagnostic 19 

and prognostic biomarkers and prioritize dynamic targets for mechanistic inquiry. 20 

We leveraged three large prospective observational cohorts (N=4996) across a broad 21 

spectrum of metabolic risk with complementary non-invasive measures of hepatic steatosis to 22 

identify a circulating proteome of MASLD. Single-protein and multi-protein signatures of MASLD 23 

were associated with imaging-defined MASLD across a spectrum of metabolic risk, with clinical 24 

diagnostic performance beyond known MASLD risk factors. Identified proteins specified 25 

pathways of central carbon and amino acid metabolism, hepatocyte regeneration, inflammation, 26 
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fibrosis, and insulin sensitivity. Moreover, this multivariable signature of MASLD was associated 1 

with incident non-alcoholic chronic liver disease, diabetes, and a host of metabolic conditions in 2 

>26000 participants over nearly a decade of follow-up in the UK Biobank, with additivity over 3 

polygenic risk estimates and prognostic reliability down to a clinically translatable 21-protein 4 

panel. We observed very strong enrichment of the MASLD-associated proteome in human liver 5 

at a transcriptional level, as well as spatial transcriptional localization to areas of histologically 6 

defined steatosis in human liver in early MASLD. Expression of key targets appeared 7 

predominantly in hepatocytes, macrophages, and fibroblasts and several targets’ (prioritized via 8 

spatial transcription and proteomics) expression correlated with progression of steatosis in >600 9 

human livers and in a humanized “liver-on-a-chip” model of early MASLD. Collectively, these 10 

results inform fundamental connections between a blood-based proteomic signature of MASLD 11 

as a “liquid biopsy” of potentially dynamic states in human liver, connecting clinical biomarker 12 

discovery and hepatic biology in MASLD. 13 

 14 

RESULTS 15 

General flow of study and characteristics of study samples 16 

 Our study consisted of five integrated steps (Figure 1; details in Methods), specifically 17 

(1) identification and validation of a “MASLD proteome” (across 4996 participants across three 18 

prospective observational studies: Coronary Artery Risk Development in Young Adults 19 

[CARDIA], UK Biobank, Cameron County Hispanic Cohort [CCHC]); (2) characterization of 20 

tissue origin and implicated molecular pathways; (3) relation of this proteome to MASLD-21 

relevant clinical outcomes, including complementarity with human genetics (across 26421 22 

participants in UK Biobank over a median 13.7 years of follow-up); (4) examining expression of 23 

genes encoding the MASLD proteome in human liver across stages of MASLD (bulk RNA-seq 24 

in human liver; SteatoSITE, N=523 biopsies); (5) specifying cell and spatially resolved 25 
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expression of these genes in human liver with and without MASLD (scRNA-seq, N=19; spatial 1 

transcriptomics, N=4).  2 

The characteristics of the study samples are shown in Supplementary Tables 1-3. 3 

Overall, our study included 2679 CARDIA study participants after excluding participants with 4 

other potential causes for hepatic steatosis (>14 alcoholic drinks/week, hepatitis C, cirrhosis, 5 

HIV, and use of amiodarone, valproic acid, methotrexate, tamoxifen, or diltiazem)10. CARDIA 6 

participants were randomly split into derivation (N=1876) and validation (N=803) subsamples, 7 

with an overall median age of 51 years, 57% female, and 47% Black individuals (Supplemental 8 

Table 1). Participants were predominantly overweight and obese (median body mass index 9 

[BMI] 29 kg/m2), with low alcohol use (median 1 drink/week) and 15% had diabetes. The study 10 

population from UK Biobank included 26421 participants that represented a broader age range 11 

(25th to 75th percentile: 50-64 years), 54% were women, and participants were predominantly 12 

White (94%) and overweight (median 27kg/m2) with a lower prevalence of diabetes (5.8%) and 13 

greater alcohol intake (43% reporting ≥ 3 times a week). A total of 2111 UK Biobank participants 14 

had MRI measures of hepatic steatosis (Supplemental Table 2). Participants from the 15 

Cameron County Hispanic cohort (CCHC; N=206) had similar age (25th to 75th percentile: 46-66 16 

years) and sex (66% female) distributions, composed entirely of White Hispanics, with greater 17 

obesity (median BMI 31 kg/m2) and prevalence of diabetes (32%), with 49% reporting no alcohol 18 

use (Supplemental Table 3). 19 

 20 

Circulating proteomics of MASLD identify broad canonical pathways of human 21 

metabolism with predominant gene expression in the liver 22 

 Across 2679 participants in CARDIA with SomaScan 7k proteomics, we identified 237 23 

unique proteins (259 SomaScan aptamers) associated with liver attenuation on computed 24 

tomography (lower liver attenuation ~ more hepatic steatosis) across both derivation and 25 

validation subsamples (adjusted for age, sex, race, BMI; Figure 2A-B; full regression estimates 26 
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in Supplementary Data File SD02). Regression estimates were robust to multivariable 1 

adjustment, including metabolic risk factors, renal function, physical activity, and alcoholic drinks 2 

per week (relation of regression estimates across adjustments: Spearman r=0.95; P < 2.2x10-16; 3 

Supplemental Figure 1). We observed significant enrichment of genes encoding the MASLD 4 

proteome in the liver (Figure 2C), specifying broad pathways implicated in central metabolic 5 

processes (e.g., carbon, pyruvate, amino acid, carbohydrate metabolism) and fibrosis (Figure 6 

2D), including known and emerging mechanisms of MASLD, namely amino acid metabolism 7 

(ACY16,11, FAH12), alcohol processing (e.g., ADH1A13,14), fructose catabolism (ALDOB, 8 

SORD15), bile acid and steroid metabolism (AKR1D116, AKR1C417,18), gluconeogenesis 9 

(FBP119), and multi-substrate detoxification, intermediary metabolism, and fibrosis (GSTA120, 10 

ASL21, UGDH22), among others. To identify potential central mediators of MASLD, we next 11 

conducted an interaction (hub gene) analysis including 235 genes (of the 237 unique genes), 12 

with nodes identifying genes with central relevance to MASLD (Figure 2E). Identified nodes 13 

included pathogenic mediators of hepatocyte regeneration and fibrosis regulation (EGFR23, IGF-14 

124), apoptosis regulation (MET25), inflammatory mediators (CXCL226, CRP, SERPINE1), 15 

extracellular matrix responses to hepatic injury (VTN27, ACAN28), glycogen metabolism 16 

(PYGL29), and mitochondrial pyruvate metabolism (PKLR30, PC31), among several other 17 

canonical markers of insulin sensitivity and adiposity (ADIPOQ, INS). These results suggested a 18 

predominant hepatic origin for the circulating MASLD proteome, implicating canonical 19 

metabolic-inflammatory-fibrotic pathways in liver degeneration.  20 

 21 

Integrated proteomics identifies a diagnostic biomarker of MASLD with wide replication 22 

across metabolic risk states 23 

Penalized regression (LASSO) generated a 336-aptamer model for liver attenuation 24 

adjusted for age, sex, race, and BMI (hereafter referred to as “MASLD score”). The MASLD 25 

score correlated with liver attenuation in both derivation and validation subsamples within 26 
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CARDIA (Spearman r=0.69 and 0.56, respectively; Figure 3A; model coefficients in 1 

Supplementary Data File SD04), differed across clinical thresholds for MASLD (Figures 3B, 2 

3D), with retention of correlations using the top 21 aptamers from the MASLD score 3 

(Supplemental Figure 3A). Addition of the MASLD score to standard clinical risk (age, sex, 4 

race, BMI, alcoholic drinks per week, aspartate aminotransferase [AST; aptamer based], alanine 5 

aminotransferase [ALT; aptamer based], hemoglobin A1c) markedly improved MASLD 6 

discrimination (C-index 0.84 [95% CI 0.80-0.88] to 0.94 [95% CI 0.92-0.96], P=4.3x10-7; Figure 7 

3F). This discriminative performance was maintained using the top 21 aptamers from the 8 

MASLD score (21 chosen given the limit of current absolute proteomic detection [Olink] for 9 

clinical translation). Of note, despite the well described association between obesity and 10 

MASLD, we only observed a modest correlation between BMI and the protein score (Spearman 11 

r=-0.27, P<2.2x10-16), with smaller effects by age, sex, race, and alcohol use (Supplemental 12 

Figure 2).  13 

For external rigor of our approach, we next replicated the MASLD score with hepatic 14 

steatosis in >2000 participants from 2 different studies with distinct approaches to MASLD 15 

quantification (CCHC, ultrasound; MRI, UK Biobank). As CCHC and UK Biobank used Olink 16 

proteomics platforms, recalibration of the MASLD score was performed (see Methods). Of note, 17 

CT liver attenuation (the measure in CARDIA) is an opposite directionality relative to ultrasound 18 

or MRI (higher attenuation ~ lower steatosis ~ lower MRI or ultrasound measure). In 2111 UK 19 

Biobank participants, our results were largely similar, including (1) a similar relation between the 20 

recalibrated MASLD score and MRI-determined proton-derived fat fraction (Spearman r=-0.5, 21 

P<5.9x10-135); Figure 3C, Supplemental Figure 3B); (2) improvement in MASLD discrimination 22 

above clinical models (defined as PDFF>5.5%, a clinically accepted threshold32; C-statistic 0.79 23 

[0.77-0.82] to 0.83 [0.81-0.85], P=5.2x10-8, Figure 3G); (3) similar associations with age, sex, 24 

race, BMI, and alcohol use (Supplemental Figure 2). Similarly, in CCHC—despite at far higher 25 
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 9 

metabolic risk with far more prevalent MASLD (Supplemental Table 3)—we found a magnitude 1 

of correlation consistent with other cohorts for controlled attenuation parameter (an ultrasound-2 

based measure of steatosis; Spearman r=-0.54, P<2.2x10-16; Figure 3E). 3 

Recognizing the importance of adiposity on the risk of MASLD, we interrogated whether 4 

the relationship between the MASLD score and hepatic steatosis was modified by 5 

overweight/obesity status. In the CARDIA validation subsample (N=803), we observed a 6 

stronger correlation among participants with obesity (BMI≥30 kg/m2; Spearman r=0.65) than 7 

participants with normal/overweight BMI (<30 kg/m2; Spearman r=0.41; Supplemental Figure 8 

4). In a linear model for the outcome of hepatic steatosis (which was CT assessed liver 9 

attenuation in CARDIA), we observed a statistically significant interaction between the MASLD 10 

score and BMI wherein the magnitude of the relationship between the MASLD score and CT 11 

liver attenuation increases with greater BMI (interaction b=7.5, P=1.4x10-8). In conjunction with 12 

the observed relationship in CCHC (a cohort with elevated metabolic risk), these findings 13 

support the relevance of the MASLD score in at-risk populations. 14 

 15 

A MASLD proteomic score identifies individuals at long-term chronic non-alcoholic liver 16 

disease risk, MASLD-related diseases, and survival in over 26,000 people, additive to 17 

polygenic risk 18 

In 26421 participants in UK Biobank (median follow-up for mortality 13.7 years, 25th-75th 19 

percentile 13.0-14.5 years), we found a broad relation of the MASLD score with MASLD and 20 

MASLD-relevant clinical outcomes (Figure 4A). In addition to all-cause and cause-specific 21 

mortality (specifically cancer), we observed very strong relations between the MASLD score and 22 

chronic non-alcoholic liver diseases (an electronic health record surrogate of MASLD; adjusted 23 

HR 0.59, 95% 0.52-0.67; P=7.0x10-16) and diabetes (adjusted HR 0.50, 95% 0.47-0.54; 24 

P=1.7x10-86; adjustments in Methods). In sensitivity analyses, these associations were robust to 25 
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additional adjustment for AST, ALT, and hemoglobin A1c (chronic non-alcoholic liver disease 1 

HR 0.63, diabetes HR 0.53; Supplemental Data File SD06) and were retained down to a 21-2 

protein Olink panel (chronic nonalcoholic liver disease HR 0.64, diabetes HR 0.57; Figure 4C). 3 

In addition to association with clinical outcomes, addition of the MASLD score provided marked 4 

improvements in discrimination and net reclassification above clinical models (including age, 5 

sex, race, BMI, systolic blood pressure, diabetes [removed for models of diabetes], Townsend 6 

Deprivation Index, smoking, alcohol use, and low-density lipoprotein) for both diabetes (C-7 

statistic 0.79 vs. 0.84, P=6.6x10-20) and chronic non-alcoholic liver disease (C-statistic 0.69 vs. 8 

0.74, P=1.1x10-5; Figure 4A). In a sensitivity analysis for incident chronic non-alcoholic liver 9 

disease we further adjusted for AST, ALT and A1c and still observed a significant improvement 10 

in model performance (C-statistic 0.72 vs 0.74, P=0.009). Given the widespread use of 11 

polygenic liability of diabetes for clinical risk prediction33, we tested the relative effect of the 12 

MASLD score and a diabetes polygenic risk score (PRS), demonstrating a largely additive effect 13 

with minimal interaction (weak PRS-by-proteomic interaction beta = 0.07, P=0.001; model 14 

predicted hazard ratios presented in Figure 4B). These results suggested a strong proteomic 15 

liability to incident MASLD and MASLD-related disorders, with significant addition to polygenic 16 

risk estimates for risk stratification.  17 

 18 

The MASLD proteome exhibits directionally consistent, cell-specific, and spatially 19 

localized expression in areas of steatosis in early MASLD with dynamicity during MASLD 20 

progression 21 

To elucidate the spatial and cellular organization of prioritized targets identified in 22 

proteomic analyses, we conducted a comprehensive mapping of proteins implicated in 23 

regression in CARDIA to human liver tissue in early MASLD.  Leveraging published single-cell 24 

and single-nuclear RNA sequencing (scRNA-seq) and spatial transcriptomics34 (N=21; 62% 25 

women, mean age 59 years, mean BMI 32 kg/m2), we investigated the expression profiles of 26 
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198 MASLD-associated protein-gene overlaps represented in both the scRNA-seq and spatial 1 

transcriptomics datasets using individual gene expression and a composite expression score 2 

(Figure 5, see Methods) to facilitate the broad identification of cell types and spatial distribution 3 

of targets prioritized by the MASLD proteome within the human liver. This analysis showed a 4 

predominant cell-specific expression pattern of implicated targets, primarily observed in 5 

hepatocytes. However, a subset of targets implicated by the MASLD proteome show 6 

heterogenous expression pattens across cell, including fibroblasts, cholangiocytes, endothelial 7 

cells, and immune cells (Figure 5A and Supplemental Figure 5A). Employing a composite 8 

expression score, we showed higher gene activity of implicated targets within steatotic tissue 9 

and in the mid-central liver zonation. These zones were previously shown to correspond with 10 

higher hepatocyte expression signature using the same dataset (Figure 5B-F, Supplemental 11 

Figure 5B)34. 12 

We subsequently assessed whether implicated targets identified by the CARDIA model 13 

exhibit differential expressed in single-cell data. To account for the confounding effects of cell 14 

isolation technique on the liver cell atlas cell types, we specifically utilized the spatial 15 

transcriptomics dataset for this analysis. Of the 198 genes encoding implicated proteins 16 

expressed in the spatial transcriptomics Visium dataset, 33 were differentially expressed 17 

between healthy and steatotic tissue (minimum expression > 10% of spots; adjusted P < 0.05; 18 

|log2 fold-change| > 0.25 & |minimum % expressed spot difference| > 10%; Figure 5H). Of the 19 

33 genes, 30 were upregulated in steatotic tissue and only 3 genes (IGFBP2, IL1RAP and 20 

SHBG) were downregulated. These genes exhibited distinct expression patterns in human liver 21 

tissue with and without steatosis (refer to Figure 5G-H, select targets shown in Supplemental 22 

Figure 5C-D. Moreover, we observed high biological concordance between their change in 23 

expression and the clinical effect estimate of the circulating protein corresponding to this gene 24 

with liver attenuation in CARDIA (Figure 5G). One notable example with high effect size is 25 

IGFBP2—dynamic during metabolic intervention35 and regeneration36 with liver-enriched 26 
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expression37—which was increased in healthy versus steatotic cell populations (transcriptional 1 

level, Supplemental Figure 5D) and associated with lesser steatosis in CARDIA (population 2 

proteomic level), consistent with smaller reports38. Most observed population association-tissue 3 

concordance consisted of metabolic genes up-regulated in steatotic liver that displayed greater 4 

circulating protein abundance in individuals with steatosis (Figure 5G-H), many of which had 5 

established mechanistic relevance in model systems of MASLD and its progression (e.g., ENO3 6 

and ferroptosis39; UGDH and fibrosis/redox status22; CTSZ and epithelial-mesenchymal 7 

transition40; CDH1 and lipogenesis41; CDH1 and PPAR/PGC1a signaling42; among others).  8 

 Next, we matched these 33 differentially expressed genes to bulk transcriptomic data 9 

across NASH-CRN defined stages of hepatic steatosis to investigate potential dynamicity 10 

across individuals with increasing severity of histopathologic phenotype (Figure 6). Of 523 11 

SteatoSITE participants with biopsy samples, there were 489 with MASLD (54% women, mean 12 

age 52 years, mean BMI 32 kg/m2, 75% diabetes) compared to 34 control samples. Of the 33 13 

genes passed forward for assessment in bulk transcriptomics, 12 were not significantly 14 

expressed in any of the stages of steatosis (by adjusted p-value < 0.05) and were not included 15 

in visualization. We observed several genes with high effect size differences by steatosis grade, 16 

concordant with circulating proteomic and spatial relations (e.g., IGFBP2, IL1RAP, SHBG, 17 

ENO3, DEGB1, ME1). Across the genes prioritized by proteomic and spatial studies, we 18 

observed two types of discordant findings: (1) genes with a directionality consistent with our 19 

proteomic-spatial (but not bulk) results (e.g., SERPINE1/PAI-143-45, HSPA1B46); (2) genes 20 

consistent with the bulk (but not proteomic-spatial) directionality (e.g., PSAT147, UDGH22, 21 

ACO148). Several factors—technical (sequencing methodologies, bulk versus single cell, limited 22 

sample size in this previously published scRNAseq dataset34, participant-level, and biological 23 

(steatosis as one component of the MASLD phenotype, in addition to inflammation, ballooning, 24 

fibrosis)—may account for these differences. Nevertheless, these findings collectively highlight 25 
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the potential for proteo-transcriptional target mapping for human MASLD amidst context-1 

dependent heterogeneity and complexity of integrating multiple approaches.   2 

 3 

Humanized liver-on-a-chip recapitulates an early phase human MASLD phenotype 4 

consistent with proteo-transcriptional MASLD targets from human studies 5 

 The experimental design for the liver-on-a-chip (LOC) studies is shown in Figures 7A-B. 6 

Microscopy, immunofluorescence, and gene expression studies after administration of fatty 7 

acids (oleic and palmitic) known to promote a steatosis phenotype49 were consistent with 8 

morphologic and transcriptomic induction of a MASLD phenotype (decreased IRS150,51, IRS251, 9 

PPARa52,53; increased SREBP1c54, PPARg55, FABP456; Figure 7C-D). Given limited cDNA yield 10 

from the LOC experiments, we prioritized 13 of 33 targets identified across proteomic and 11 

spatial transcriptional studies (Supplemental Data File SD07) for assessment on the LOC in 12 

two ways: (1) top 5 (HMGCS1, SERPINE1, HSPA1B, ENO3, HSPA1A) and bottom 5 (CDA, 13 

PYGL, IL1RAP, SHBG, IGFBP2) differentially expressed targets, ranked by log2-fold difference 14 

in steatotic and non-steatotic livers by spatial transcriptomics (include all 3 of which were 15 

downregulated in steatotic livers); (2) three additional targets differentially expressed in spatial 16 

human liver studies but with prominent expression in non-parenchymal (non-hepatocyte; NPCs) 17 

cells (ME1, CTSZ, DEFB1).  18 

We observed broadly directionally consistent results between circulating proteomic, 19 

tissue transcriptional, and LOC experiments, with increased expression of genes implicated in 20 

hepatic lipid metabolism, stress, and non-canonical pathways (e.g., ferroptosis) across 21 

hepatocytes and NPCs (PYGL, HMGCS1, SERPINE1, ENO3, HSPA1B; Figure 7E). 22 

Furthermore, while ME1, CSTZ, and DEFB1 were not expressed in LOC hepatocytes 23 

(consistent with spatial human studies), the expression of these genes was increased in NPCs 24 

in the LOC (Figure 7E). Taken together with bulk data for DEFB1 and ME1 in bulk 25 

transcriptional data (Figure 6), these results suggest the increased expression of these genes 26 
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are predominantly driven by cells of non-hepatocyte origin. Of note, several genes did not 1 

exhibit the expected directionality from proteomic, spatial, or bulk studies (non-significant: 2 

IGFBP2, SHBG; opposite directionality, IL1RAP, CDA; Figure 7E), potentially owing to 3 

biological heterogeneity between model systems.  4 

  5 

DISCUSSION 6 

Given the growing worldwide prevalence of MASLD and its broad impact on human 7 

health, there is increasing interest to identify actionable biomarkers that reflect clinical risk and 8 

mechanism underlying MASLD pathobiology. We identified MASLD-associated proteins across 9 

a broad proteomic space (7230 aptamers) in ≈5000 individuals from two large prevention 10 

populations at dramatically lower metabolic risk relative to recent reports6,8,57 to address clinical 11 

generalizability. Using both single and multivariable regression modeling, the MASLD proteome 12 

prioritized broad metabolic, inflammatory, and fibrosis pathways, with multivariable instruments 13 

offering significant augmentation in MASLD discrimination beyond clinical factors in both 14 

CARDIA and UK Biobank (despite heterogeneity in the assessments of proteins, hepatic 15 

steatosis, and social-environmental measures). Our approach was strengthened by using direct 16 

measures of hepatic steatosis (CT, ultrasound, and MRI), as opposed to the use of diagnosis 17 

codes58, to define proteomic relations to MASLD, resulting in multivariable MASLD proteomic 18 

instruments associated with hepatic steatosis in populations with elevated metabolic risk 19 

(CCHC). The range in C-statistic for composite proteomic-phenotype risk models in both cohorts 20 

(CARDIA: 0.94; UK Biobank: 0.83) were consistent with prior reports in markedly higher risk 21 

individuals from Wood and colleagues (validation N=134 adults; BMI 49±8 kg/m2, 41% diabetes, 22 

84% female; proteomic C-statistic: 0.864)57 and Govaere and colleagues (validation N=115 23 

adults; BMI 32±6 kg/m2, 52% diabetes, 44% female; proteomic C-statistic: 0.8)8. The 24 

multivariable MASLD proteome forecasted prospective disease risk in >26000 UK Biobank 25 

participants for incident chronic non-alcoholic liver disease, diabetes, and other outcomes linked 26 
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to MASLD (ischemic heart disease, cancer mortality, and all-cause mortality) and mitigated high 1 

polygenic liability for diabetes in UK Biobank. These results extend reports in high-risk, 2 

established disease populations6 into a prevention context with high clinical impact of 3 

intervention, underscoring the translatability of this approach for MASLD- and MASLD-related 4 

disease personalization.  5 

While liver imaging enjoys discriminative accuracy for MASLD (e.g., CT, MRI)59,60, these 6 

studies have some limitations, including clinical availability and cost in widespread screening 7 

efforts and sensitivity for early disease where intervention may have the greatest clinical impact. 8 

Consequently, the clinical field in MASLD has directed focus toward identifying rapidly 9 

measured biosignatures of dynamic hepatic states that are prognostically, diagnostically, and 10 

biologically relevant. Candidate biomarkers have included human genetics58,61-66, gene and 11 

protein expression6,58,67,68, and metabolism.  Nevertheless, while key genetic susceptibility loci 12 

critical to MASLD biology have been identified in large biobanks (e.g., PNPLA3), polygenic 13 

liability for MASLD in a population context is limited69 by more prominent non-genetic influences 14 

(e.g., diet, alcohol or drug exposure, obesity, inactivity, environmental exposures). In non-15 

genomic studies across a broader array of biomarkers, sample sizes have generally been small 16 

with population bias (e.g., measured in established risk, like obesity61). Of note, recent 17 

innovative efforts to map a circulating snapshot of metabolic biology (via the human proteome) 18 

into hepatic transcriptional states has been successful, albeit in a small sample with high 19 

metabolic disease prevalence8. Indeed, the value of transcriptional indexing of the human 20 

proteome across broad at-risk populations has recently been highlighted70 (though not yet in 21 

MASLD). 22 

Beyond disease personalization, our central hypothesis included mapping of the 23 

circulating human proteome into tissue MASLD to identify relevant, dynamic markers of interest. 24 

We observed a very high enrichment of transcript expression of genes encoding the MASLD 25 

proteome in the liver (far beyond any other tissue), supportive of its hepatic origin. Moreover, 26 
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identified protein targets specified broad pathways central to MASLD, including regulation of 1 

hepatocyte regeneration (EGFR23), injury, apoptosis (MET25), inflammation (CXCL226, CRP, 2 

SERPINE1), metabolism (ACY16,11, FAH12, ADH1A13,14, ALDOB, SORD15, AKR1D116, 3 

AKR1C417,18), and fibrosis (IGF-124). Given that these tissue references are from “normal” banks 4 

in bulk resolution (e.g., Human Protein Atlas/GTEX), we further explored our MASLD-associated 5 

proteomic targets at single nuclear and spatial resolution in human liver at an early MASLD 6 

stage34. A prime finding from this approach was the striking concordance of the circulating 7 

proteomic effect size in our large, at-risk population (CARDIA) and the fold-difference between 8 

healthy and fatty liver. Plasma proteins that were more abundant in patients with lower degree 9 

of hepatic steatosis corresponded to mRNAs that were also higher in expression in non-10 

steatotic livers (and vice versa). Gene activity (as defined by a gene expression score across 11 

198 MASLD-associated proteins) mapped primarily to histopathologic areas of steatosis, with a 12 

predominant hepatocyte expression and zonation pattern. Interestingly, we also observed a 13 

greater expression of CTSZ in macrophages, and migratory and conventional dendritic cells, 14 

which is in line with recent reports linking inflammatory cells to MASLD pathogenesis in a 15 

murine model71. Several genes differentially expressed in spatial transcription were dynamic 16 

across MASLD stages with consistent directionality with spatial transcriptomic and circulating 17 

proteomics 7, further suggesting validity (and prioritization) of these targets.  18 

Our studies were augmented by the development of a MASLD model in a humanized 19 

LOC platform to determine direct causality between induction of steatosis and changes in 20 

mRNA transcripts identified in the human transcriptional studies. While the LOC model used in 21 

this study has been validated for recapitulating key aspects of human liver physiology72-74, it has 22 

mostly been used as a drug screen for hepatotoxicity75-78. While the use of such platforms to 23 

model steatosis is emerging79, we successfully developed a model that includes both 24 

hepatocytes and non-hepatocyte cells (Kupffer cells, stellate cells, and endothelial cells) 25 

subjected to treatment with a cocktail of fatty acids. Importantly, while admittedly far less 26 
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complex than human MASLD, the model recapitulates key histological and transcriptional 1 

features of human MASLD, allowing us to query for direct changes (in response to steatosis 2 

induction) in mRNA transcripts in both hepatocyte and non-hepatocyte cell types derived from 3 

our human studies. These data not only validate a primary role for intrahepatic steatosis in the 4 

transcriptional changes, but also provide a possible platform to test novel therapeutic targets 5 

(that may reverse these changes) in the future. 6 

Overall, the shared findings across biologically plausible pathways relevant to MASLD 7 

pathogenesis—and the association of these mediators in circulation with long-term outcomes—8 

supports a broad validity from human populations to individual cells. Several caveats merit 9 

mention. We recognize the diagnosis of MASLD requires additional metabolic dysfunction 10 

(independent of other causes, e.g., viral, alcohol) associated with steatosis, and different 11 

cohorts had different distributions of these influences. Nevertheless, our CARDIA derivation 12 

necessarily excluded individuals with viral or drug/toxin-induced liver disease as possible in an 13 

epidemiologic setting and generated proteomic signatures associated with hepatic steatosis 14 

across BMI (a key determinant of metabolic dysfunction). Broad validation across cohorts 15 

(despite heterogeneity in hepatic steatosis ascertainment) is further evidence of external 16 

validity. The use of the transcriptome for tissue deconvolution of the human proteome is an 17 

emerging concept8,80, traditionally countered by concerns over protein-to-transcript concordance 18 

(including epigenetic effects that may disconnect them) and tissue ubiquity of the transcripts 19 

corresponding to the circulating proteome. Nevertheless, recent work in high metabolic risk 20 

individuals has suggested a largely positive (though variable) correlation between tissue RNA 21 

and circulating protein levels for those targets associated with MASLD stage8, consistent with 22 

our findings of a high liver transcriptional enrichment for prioritized proteins. Consistent cross-23 

platform imaging and prognostic findings (e.g., aptamer- to antibody-based proteomics) lend 24 

validity. While the relation between the MASLD score and MRI based hepatic steatosis in UK 25 

Biobank were temporally separated, the association was similar as in CARDIA. We are limited 26 
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in not having conducted spatial transcriptomics across variable disease states over time or with 1 

therapy (e.g., weight reduction), as well as gain- and loss-of-function studies for targets that 2 

survived our tiered approach. While this was not the scope of the current work, we envision that 3 

the approach here can be extended to a serial context to examine tissue-circulating 4 

concordance to further hone targets for mechanistic study. Finally, we noted some discordances 5 

between proteomic, spatial, bulk, and LOC data. Beyond technical considerations (e.g., bulk vs. 6 

spatial transcriptional approaches), we hypothesize variability in results may owe to population 7 

and disease heterogeneity across cohorts, including MASLD phenotypic heterogeneity 8 

(ballooning, inflammation, fibrosis, steatosis that can co-existent to different extent). 9 

Nevertheless, targets that filter across all approaches are more likely to be involved in human 10 

liver disease, and larger, integrative approaches will continue to add to this science.  11 

In conclusion, across »5000 participants with clinical, imaging, and biochemical data, we 12 

define a proteomic architecture of MASLD with replication and diagnostic stratification across a 13 

MASLD spectrum (from early- to high-risk metabolic cohorts) and strong association with 14 

MASLD-related disease (beyond modern human genetic approaches) in >26,000 individuals. 15 

Proteins implicated by these population-based approaches were highly enriched at a 16 

transcriptional level in human liver and specified canonical and novel pathways of MASLD 17 

progression. We observed spatially enriched activity of these genes in areas of steatosis and by 18 

liver zonation, with concordance between the circulating proteomic effects on liver fat and the 19 

fold differences between healthy and fatty liver by spatial transcription. Several targets 20 

additionally demonstrated concordant changes during evolution of MASLD across histologically 21 

defined stages and within a humanized “liver-on-a-chip” model system. These results 22 

contextualize the promise of multi-level discovery—across broad clinical populations, proteome, 23 

and tissue studies—to discern biologically relevant, spatially enriched targets in MASLD for 24 

downstream mechanistic, diagnostic, and prognostic work.  25 

 26 
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METHODS 1 

Data Availability: Data for reproduction of this analysis may be obtained from the 2 

CARDIA Coordinating Center (www.cardia.dopm.uab.edu), CCHC Coordinating Center 3 

(https://sph.uth.edu/research/centers/hispanic-health/), SteatoSITE (https://steatosite.com), 4 

Liver Cell Atlas (https://livercellatlas.org/index.php), and UK Biobank 5 

(https://www.ukbiobank.ac.uk). Analyses in the UK Biobank were performed under proposal 6 

number 57492. 7 

 8 

Study samples 9 

The study involved multiple samples: (1) the Coronary Artery Risk Development in 10 

Young Adults study (CARDIA, N=2679; proteomic discovery and validation of MASLD-related 11 

proteins; characteristics in Supplementary Table 1, study design in reference); (2) the UK 12 

Biobank study (N=26421; second validation of MASLD-related proteins; assessment of clinical 13 

prognostic value against incident MASLD-related diseases; characteristics in Supplementary 14 

Table 2); (3) Cameron County Hispanic Cohort (CCHC; N=206 with ultrasound-based measures 15 

of liver structure and circulating proteomics; characteristics in Supplementary Table 3) (4) 16 

published bulk RNA sequencing study (SteatoSITE, N=618 liver biopsies across stages of 17 

MASLD)7; (5) spatial transcriptomic study in human liver (N=5 liver biopsies for spatial 18 

transcriptomics and N=19 for single nuclear RNA-sequencing)34. All study participants provided 19 

written and informed consent, and all study protocols were approved by the Institutional Review 20 

Boards of the respective studies. 21 

CARDIA: The Coronary Artery Risk Development in Young Adults (CARDIA) study 22 

started recruitment in 1985-1986 across 4 cities in the U.S. (Birmingham, AL; Chicago, IL; 23 

Minneapolis, MN; and Oakland, CA) to study coronary risk factor development longitudinally 24 

beginning in young adulthood81-84. Our study used data from the Year 25 exam where 2977 25 

participants had proteomics quantified. We excluded 275 participants with other potential 26 
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causes for hepatics steatosis (>14 alcoholic drinks/week, hepatitis C, cirrhosis, HIV, and use of 1 

amiodarone, valproic acid, methotrexate, tamoxifen, or diltiazem)10. We excluded 11 participants 2 

missing hepatic steatosis measurements, and 12 participants for missing data on BMI or 3 

drinks/week. CARDIA participants were randomly split into derivation (70%) and validation 4 

(30%) samples, balanced by computed tomography-based measurement of hepatic steatosis. 5 

UK Biobank: The UK Biobank is a population-based study of >500000 participants who 6 

were aged 40-69 when recruited between 2006-2010 across the United Kingdom. Proteomics 7 

data from the initial assessment (instance 0) using the Olink Explore panel is available on 8 

»54000 UK Biobank participants80. We included 26429 participants with complete data for the 9 

proteins used to calculate a proteomic score of hepatic steatosis, of which 8 participants were 10 

excluded from analyses for having a proteomic score >5 SDs away from the mean. A subset of 11 

2111 had hepatic steatosis quantified by MRI at the imaging visit (2014 and later; instance 2) 12 

Cameron County Hispanic Cohort (CCHC): The CCHC is a community-based 13 

prospective observational cohort study of 5122 individuals (age 8-90) from a low-income 14 

Hispanic/Latino population at the Texas/Mexico border. The study design has been previously 15 

described85. We included 206 individuals who had abdominal ultrasound to measure controlled 16 

attenuation parameter (CAP), a quantitative measure of hepatic steatosis86, and simultaneous 17 

circulating proteomics. 18 

 19 

Hepatic steatosis assessment 20 

In CARDIA, hepatic steatosis was measured as liver attenuation on computed 21 

tomography as previously described, where lower levels of liver attenuation are associated with 22 

greater steatosis10.  MASLD was defined as liver attenuation <40 Hounsfield units. In the UK 23 

Biobank, hepatic steatosis was measured by magnetic resonance imaging in a subset of 24 

participants at instance 2 using the iterative decomposition of water and fat with echo 25 

asymmetric and least-squares estimation (IDEAL) protocol, as previously described87. MASLD 26 
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was defined as a proton density fat fraction >5.5%32. In CCHC, vibration-controlled transient 1 

elastography was used to measure CAP (FibroScan 502 Touch or FibroScan 530 Compact, 2 

Echosens; automatic probe selection) for 10 valid measures with the median used in analysis, 3 

as described88.  4 

 5 

Proteomics 6 

 CARDIA: Quantification of the circulating proteome was performed using aptamer-based 7 

technology (Somalogic, Boulder, CO) which measured 7596 aptamers. Sixty-eight participants 8 

had >1 samples measured and we averaged their proteomic data for analysis. We excluded 9 

non-human proteins (N=72) and proteins with a coefficient of variation >20% (N=58). We tested 10 

for batch effect and participant outliers using principal component analysis and identified 11 

neither. Proteins were log-transformed and standardized (mean 0, variance 1) prior to use in 12 

models. 13 

 UK Biobank: Recently released proteomic data from the Olink Explore platform (Olink, 14 

Uppsala, Sweden) measured from the instance 0 visit were used in this study80. Of the 1463 15 

proteins measured, we excluded 130 proteins where >40% of reported measurements were 16 

below the limit of detection and another 3 proteins where >20% of reported measurements were 17 

missing. Proteins were standardized (mean 0, variance 1) prior to use in models. 18 

 CCHC:  We performed proteomics in CCHC participants using the Olink Explore 1536 19 

platform. Proteins were standardized (mean 0, variance 1) prior to use in models. 20 

 21 

Spatial, single nuclear, and bulk transcriptomics in human liver 22 

Single nuclear and spatial transcriptomics: To assess cell-specific and spatial 23 

expression patterns of implicated protein targets, we harnessed integrated single cell and single 24 

nuclear RNA-sequencing (scRNA seq, total N= 19; fatty = 7; non-fatty = 11; unknown = 1) and 25 

Visium spatial transcriptomics data (total N= 4; fatty = 2; non-fatty = 2) previously published 26 
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from our collaborative group34. Expression patterns of implicated proteins were assessed by 1 

mapping significant model proteins to their corresponding gene symbol that were expressed in 2 

both the scRNA-seq and Visium data, resulting in total of 198 genes represented across the 3 

three datasets. Activity of these genes were then measured for their activity using single gene 4 

expression measures as wells an expression composite score that represent the transcriptional 5 

signature of all model genes in each individual cell (snRNAseq) or spot (Visium data). 6 

Expression composite score was generated using the AddModuleScore function (implemented 7 

in Seurat v5). To identify differential expression of nominated targets in the liver we compared 8 

healthy samples to early steatotic samples using Visium data where both healthy and early 9 

steatotic samples were available. Differentially expressed genes were assessed using negative 10 

binomial model implemented in the FindMarkers function (Seurat).  Only target genes 11 

expressed in at least 10% of the spots were included in the analysis (198 genes) for differential 12 

expression. We defined differential expression as adjusted p-value < 0.05 and |log2fold change 13 

> 0.25| and a minimum difference in expressed spots > 10% between fatty and non-fatty. We 14 

confirmed the effect size estimates of our differential expression analysis via negative binomial 15 

mixed models with sample as random effect (generalized linear mixed models are more 16 

sensitive to the dispersion in single-cell data compared to generalized linear models), with high 17 

agreement between log2 fold change and the negative binomial mixed model coefficients for all 18 

198 model targets (Pearson r =0.86) and for the 33 differentially expressed genes (Pearson r 19 

=0.99; Supplemental Figure 6). 20 

Transcriptional differences across MASLD stages: We explored the pattern of 21 

expression across the 33 genes prioritized by the spatial data analysis above (33 differentially 22 

expressed genes between healthy and steatotic tissue out of 198 genes tested, see Results) in 23 

the SteatoSITE cohort (523 samples; 34 controls, 489 with MASLD) categorized based on 24 

NAFLD activity score (NAS) for steatosis (only those samples with scores 1, 2 and 3 were 25 

chosen) and compared to control samples7.  We excluded those individuals with NASH-CRN 26 
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stage F4 fibrosis, given differences in expression patterns detected in our initial study7 and 1 

differences in physiology with advanced fibrosis (including paradoxical loss of hepatic fat89). 2 

Reads were normalised using the weighted trimmed mean of M values method90. Differential 3 

gene expression analysis was performed using limma-voom (v3.28.14) with the protein-coding 4 

genes using an FDR of 5% (Benjamini-Hochberg)91. Of the 33 genes passed forward for 5 

assessment in bulk transcriptomics, 12 were not significantly expressed in any of the stages of 6 

steatosis (by adjusted p-value < 0.05) and were not included in visualization. 7 

 Humanized liver-on-a-chip MASLD model: The goal of “liver-on-a-chip” technology is 8 

to simulate the liver microenvironment which retains key characteristics of native liver function 9 

over long-term in culture. The quad culture was set up following the manufacturer’s protocol. 10 

The methods below are reproduced from our recent work92 directly for rigor and reproducibility, 11 

and this citation provides scientific attribution for this. Briefly, by design, each 12 

polydimethylsiloxane (PDMS) chip (Chip-S1; Emulate) includes hepatocytes in the apical 13 

channel and non-parenchymal cells [NPCs: Kupffer, Stellate and Liver Sinusoidal Endothelial 14 

Cells (LSECs)] in the basal channel (Supplementary Table 4). These two channels are 15 

separated by a porous membrane, coated by hepatic extracellular matrix (ECM). This setting 16 

allows the cell-to-cell interaction mimicking the in vivo system. The top channel was seeded with 17 

hepatocytes at a concentration of 3.5x106 cells/mL, followed by overlay with matrigel on the next 18 

day. The day after hepatocyte overlay, cell suspensions of three NPCs were mixed in a 1:1:1 19 

ratio (v/v/v) to generate the bottom channel tri-cell mixture. The final seeding density of each cell 20 

types in the bottom channel were: LSECs: 3x106 cells/mL; Stellate cells: 0.1x106 cells/mL; 21 

Kupffer cells: 0.5x106 cells/mL. Chips were maintained for another 96 hours at this condition 22 

before treating with fatty acids (FAs). We mimicked an early phase of MASLD by treating both 23 

channels of the LOC either with vehicle control (1% BSA) or a combination of FAs (oleic acid 24 

300μM: 300μM palmitic acid bound with 1% BSA) for 5 consecutive days. 25 
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Hepatocytes and NPCs treated with either vehicle control or FAs were imaged directly 1 

under brightfield microscope (BioRad). Chips were fixed with 4% paraformaldehyde (4%PFA) 2 

followed by permeabilization of both channels with 0.1% Triton® X-100 before staining.  3 

Permeabilized cells in both channels were incubated with LipidSpot™ for 10 minutes. The chips 4 

were examined under a fluorescence microscope (ECHO Revolve microscope). 5 

After 5 days of dosing with FAs, the chips were disconnected, washed with 1X PBS, and 6 

filled with RNAlater (Invitrogen) to preserve cells for RNA extraction. The PureLink RNA Mini Kit 7 

(Thermo Fischer Scientific) was used following the manufacturer’s protocol. Total RNA was 8 

eluted in 20µL, treated with DNAse, and “cleaned-up” using RNA Clean & Concentrator-5 with 9 

DNase I (Zymo Research) following manufacturer’s protocol. Final RNA concentration was 10 

quantified by spectrophotometry (Nanodrop 2000, Thermo Fischer Scientific). The High-11 

Capacity cDNA Reverse Transcription Kit (Thermo Fischer Scientific) was used for cDNA 12 

synthesis from RNA. For amplification and quantification of selected genes (HMGCS1, 13 

SERPINE1, HSPA1B, ENO3, HSPA1A, PYGL, CDA, SHBG, IL1RAP, IGFBP2, ME1, CTSZ, 14 

DEFB1, IRS1, IRS2, FABP4, SREBP1c, PPARα, PPARγ, and β-actin) the ExiLENT SYBR® 15 

Green master mix (Exiqon, Vedbæk) was used on a Quant Studio 6 Flex Real-Time PCR 16 

System up to 40 amplification cycles. Any amplification cycle (Ct) greater than or equal to 40 17 

was assigned as a “negative threshold”, which means the corresponding genes were not 18 

expressed above the limit of detection of the qRT-PCR assay and therefore those genes were 19 

not included in our calculations. For Fig 7E absolute gene expression was quantified by 2-∆Ct 20 

method after normalization of genes of interest to the internal control β-ACTIN, whereas relative 21 

gene expression was used for Fig 7D. All qRT-PCR primer sequences are summarized in 22 

Supplementary Table 5. 23 

 24 

Statistical methods 25 
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Relating the circulating proteome to hepatic steatosis to identify biological 1 

pathways of steatosis and development of a diagnostic biomarker panel: Relations of 2 

individual aptamers with hepatic steatosis were examined via regression with aptamers as the 3 

predictors adjusted for age, sex, race, and BMI with a false discovery rate of 5% (Benjamini-4 

Hochberg) in the CARDIA cohort using a derivation (70%) and validation (30%) split design 5 

balanced on CT liver attenutation. To generate a multivariable protein score of hepatic steatosis 6 

(referred to as “MASLD score”), we used least absolute shrinkage and selection operator 7 

(LASSO) with non-penalized adjustments for age, sex, race, and BMI in the CARDIA derivation 8 

sample, and replicated its relation in the CARDIA validation sample. This MASLD score was 9 

then recalibrated for use in UK Biobank and CCHC (which used Olink proteomics platforms in 10 

contrast to CARDIA, which used a SomaScan platform), using LASSO regression with the 11 

original MASLD score as the dependent variable and all overlapping proteins (matching 12 

between the Olink and SomaScan platforms on UniProt identifier) as the independent variables. 13 

Pathway analysis was performed on proteins that were significant in both CARDIA derivation 14 

and validation subsamples (FDR<5%) using R package ClusterProfiler93 on KEGG and 15 

Reactome database. Hypergeometric tests were used to evaluate enrichment level for each 16 

pathway utilizing all proteins on the SomaScan platform as background. The top 10 most 17 

enriched pathways in both KEGG and Reactome were visualized together via lollipop plots. To 18 

identify hub genes, Protein-protein interactions for 235 significant genes were retrieved from the 19 

STRING database94. Hub genes were determined as any protein with more than 5 high-20 

confidence interactions (score>700) and hub genes and all interactions were visualized using 21 

Cytoscape95. Tissue-specific gene expression enrichment was performed by R package 22 

TissueEnrich96 based on tissue expression patterns in Human Protein Atlas database97. To 23 

examine the clinical utility of the MASLD score as a diagnostic marker of MASLD, we compared 24 

a clinical model of MASLD (age, sex, race, BMI, alcoholic drinks per week, AST, ALT, 25 
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hemoglobin A1c) to a model with the MASLD score using receiver operator curve area under 1 

the curve analysis in both the CARDIA validation sample and UK Biobank. 2 

Testing the association between a protein score of MASLD with development of 3 

MASLD and clinical outcomes: In UK Biobank, Cox regression was used to examine the 4 

relation of the MASLD score with clinical endpoints. Death and type of death (cardiovascular 5 

death, cancer death, respiratory death) were defined by using death registry data (UK Biobank 6 

Data Field 40000) in conjunction with the primary cause of death International Classification of 7 

Disease (ICD) 10 code (UK Biobank Data Field 40001). Translating ICD10 codes to type of 8 

death was conducted as previously reported98. Censoring for clinical endpoints was determined 9 

by region-specific censor dates for each participant based on the location of initial assessment 10 

(UK Biobank Data Field 54). Deaths were censored on 30 November 2022 for all participants. 11 

Non-death outcomes in UK Biobank were defined by ICD10 diagnosis codes grouped into 12 

relevant “phecodes” via the PheWAS package99. For each phecode, we generated a case, 13 

control, and excluded status for each subject. Time to event for phecodes was defined as the 14 

date of the earliest relevant ICD10 was documented. Prevalent conditions were defined by self-15 

report or physician diagnosis (Data Fields 20002, 2443, 6150). Sequential models with 16 

increasing adjustments were created 1) unadjusted 2) age, sex, race, BMI 3) age, sex, race, 17 

BMI, Townsend Deprivation Index, diabetes, smoking, alcohol use, systolic blood pressure, and 18 

LDL. We conducted a sensitivity analysis including further adjustment for AST, ALT, and 19 

hemoglobin A1c. We compared adjusted models (age, sex, race, BMI, diabetes [removed from 20 

models for diabetes], smoking, alcohol use, systolic blood pressure, LDL) with and without the 21 

MASLD score to compare differences in C-statistics and net reclassification index (NRI; 22 

calculated at the 75th percentile for NRI for events). To investigate the effect of the MASLD 23 

score on polygenic risk, we examined the relationship between the MASLD score with the 24 

standard polygenic risk score (PRS) of diabetes (Data Field 26285) in a Cox model for incident 25 

type 2 diabetes as a function of the MASLD score and the PRS for type 2 diabetes, including an 26 
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interaction term, with adjustments for age, sex, race, and the top 4 principal components of 1 

genetic ancestry. 2 

 3 

ACKNOWLEDGEMENTS 4 

CARDIA is conducted and supported by the NHLBI in collaboration with the University of 5 

Alabama at Birmingham (HHSN268201800005I & HHSN268201800007I), Northwestern 6 

University (HHSN268201800003I), University of Minnesota (HHSN268201800006I), and Kaiser 7 

Foundation Research Institute (HHSN268201800004I). Proteomics quantification was funded by 8 

the NHLBI (HL122477; PI Kalhan). This manuscript has been reviewed by CARDIA for scientific 9 

content. The views expressed in this manuscript are those of the authors and do not necessarily 10 

represent the views of the NHLBI; the NIH; or the U.S. Department of Health and Human 11 

Services. The authors would like to thank the CCHC cohort team, particularly Rocío Uribe who 12 

recruited and interviewed the participants. Marcela Morris, BS, and Hugo Soriano and their 13 

teams for laboratory and data support respectively; Norma Pérez-Olazarán, BBA, and Christina 14 

Villarreal, BA for administrative support; Valley Baptist Medical Center, Brownsville, Texas, for 15 

providing us space for our Center for Clinical and Translational Science Clinical Research Unit 16 

is located; and the community of Brownsville and the participants who so willingly participated in 17 

this study in their city. This study was funded in part by Center for Clinical and Translational 18 

Sciences, National Institutes of Health Clinical and Translational Award grant no. UL1 19 

TR000371 from the National Center for Advancing Translational Sciences. 20 

 21 

DISCLOSURES 22 

R.S. is supported in part by grants from the National Institutes of Health (NIH) and the American 23 

Heart Association (AHA). R.S. has served for a consultant for Amgen and Cytokinetics. R.S. is a 24 

co-inventor on a patent for ex-RNAs signatures of cardiac remodeling (not relevant to the 25 

current work). A.S.P. is supported by the AHA Strategically Focused Research Network in 26 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 29, 2024. ; https://doi.org/10.1101/2024.01.26.24301828doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.26.24301828


 28 

Cardiometabolic Disease. R.S., J.B., A.S.P. have filed for a patent relevant to the findings in this 1 

manuscript. J.F.K.S. and G.M. are employees of Emulate Inc. (a maker of the liver-on-a-chip) 2 

and may hold equity interest in Emulate, Inc. S.D. holds a research grant from Bristol Myers 3 

Squibb, is a founder and holds equity in Switch Therapeutics, and is a founder and consultant 4 

and holds equity for Thryv Therapeutics. N.B. receives consulting fees from Deepcell. J.R.K. 5 

has served as a consultant to Gilead, Merck, ViiV Healthcare and Janssen and also received 6 

research support from Gilead Sciences and Merck. R.K. is supported in part by grants from the 7 

NIH, has received grants from AstraZeneca, PneumRx/BTG, and Spiration, has received 8 

consulting fees from CVS Caremark, AstraZeneca, GlaxoSmithKline, and CSA Medical, and has 9 

received speaking fees from GlaxoSmithKline, AstraZeneca, and Boehringer Ingelheim. K.A. is 10 

supported by an AHA Career Development Award (#929347). J.A.F. serves as a consultant or 11 

advisory board member for Kynos Therapeutics, Resolution Therapeutics, Ipsen, River 2 Renal 12 

Corp., Stimuliver, Galecto Biotech, Global Clinical Trial Partners, and Guidepoint and has 13 

received research grant funding from Intercept Pharmaceuticals and Genentech. T.J.K. 14 

undertakes consultancy work for Perspectum, Clinnovate Health, Kynos Therapeutics, Fibrofind, 15 

HistoIndex, Concept Life Sciences, and Resolution Therapeutics, and has received speaker’s 16 

fees from Incyte Corporation and Servier Laboratories. K.V.K.J. is a member of the scientific 17 

advisory board at Dyrnamix. J.J.C. receives project funding from GE Healthcare, Siemens 18 

Healthineers, TheraTech, and the NIH. M.N. has received speaking honoraria from Cytokinetics. 19 

The other authors report no relevant financial disclosures. 20 

  21 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 29, 2024. ; https://doi.org/10.1101/2024.01.26.24301828doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.26.24301828


 29 

REFERENCES: 1 

1. Riazi K, Azhari H, Charette JH, Underwood FE, King JA, Afshar EE, Swain MG, 2 
Congly SE, Kaplan GG, Shaheen AA. The prevalence and incidence of NAFLD 3 
worldwide: a systematic review and meta-analysis. Lancet Gastroenterol 4 
Hepatol. 2022;7:851-861. doi: 10.1016/S2468-1253(22)00165-0 5 

2. Anstee QM, Reeves HL, Kotsiliti E, Govaere O, Heikenwalder M. From NASH to 6 
HCC: current concepts and future challenges. Nat Rev Gastroenterol Hepatol. 7 
2019;16:411-428. doi: 10.1038/s41575-019-0145-7 8 

3. Romeo S, Kozlitina J, Xing C, Pertsemlidis A, Cox D, Pennacchio LA, Boerwinkle 9 
E, Cohen JC, Hobbs HH. Genetic variation in PNPLA3 confers susceptibility to 10 
nonalcoholic fatty liver disease. Nature genetics. 2008;40:1461-1465. doi: 11 
10.1038/ng.257 12 

4. Luo Y, Wadhawan S, Greenfield A, Decato BE, Oseini AM, Collen R, Shevell DE, 13 
Thompson J, Jarai G, Charles ED, Sanyal AJ. SOMAscan Proteomics Identifies 14 
Serum Biomarkers Associated With Liver Fibrosis in Patients With NASH. 15 
Hepatol Commun. 2021;5:760-773. doi: 10.1002/hep4.1670 16 

5. Corey KE, Pitts R, Lai M, Loureiro J, Masia R, Osganian SA, Gustafson JL, 17 
Hutter MM, Gee DW, Meireles OR, et al. ADAMTSL2 protein and a soluble 18 
biomarker signature identify at-risk non-alcoholic steatohepatitis and fibrosis in 19 
adults with NAFLD. Journal of hepatology. 2022;76:25-33. doi: 20 
10.1016/j.jhep.2021.09.026 21 

6. Sanyal AJ, Williams SA, Lavine JE, Neuschwander-Tetri BA, Alexander L, Ostroff 22 
R, Biegel H, Kowdley KV, Chalasani N, Dasarathy S, et al. Defining the serum 23 
proteomic signature of hepatic steatosis, inflammation, ballooning and fibrosis in 24 
non-alcoholic fatty liver disease. Journal of hepatology. 2023;78:693-703. doi: 25 
10.1016/j.jhep.2022.11.029 26 

7. Kendall TJ, Jimenez-Ramos M, Turner F, Ramachandran P, Minnier J, 27 
McColgan MD, Alam M, Ellis H, Dunbar DR, Kohnen G, et al. An integrated 28 
gene-to-outcome multimodal database for metabolic dysfunction-associated 29 
steatotic liver disease. Nat Med. 2023;29:2939-2953. doi: 10.1038/s41591-023-30 
02602-2 31 

8. Govaere O, Hasoon M, Alexander L, Cockell S, Tiniakos D, Ekstedt M, 32 
Schattenberg JM, Boursier J, Bugianesi E, Ratziu V, et al. A proteo-33 
transcriptomic map of non-alcoholic fatty liver disease signatures. Nat Metab. 34 
2023;5:572-578. doi: 10.1038/s42255-023-00775-1 35 

9. Niu L, Thiele M, Geyer PE, Rasmussen DN, Webel HE, Santos A, Gupta R, 36 
Meier F, Strauss M, Kjaergaard M, et al. Noninvasive proteomic biomarkers for 37 
alcohol-related liver disease. Nature medicine. 2022;28:1277-1287. doi: 38 
10.1038/s41591-022-01850-y 39 

10. VanWagner LB, Wilcox JE, Ning H, Lewis CE, Carr JJ, Rinella ME, Shah SJ, 40 
Lima JAC, Lloyd-Jones DM. Longitudinal Association of Non-Alcoholic Fatty Liver 41 
Disease With Changes in Myocardial Structure and Function: The CARDIA 42 
Study. J Am Heart Assoc. 2020;9:e014279. doi: 10.1161/JAHA.119.014279 43 

11. Pirola CJ, Sookoian S. Multiomics biomarkers for the prediction of nonalcoholic 44 
fatty liver disease severity. World journal of gastroenterology : WJG. 45 
2018;24:1601-1615. doi: 10.3748/wjg.v24.i15.1601 46 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 29, 2024. ; https://doi.org/10.1101/2024.01.26.24301828doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.26.24301828


 30 

12. Ma J, Tan X, Kwon Y, Delgado ER, Zarnegar A, DeFrances MC, Duncan AW, 1 
Zarnegar R. A Novel Humanized Model of NASH and Its Treatment With META4, 2 
A Potent Agonist of MET. Cell Mol Gastroenterol Hepatol. 2022;13:565-582. doi: 3 
10.1016/j.jcmgh.2021.10.007 4 

13. Li H, Toth E, Cherrington NJ. Alcohol Metabolism in the Progression of Human 5 
Nonalcoholic Steatohepatitis. Toxicol Sci. 2018;164:428-438. doi: 6 
10.1093/toxsci/kfy106 7 

14. Aljomah G, Baker SS, Liu W, Kozielski R, Oluwole J, Lupu B, Baker RD, Zhu L. 8 
Induction of CYP2E1 in non-alcoholic fatty liver diseases. Exp Mol Pathol. 9 
2015;99:677-681. doi: 10.1016/j.yexmp.2015.11.008 10 

15. Niu L, Geyer PE, Wewer Albrechtsen NJ, Gluud LL, Santos A, Doll S, Treit PV, 11 
Holst JJ, Knop FK, Vilsboll T, et al. Plasma proteome profiling discovers novel 12 
proteins associated with non-alcoholic fatty liver disease. Mol Syst Biol. 13 
2019;15:e8793. doi: 10.15252/msb.20188793 14 

16. Gathercole LL, Nikolaou N, Harris SE, Arvaniti A, Poolman TM, Hazlehurst JM, 15 
Kratschmar DV, Todorcevic M, Moolla A, Dempster N, et al. AKR1D1 knockout 16 
mice develop a sex-dependent metabolic phenotype. J Endocrinol. 2022;253:97-17 
113. doi: 10.1530/JOE-21-0280 18 

17. Zeng CM, Chang LL, Ying MD, Cao J, He QJ, Zhu H, Yang B. Aldo-Keto 19 
Reductase AKR1C1-AKR1C4: Functions, Regulation, and Intervention for Anti-20 
cancer Therapy. Front Pharmacol. 2017;8:119. doi: 10.3389/fphar.2017.00119 21 

18. Lyall MJ, Cartier J, Thomson JP, Cameron K, Meseguer-Ripolles J, O'Duibhir E, 22 
Szkolnicka D, Villarin BL, Wang Y, Blanco GR, et al. Modelling non-alcoholic fatty 23 
liver disease in human hepatocyte-like cells. Philos Trans R Soc Lond B Biol Sci. 24 
2018;373. doi: 10.1098/rstb.2017.0362 25 

19. Gorce M, Lebigot E, Arion A, Brassier A, Cano A, De Lonlay P, Feillet F, Gay C, 26 
Labarthe F, Nassogne MC, et al. Fructose-1,6-bisphosphatase deficiency causes 27 
fatty liver disease and requires long-term hepatic follow-up. J Inherit Metab Dis. 28 
2022;45:215-222. doi: 10.1002/jimd.12452 29 

20. Coles BF, Kadlubar FF. Human alpha class glutathione S-transferases: genetic 30 
polymorphism, expression, and susceptibility to disease. Methods Enzymol. 31 
2005;401:9-42. doi: 10.1016/S0076-6879(05)01002-5 32 

21. Nagamani SC, Erez A, Lee B. Argininosuccinate lyase deficiency. Genet Med. 33 
2012;14:501-507. doi: 10.1038/gim.2011.1 34 

22. Zhang T, Zhang N, Xing J, Zhang S, Chen Y, Xu D, Gu J. UDP-glucuronate 35 
metabolism controls RIPK1-driven liver damage in nonalcoholic steatohepatitis. 36 
Nat Commun. 2023;14:2715. doi: 10.1038/s41467-023-38371-2 37 

23. Bhushan B, Banerjee S, Paranjpe S, Koral K, Mars WM, Stoops JW, Orr A, 38 
Bowen WC, Locker J, Michalopoulos GK. Pharmacologic Inhibition of Epidermal 39 
Growth Factor Receptor Suppresses Nonalcoholic Fatty Liver Disease in a 40 
Murine Fast-Food Diet Model. Hepatology. 2019;70:1546-1563. doi: 41 
10.1002/hep.30696 42 

24. Ohkubo R, Mu WC, Wang CL, Song Z, Barthez M, Wang Y, Mitchener N, 43 
Abdullayev R, Lee YR, Ma Y, et al. The hepatic integrated stress response 44 
suppresses the somatotroph axis to control liver damage in nonalcoholic fatty 45 
liver disease. Cell reports. 2022;41:111803. doi: 10.1016/j.celrep.2022.111803 46 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 29, 2024. ; https://doi.org/10.1101/2024.01.26.24301828doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.26.24301828


 31 

25. Kroy DC, Schumacher F, Ramadori P, Hatting M, Bergheim I, Gassler N, 1 
Boekschoten MV, Muller M, Streetz KL, Trautwein C. Hepatocyte specific 2 
deletion of c-Met leads to the development of severe non-alcoholic 3 
steatohepatitis in mice. Journal of hepatology. 2014;61:883-890. doi: 4 
10.1016/j.jhep.2014.05.019 5 

26. Xiong X, Kuang H, Ansari S, Liu T, Gong J, Wang S, Zhao XY, Ji Y, Li C, Guo L, 6 
et al. Landscape of Intercellular Crosstalk in Healthy and NASH Liver Revealed 7 
by Single-Cell Secretome Gene Analysis. Molecular cell. 2019;75:644-660 e645. 8 
doi: 10.1016/j.molcel.2019.07.028 9 

27. Del Ben M, Overi D, Polimeni L, Carpino G, Labbadia G, Baratta F, Pastori D, 10 
Noce V, Gaudio E, Angelico F, Mancone C. Overexpression of the Vitronectin 11 
V10 Subunit in Patients with Nonalcoholic Steatohepatitis: Implications for 12 
Noninvasive Diagnosis of NASH. International journal of molecular sciences. 13 
2018;19. doi: 10.3390/ijms19020603 14 

28. Schwabe RF, Tabas I, Pajvani UB. Mechanisms of Fibrosis Development in 15 
Nonalcoholic Steatohepatitis. Gastroenterology. 2020;158:1913-1928. doi: 16 
10.1053/j.gastro.2019.11.311 17 

29. Yang L, Sun Z, Li J, Pan X, Wen J, Yang J, Wang Q, Chen P. Genetic Variants 18 
of Glycogen Metabolism Genes Were Associated With Liver PDFF Without 19 
Increasing NAFLD Risk. Frontiers in genetics. 2022;13:830445. doi: 20 
10.3389/fgene.2022.830445 21 

30. Chella Krishnan K, Floyd RR, Sabir S, Jayasekera DW, Leon-Mimila PV, Jones 22 
AE, Cortez AA, Shravah V, Peterfy M, Stiles L, et al. Liver Pyruvate Kinase 23 
Promotes NAFLD/NASH in Both Mice and Humans in a Sex-Specific Manner. 24 
Cell Mol Gastroenterol Hepatol. 2021;11:389-406. doi: 25 
10.1016/j.jcmgh.2020.09.004 26 

31. Saed CT, Tabatabaei Dakhili SA, Ussher JR. Pyruvate Dehydrogenase as a 27 
Therapeutic Target for Nonalcoholic Fatty Liver Disease. ACS Pharmacol Transl 28 
Sci. 2021;4:582-588. doi: 10.1021/acsptsci.0c00208 29 

32. Browning JD, Szczepaniak LS, Dobbins R, Nuremberg P, Horton JD, Cohen JC, 30 
Grundy SM, Hobbs HH. Prevalence of hepatic steatosis in an urban population in 31 
the United States: impact of ethnicity. Hepatology. 2004;40:1387-1395. doi: 32 
10.1002/hep.20466 33 

33. Khera AV, Chaffin M, Aragam KG, Haas ME, Roselli C, Choi SH, Natarajan P, 34 
Lander ES, Lubitz SA, Ellinor PT, Kathiresan S. Genome-wide polygenic scores 35 
for common diseases identify individuals with risk equivalent to monogenic 36 
mutations. Nat Genet. 2018;50:1219-1224. doi: 10.1038/s41588-018-0183-z 37 

34. Guilliams M, Bonnardel J, Haest B, Vanderborght B, Wagner C, Remmerie A, 38 
Bujko A, Martens L, Thone T, Browaeys R, et al. Spatial proteogenomics reveals 39 
distinct and evolutionarily conserved hepatic macrophage niches. Cell. 40 
2022;185:379-396 e338. doi: 10.1016/j.cell.2021.12.018 41 

35. Faramia J, Hao Z, Mumphrey MB, Townsend RL, Miard S, Carreau AM, Nadeau 42 
M, Frisch F, Baraboi ED, Grenier-Larouche T, et al. IGFBP-2 partly mediates the 43 
early metabolic improvements caused by bariatric surgery. Cell Rep Med. 44 
2021;2:100248. doi: 10.1016/j.xcrm.2021.100248 45 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 29, 2024. ; https://doi.org/10.1101/2024.01.26.24301828doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.26.24301828


 32 

36. Lin YH, Wei Y, Zeng Q, Wang Y, Pagani CA, Li L, Zhu M, Wang Z, Hsieh MH, 1 
Corbitt N, et al. IGFBP2 expressing midlobular hepatocytes preferentially 2 
contribute to liver homeostasis and regeneration. Cell Stem Cell. 2023;30:665-3 
676 e664. doi: 10.1016/j.stem.2023.04.007 4 

37. Hedbacker K, Birsoy K, Wysocki RW, Asilmaz E, Ahima RS, Farooqi IS, 5 
Friedman JM. Antidiabetic effects of IGFBP2, a leptin-regulated gene. Cell 6 
metabolism. 2010;11:11-22. doi: 10.1016/j.cmet.2009.11.007 7 

38. Chen X, Tang Y, Chen S, Ling W, Wang Q. IGFBP-2 as a biomarker in NAFLD 8 
improves hepatic steatosis: an integrated bioinformatics and experimental study. 9 
Endocrine connections. 2021;10:1315-1325. doi: 10.1530/EC-21-0353 10 

39. Lu D, Xia Q, Yang Z, Gao S, Sun S, Luo X, Li Z, Zhang X, Han S, Li X, Cao M. 11 
ENO3 promoted the progression of NASH by negatively regulating ferroptosis via 12 
elevation of GPX4 expression and lipid accumulation. Annals of translational 13 
medicine. 2021;9:661. doi: 10.21037/atm-21-471 14 

40. Wang J, Chen L, Li Y, Guan XY. Overexpression of cathepsin Z contributes to 15 
tumor metastasis by inducing epithelial-mesenchymal transition in hepatocellular 16 
carcinoma. PLoS One. 2011;6:e24967. doi: 10.1371/journal.pone.0024967 17 

41. Zhang J, Fan N, Peng Y. Heat shock protein 70 promotes lipogenesis in HepG2 18 
cells. Lipids in health and disease. 2018;17:73. doi: 10.1186/s12944-018-0722-8 19 

42. Chen D, Dong X, Chen D, Lin J, Lu T, Shen J, Ye H. Cdh1 plays a protective role 20 
in nonalcoholic fatty liver disease by regulating PPAR/PGC-1alpha signaling 21 
pathway. Biochemical and biophysical research communications. 2023;681:13-22 
19. doi: 10.1016/j.bbrc.2023.09.038 23 

43. Henkel AS, Khan SS, Olivares S, Miyata T, Vaughan DE. Inhibition of 24 
Plasminogen Activator Inhibitor 1 Attenuates Hepatic Steatosis but Does Not 25 
Prevent Progressive Nonalcoholic Steatohepatitis in Mice. Hepatol Commun. 26 
2018;2:1479-1492. doi: 10.1002/hep4.1259 27 

44. Lee SM, Dorotea D, Jung I, Nakabayashi T, Miyata T, Ha H. TM5441, a 28 
plasminogen activator inhibitor-1 inhibitor, protects against high fat diet-induced 29 
non-alcoholic fatty liver disease. Oncotarget. 2017;8:89746-89760. doi: 30 
10.18632/oncotarget.21120 31 

45. Day K, Seale LA, Graham RM, Cardoso BR. Selenotranscriptome Network in 32 
Non-alcoholic Fatty Liver Disease. Frontiers in nutrition. 2021;8:744825. doi: 33 
10.3389/fnut.2021.744825 34 

46. Wang L, Zhou K, Wu Q, Zhu L, Hu Y, Yang X, Li D. Microanatomy of the 35 
metabolic associated fatty liver disease (MAFLD) by single-cell transcriptomics. J 36 
Drug Target. 2023;31:421-432. doi: 10.1080/1061186X.2023.2185626 37 

47. Sim WC, Lee W, Sim H, Lee KY, Jung SH, Choi YJ, Kim HY, Kang KW, Lee JY, 38 
Choi YJ, et al. Downregulation of PHGDH expression and hepatic serine level 39 
contribute to the development of fatty liver disease. Metabolism. 40 
2020;102:154000. doi: 10.1016/j.metabol.2019.154000 41 

48. Kuwashiro S, Terai S, Oishi T, Fujisawa K, Matsumoto T, Nishina H, Sakaida I. 42 
Telmisartan improves nonalcoholic steatohepatitis in medaka (Oryzias latipes) by 43 
reducing macrophage infiltration and fat accumulation. Cell and tissue research. 44 
2011;344:125-134. doi: 10.1007/s00441-011-1132-7 45 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 29, 2024. ; https://doi.org/10.1101/2024.01.26.24301828doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.26.24301828


 33 

49. Moravcova A, Cervinkova Z, Kucera O, Mezera V, Rychtrmoc D, Lotkova H. The 1 
effect of oleic and palmitic acid on induction of steatosis and cytotoxicity on rat 2 
hepatocytes in primary culture. Physiol Res. 2015;64:S627-636. doi: 3 
10.33549/physiolres.933224 4 

50. Enooku K, Kondo M, Fujiwara N, Sasako T, Shibahara J, Kado A, Okushin K, 5 
Fujinaga H, Tsutsumi T, Nakagomi R, et al. Hepatic IRS1 and ss-catenin 6 
expression is associated with histological progression and overt diabetes 7 
emergence in NAFLD patients. J Gastroenterol. 2018;53:1261-1275. doi: 8 
10.1007/s00535-018-1472-0 9 

51. Honma M, Sawada S, Ueno Y, Murakami K, Yamada T, Gao J, Kodama S, Izumi 10 
T, Takahashi K, Tsukita S, et al. Selective insulin resistance with differential 11 
expressions of IRS-1 and IRS-2 in human NAFLD livers. Int J Obes (Lond). 12 
2018;42:1544-1555. doi: 10.1038/s41366-018-0062-9 13 

52. Liss KH, Finck BN. PPARs and nonalcoholic fatty liver disease. Biochimie. 14 
2017;136:65-74. doi: 10.1016/j.biochi.2016.11.009 15 

53. Montagner A, Polizzi A, Fouche E, Ducheix S, Lippi Y, Lasserre F, Barquissau V, 16 
Regnier M, Lukowicz C, Benhamed F, et al. Liver PPARalpha is crucial for 17 
whole-body fatty acid homeostasis and is protective against NAFLD. Gut. 18 
2016;65:1202-1214. doi: 10.1136/gutjnl-2015-310798 19 

54. Ferre P, Foufelle F. Hepatic steatosis: a role for de novo lipogenesis and the 20 
transcription factor SREBP-1c. Diabetes Obes Metab. 2010;12 Suppl 2:83-92. 21 
doi: 10.1111/j.1463-1326.2010.01275.x 22 

55. Pettinelli P, Videla LA. Up-regulation of PPAR-gamma mRNA expression in the 23 
liver of obese patients: an additional reinforcing lipogenic mechanism to SREBP-24 
1c induction. J Clin Endocrinol Metab. 2011;96:1424-1430. doi: 10.1210/jc.2010-25 
2129 26 

56. Moreno-Vedia J, Girona J, Ibarretxe D, Masana L, Rodriguez-Calvo R. Unveiling 27 
the Role of the Fatty Acid Binding Protein 4 in the Metabolic-Associated Fatty 28 
Liver Disease. Biomedicines. 2022;10. doi: 10.3390/biomedicines10010197 29 

57. Wood GC, Chu X, Argyropoulos G, Benotti P, Rolston D, Mirshahi T, Petrick A, 30 
Gabrielson J, Carey DJ, DiStefano JK, et al. A multi-component classifier for 31 
nonalcoholic fatty liver disease (NAFLD) based on genomic, proteomic, and 32 
phenomic data domains. Scientific reports. 2017;7:43238. doi: 33 
10.1038/srep43238 34 

58. Sveinbjornsson G, Ulfarsson MO, Thorolfsdottir RB, Jonsson BA, Einarsson E, 35 
Gunnlaugsson G, Rognvaldsson S, Arnar DO, Baldvinsson M, Bjarnason RG, et 36 
al. Multiomics study of nonalcoholic fatty liver disease. Nature genetics. 37 
2022;54:1652-1663. doi: 10.1038/s41588-022-01199-5 38 

59. Gu J, Liu S, Du S, Zhang Q, Xiao J, Dong Q, Xin Y. Diagnostic value of MRI-39 
PDFF for hepatic steatosis in patients with non-alcoholic fatty liver disease: a 40 
meta-analysis. European radiology. 2019;29:3564-3573. doi: 10.1007/s00330-41 
019-06072-4 42 

60. Bril F, Ortiz-Lopez C, Lomonaco R, Orsak B, Freckleton M, Chintapalli K, Hardies 43 
J, Lai S, Solano F, Tio F, Cusi K. Clinical value of liver ultrasound for the 44 
diagnosis of nonalcoholic fatty liver disease in overweight and obese patients. 45 
Liver Int. 2015;35:2139-2146. doi: 10.1111/liv.12840 46 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 29, 2024. ; https://doi.org/10.1101/2024.01.26.24301828doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.26.24301828


 34 

61. Perakakis N, Stefanakis K, Mantzoros CS. The role of omics in the 1 
pathophysiology, diagnosis and treatment of non-alcoholic fatty liver disease. 2 
Metabolism. 2020;111S:154320. doi: 10.1016/j.metabol.2020.154320 3 

62. Kotronen A, Peltonen M, Hakkarainen A, Sevastianova K, Bergholm R, 4 
Johansson LM, Lundbom N, Rissanen A, Ridderstrale M, Groop L, et al. 5 
Prediction of non-alcoholic fatty liver disease and liver fat using metabolic and 6 
genetic factors. Gastroenterology. 2009;137:865-872. doi: 7 
10.1053/j.gastro.2009.06.005 8 

63. Walker RW, Belbin GM, Sorokin EP, Van Vleck T, Wojcik GL, Moscati A, 9 
Gignoux CR, Cho J, Abul-Husn NS, Nadkarni G, et al. A common variant in 10 
PNPLA3 is associated with age at diagnosis of NAFLD in patients from a multi-11 
ethnic biobank. Journal of hepatology. 2020;72:1070-1081. doi: 12 
10.1016/j.jhep.2020.01.029 13 

64. Corbin KD, Abdelmalek MF, Spencer MD, da Costa KA, Galanko JA, Sha W, 14 
Suzuki A, Guy CD, Cardona DM, Torquati A, et al. Genetic signatures in choline 15 
and 1-carbon metabolism are associated with the severity of hepatic steatosis. 16 
FASEB journal : official publication of the Federation of American Societies for 17 
Experimental Biology. 2013;27:1674-1689. doi: 10.1096/fj.12-219097 18 

65. Fairfield CJ, Drake TM, Pius R, Bretherick AD, Campbell A, Clark DW, 19 
Fallowfield JA, Hayward C, Henderson NC, Joshi PK, et al. Genome-Wide 20 
Association Study of NAFLD Using Electronic Health Records. Hepatol Commun. 21 
2022;6:297-308. doi: 10.1002/hep4.1805 22 

66. Anstee QM, Darlay R, Cockell S, Meroni M, Govaere O, Tiniakos D, Burt AD, 23 
Bedossa P, Palmer J, Liu YL, et al. Genome-wide association study of non-24 
alcoholic fatty liver and steatohepatitis in a histologically characterised cohort(☆). 25 
Journal of hepatology. 2020;73:505-515. doi: 10.1016/j.jhep.2020.04.003 26 

67. Tan Y, Ge G, Pan T, Wen D, Gan J. A pilot study of serum microRNAs panel as 27 
potential biomarkers for diagnosis of nonalcoholic fatty liver disease. PLoS One. 28 
2014;9:e105192. doi: 10.1371/journal.pone.0105192 29 

68. Wu J, Zhang R, Shen F, Yang R, Zhou D, Cao H, Chen G, Pan Q, Fan J. Altered 30 
DNA Methylation Sites in Peripheral Blood Leukocytes from Patients with Simple 31 
Steatosis and Nonalcoholic Steatohepatitis (NASH). Med Sci Monit. 32 
2018;24:6946-6967. doi: 10.12659/MSM.909747 33 

69. Dessein A. Clinical utility of polygenic risk scores for predicting NAFLD disorders. 34 
Journal of hepatology. 2021;74:769-770. doi: 10.1016/j.jhep.2021.02.005 35 

70. Oh HS, Rutledge J, Nachun D, Palovics R, Abiose O, Moran-Losada P, 36 
Channappa D, Urey DY, Kim K, Sung YJ, et al. Organ aging signatures in the 37 
plasma proteome track health and disease. Nature. 2023;624:164-172. doi: 38 
10.1038/s41586-023-06802-1 39 

71. Deczkowska A, David E, Ramadori P, Pfister D, Safran M, Li B, Giladi A, Jaitin 40 
DA, Barboy O, Cohen M, et al. XCR1(+) type 1 conventional dendritic cells drive 41 
liver pathology in non-alcoholic steatohepatitis. Nat Med. 2021;27:1043-1054. 42 
doi: 10.1038/s41591-021-01344-3 43 

72. Rennert K, Steinborn S, Groger M, Ungerbock B, Jank AM, Ehgartner J, 44 
Nietzsche S, Dinger J, Kiehntopf M, Funke H, et al. A microfluidically perfused 45 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 29, 2024. ; https://doi.org/10.1101/2024.01.26.24301828doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.26.24301828


 35 

three dimensional human liver model. Biomaterials. 2015;71:119-131. doi: 1 
10.1016/j.biomaterials.2015.08.043 2 

73. Hassan S, Sebastian S, Maharjan S, Lesha A, Carpenter AM, Liu X, Xie X, 3 
Livermore C, Zhang YS, Zarrinpar A. Liver-on-a-Chip Models of Fatty Liver 4 
Disease. Hepatology. 2020;71:733-740. doi: 10.1002/hep.31106 5 

74. Du K, Li S, Li C, Li P, Miao C, Luo T, Qiu B, Ding W. Modeling nonalcoholic fatty 6 
liver disease on a liver lobule chip with dual blood supply. Acta Biomater. 7 
2021;134:228-239. doi: 10.1016/j.actbio.2021.07.013 8 

75. Levner D, Ewart L. Integrating Liver-Chip data into pharmaceutical decision-9 
making processes. Expert Opin Drug Discov. 2023;18:1313-1320. doi: 10 
10.1080/17460441.2023.2255127 11 

76. Ewart L, Apostolou A, Briggs SA, Carman CV, Chaff JT, Heng AR, Jadalannagari 12 
S, Janardhanan J, Jang KJ, Joshipura SR, et al. Performance assessment and 13 
economic analysis of a human Liver-Chip for predictive toxicology. Commun Med 14 
(Lond). 2022;2:154. doi: 10.1038/s43856-022-00209-1 15 

77. Jang KJ, Otieno MA, Ronxhi J, Lim HK, Ewart L, Kodella KR, Petropolis DB, 16 
Kulkarni G, Rubins JE, Conegliano D, et al. Reproducing human and cross-17 
species drug toxicities using a Liver-Chip. Sci Transl Med. 2019;11. doi: 18 
10.1126/scitranslmed.aax5516 19 

78. Cong Y, Han X, Wang Y, Chen Z, Lu Y, Liu T, Wu Z, Jin Y, Luo Y, Zhang X. Drug 20 
Toxicity Evaluation Based on Organ-on-a-chip Technology: A Review. 21 
Micromachines (Basel). 2020;11. doi: 10.3390/mi11040381 22 

79. Gori M, Simonelli MC, Giannitelli SM, Businaro L, Trombetta M, Rainer A. 23 
Investigating Nonalcoholic Fatty Liver Disease in a Liver-on-a-Chip Microfluidic 24 
Device. PLoS One. 2016;11:e0159729. doi: 10.1371/journal.pone.0159729 25 

80. Sun BB, Chiou J, Traylor M, Benner C, Hsu YH, Richardson TG, Surendran P, 26 
Mahajan A, Robins C, Vasquez-Grinnell SG, et al. Plasma proteomic 27 
associations with genetics and health in the UK Biobank. Nature. 2023;622:329-28 
338. doi: 10.1038/s41586-023-06592-6 29 

81. Wagenknecht LE, Perkins LL, Cutter GR, Sidney S, Burke GL, Manolio TA, 30 
Jacobs DR, Jr., Liu KA, Friedman GD, Hughes GH, et al. Cigarette smoking 31 
behavior is strongly related to educational status: the CARDIA study. Preventive 32 
medicine. 1990;19:158-169.  33 

82. Dyer AR, Cutter GR, Liu KQ, Armstrong MA, Friedman GD, Hughes GH, Dolce 34 
JJ, Raczynski J, Burke G, Manolio T. Alcohol intake and blood pressure in young 35 
adults: the CARDIA Study. Journal of clinical epidemiology. 1990;43:1-13.  36 

83. Bild DE, Jacobs DR, Jr., Sidney S, Haskell WL, Anderssen N, Oberman A. 37 
Physical activity in young black and white women. The CARDIA Study. Ann 38 
Epidemiol. 1993;3:636-644.  39 

84. Sidney S, Jacobs DR, Jr., Haskell WL, Armstrong MA, Dimicco A, Oberman A, 40 
Savage PJ, Slattery ML, Sternfeld B, Van Horn L. Comparison of two methods of 41 
assessing physical activity in the Coronary Artery Risk Development in Young 42 
Adults (CARDIA) Study. Am J Epidemiol. 1991;133:1231-1245.  43 

85. Jiao J, Watt GP, Lee M, Rahbar MH, Vatcheva KP, Pan JJ, McCormick JB, 44 
Fisher-Hoch SP, Fallon MB, Beretta L. Cirrhosis and Advanced Fibrosis in 45 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 29, 2024. ; https://doi.org/10.1101/2024.01.26.24301828doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.26.24301828


 36 

Hispanics in Texas: The Dominant Contribution of Central Obesity. PLoS One. 1 
2016;11:e0150978. doi: 10.1371/journal.pone.0150978 2 

86. de Ledinghen V, Vergniol J, Capdepont M, Chermak F, Hiriart JB, Cassinotto C, 3 
Merrouche W, Foucher J, Brigitte le B. Controlled attenuation parameter (CAP) 4 
for the diagnosis of steatosis: a prospective study of 5323 examinations. J 5 
Hepatol. 2014;60:1026-1031. doi: 10.1016/j.jhep.2013.12.018 6 

87. Wilman HR, Kelly M, Garratt S, Matthews PM, Milanesi M, Herlihy A, Gyngell M, 7 
Neubauer S, Bell JD, Banerjee R, Thomas EL. Characterisation of liver fat in the 8 
UK Biobank cohort. PLoS One. 2017;12:e0172921. doi: 9 
10.1371/journal.pone.0172921 10 

88. Watt GP, De La Cerda I, Pan JJ, Fallon MB, Beretta L, Loomba R, Lee M, 11 
McCormick JB, Fisher-Hoch SP. Elevated Glycated Hemoglobin Is Associated 12 
With Liver Fibrosis, as Assessed by Elastography, in a Population-Based Study 13 
of Mexican Americans. Hepatol Commun. 2020;4:1793-1801. doi: 14 
10.1002/hep4.1603 15 

89. van der Poorten D, Samer CF, Ramezani-Moghadam M, Coulter S, Kacevska M, 16 
Schrijnders D, Wu LE, McLeod D, Bugianesi E, Komuta M, et al. Hepatic fat loss 17 
in advanced nonalcoholic steatohepatitis: are alterations in serum adiponectin 18 
the cause? Hepatology. 2013;57:2180-2188. doi: 10.1002/hep.26072 19 

90. Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proc 20 
Natl Acad Sci U S A. 2003;100:9440-9445. doi: 10.1073/pnas.1530509100 21 

91. Robinson MD, Oshlack A. A scaling normalization method for differential 22 
expression analysis of RNA-seq data. Genome Biol. 2010;11:R25. doi: 23 
10.1186/gb-2010-11-3-r25 24 

92. Chatterjee E, Rodosthenous RS, Kujala V, Gokulnath P, Spanos M, Lehmann HI, 25 
de Oliveira GP, Shi M, Miller-Fleming TW, Li G, et al. Circulating extracellular 26 
vesicles in human cardiorenal syndrome promote renal injury in a kidney-on-chip 27 
system. JCI Insight. 2023;8. doi: 10.1172/jci.insight.165172 28 

93. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing 29 
biological themes among gene clusters. OMICS. 2012;16:284-287. doi: 30 
10.1089/omi.2011.0118 31 

94. Szklarczyk D, Kirsch R, Koutrouli M, Nastou K, Mehryary F, Hachilif R, Gable AL, 32 
Fang T, Doncheva NT, Pyysalo S, et al. The STRING database in 2023: protein-33 
protein association networks and functional enrichment analyses for any 34 
sequenced genome of interest. Nucleic Acids Res. 2023;51:D638-D646. doi: 35 
10.1093/nar/gkac1000 36 

95. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, 37 
Schwikowski B, Ideker T. Cytoscape: a software environment for integrated 38 
models of biomolecular interaction networks. Genome Res. 2003;13:2498-2504. 39 
doi: 10.1101/gr.1239303 40 

96. Jain A, Tuteja G. TissueEnrich: Tissue-specific gene enrichment analysis. 41 
Bioinformatics. 2019;35:1966-1967. doi: 10.1093/bioinformatics/bty890 42 

97. Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, 43 
Sivertsson A, Kampf C, Sjostedt E, Asplund A, et al. Proteomics. Tissue-based 44 
map of the human proteome. Science. 2015;347:1260419. doi: 45 
10.1126/science.1260419 46 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 29, 2024. ; https://doi.org/10.1101/2024.01.26.24301828doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.26.24301828


 37 

98. Gonzales TI, Westgate K, Strain T, Hollidge S, Jeon J, Christensen DL, Jensen 1 
J, Wareham NJ, Brage S. Cardiorespiratory fitness assessment using risk-2 
stratified exercise testing and dose-response relationships with disease 3 
outcomes. Sci Rep. 2021;11:15315. doi: 10.1038/s41598-021-94768-3 4 

99. Wu P, Gifford A, Meng X, Li X, Campbell H, Varley T, Zhao J, Carroll R, 5 
Bastarache L, Denny JC, et al. Mapping ICD-10 and ICD-10-CM Codes to 6 
Phecodes: Workflow Development and Initial Evaluation. JMIR Med Inform. 7 
2019;7:e14325. doi: 10.2196/14325 8 

 9 

 10 

  11 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 29, 2024. ; https://doi.org/10.1101/2024.01.26.24301828doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.26.24301828


 38 

Figures 1 

Figure 1: Study diagram: Study design. 2 

3 
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Figure 2. Proteins related to hepatic steatosis are primarily expressed in the liver and identify pathways of metabolism. (A) 

Volcano plot of proteins associated with hepatic steatosis after adjustment for age, sex, race, and BMI. For visualization, proteins 

with an FDR<5% in CARDIA derivation subsample are visualized with the beta coefficient and p values presented coming from 

models using the CARDIA validation subsample. (B) Heatmap of the top 25 positively associated and top 25 negatively associated 

proteins with hepatic steatosis in the CARDIA validation sample. (C) Tissue expression analysis of the proteins related to hepatic 

steatosis in CARDIA using the full SomaScan 7k platform as the background, demonstrated enrichment of proteins expressed in the 

liver. (D) KEGG and Reactome pathway analysis. (E) Hub gene analysis of significant proteins associated with liver attenuation 

showing the hub genes (>5 connections; circles) and all proteins with high confidence connections to the hub genes (rectangles). 
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Figure 3: Development of a proteomic score of MASLD and its utility as a diagnostic test. 

(A) A protein score of liver attenuation by CT (less attenuation ~ more steatosis) demonstrated 

moderate correlation with the parent variable in both CARDIA derivation and validation samples. 

(B) The protein score distinguishes between MASLD and non-MASLD populations in CARDIA. 

(C) Replication of the association between a protein score of liver attenuation and MRI-based 

measure of hepatic steatosis (proton density fat fraction: higher ~ more steatosis, opposite 

directionality as with CT based liver attenuation) in UK Biobank. (D) The protein score 

distinguishes between MASLD and non-MASLD populations in UK Biobank. (E) The protein 

score is related to controlled attenuation parameter (higher value ~ more steatosis) in CCHC. 

(F) Receiver operator curve analysis in the CARDIA validation sample comparing a clinical 

model of MASLD (age, sex, race, BMI, drinks/week, AST, ALT, A1c) to models including a 

protein score of liver attenuation. (G) ROC analysis in UK Biobank. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 29, 2024. ; https://doi.org/10.1101/2024.01.26.24301828doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.26.24301828


 42 

 

 

  

r = -0.5, p < 2.2e−16

3

10

30

−4 −2 0 2
Protein score of liver attenutation

Li
ve

r p
ro

to
n 

de
ns

ity
 fa

t f
ra

ct
io

n

UK Biobank, N: 2111
HR3LAMEAN_ageSexRaceBMI_restricted

Dashed line: PDFF>5.5% is the commonly accepted definition for MASLD by MRI

p < 2.2e−16

0.0

0.2

0.4

0.6

−4 −2 0 2
Protein score of liver attenuation

D
en

si
ty

MASLD No Yes

UK Biobank, N: 2111

r = 0.69, p < 2.2e−16 r = 0.56, p < 2.2e−16

CARDIA Derivation, N: 1876 CARDIA Validation, N: 803

−2 −1 0 1 −2 −1 0 1

0

25

50

75

Protein score of liver attenuation

C
T 

liv
er

 a
tte

nu
at

io
n

(<
40

 ~
 N

AF
LD

)

r = 0.69, p < 2.2e−16 r = 0.56, p < 2.2e−16

CARDIA Derivation, N: 1876 CARDIA Validation, N: 803

−2 −1 0 1 −2 −1 0 1

0

25

50

75

Protein score of liver attenuation

C
T 

liv
er

 a
tte

nu
at

io
n 

(H
U

)

Dashed line is the clincally used cutoff (<40) for MASLD

p < 2.2e−16 p < 2.2e−16

CARDIA Derivation, N: 1876 CARDIA Validation, N: 803

−2 −1 0 1 −2 −1 0 1

0.00

0.25

0.50

0.75

1.00

Protein score of liver attenuation

D
en

si
ty

MASLD No Yes

AUC:
Model 1 (clinical): 0.84 (0.80−0.88)
Model 2 (full protein score): 0.94 (0.92−0.96)
Model 3 (top 21 protein score): 0.94 (0.93−0.96)

0.00

0.25

0.50

0.75

1.00

0.000.250.500.751.00
Specificity

Se
ns

iti
vi

ty

Model 1 (clinical) Model 2 (full protein score) Model 3 (top 21 protein score)

CARDIA Validation, N: 793

AUC:
Model 1 (clinical): 0.79 (0.77−0.82)
Model 2 (full protein score): 0.83 (0.81−0.85)
Model 3 (top 21 protein score): 0.81 (0.78−0.83)

0.00

0.25

0.50

0.75

1.00

0.000.250.500.751.00
Specificity

Se
ns

iti
vi

ty

Model 1 (clinical) Model 2 (full protein score) Model 3 (top 21 protein score)

UK Biobank, N: 1912

C

A B

E

D

GF

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 29, 2024. ; https://doi.org/10.1101/2024.01.26.24301828doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.26.24301828


 43 

Figure 4: Protein score of liver attenuation is strongly associated with incident metabolic 

disease and additive to genetic risk. (A) Forest plot of associations with clinical outcomes in 

UK Biobank along with C-index comparisons of models with and without the protein score (see 

Supplemental Data File SD06). P values reported are for comparisons of C-indices. (B) We 

observed a weak interaction between the protein score of liver attenuation and polygenic risk for 

incident diabetes suggesting the effects of both are largely complementary and additive. Hazard 

ratios presented are from model predicted estimates. (C) Cox regression models using a 

clinically translatable 21-protein panel provides similar prognostication as the full protein score 

(see Supplemental Data File SD06). The shaded ellipses represent the standard error of the 

beta coefficient. 
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Figure 5: Single nuclear and spatial transcriptional architecture of the circulating MASLD proteome.  (A) Uniform manifold 

approximation projection (UMAP) of single nuclear RNA sequencing in steatotic and healthy liver, colored by a composite expression 

score (derived from gene expression of implicated target proteins, see Methods). (B, C) UMAP of spatial transcriptomic data 

(Visium) in the liver colored by liver pathology diagnosis (healthy vs. fatty, B) and the composite expression score (C). (D) Violin plot 

comparing composite expression score across Visium spots by fatty vs. healthy state (Wilcoxon rank-sum). (E) Representative 

images of healthy and steatotic hematoxylin-eosin-stained liver tissue overlaid with Visium spots, colored by composite expression 

score, demonstrating increased activity of implicated targets in steatotic regions. All sections presented in our parent manuscript are 

shown in Supplemental Figure 4. (F) Composite expression across liver zonation groups. (G) Differential expression of implicated 

targets between healthy and fatty liver (Visium) versus circulating proteomic regression coefficient. A more positive proteomic 

coefficient indicates less liver fat, and a more positive log2 fold-change indicates greater expression of a given transcript in healthy 

(non-steatotic) liver. Highlighted in purple are targets that were considered as differentially expressed using spatial data (satisfied 

adjusted p-value < 0.05 & absolute log2 fold-change > 0.25). (H) Gene expression of significantly different implicated targets between 

healthy and steatotic regions (Visium), liver zonation (Visium) and across cell types (single-cell RNA sequencing). 
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Figure 6: Transcriptional heterogeneity of spatial targets in human liver across steatosis stages. (A) Bulk transcript log2 fold 

change in human liver (over control samples without histologic steatosis) for those genes (among 33 significant on spatial studies) 

that were significantly differentially expressed in at least one comparison (stage 1 vs. control; stage 2 vs. control; stage 3 vs. control). 

Of the 33 genes passed forward for assessment in bulk transcriptomics, 12 were not significantly expressed in any of the stages of 

steatosis (by adjusted p-value < 0.05) and were not included in visualization. The “liver attenuation beta” represents the regression 

coefficient against liver attenuation in the CARDIA derivation sample. A positive coefficient (red) indicates a greater protein level is 

related to higher attenuation (lower steatosis); a negative coefficient (blue) indicates a greater protein level is related to lower 

attenuation (higher steatosis). This analysis excluded individuals with stage F4 fibrosis, given differences in hepatic physiology at this 

stage of decompensation. (B) Violin plots of example gene expression (in log2 counts per million) for genes that displayed a 

“concordant” directionality between the proteome and the bulk transcriptome (top and middle panel) and “discordant” directionality 

between proteome and bulk transcriptome.  
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Figure 7. Transcriptional architecture of MASLD on a humanized liver-on-a-chip (LOC) largely replicates population and 

tissue findings. (A) and (B) show the structure and experimental design of MASLD induction on the LOC. (C) Successful MASLD 

model generation on a representative LOC. On the left, lipid droplet accumulation was visualized after 5-day treatment period of FAs. 

Representative brightfield and fluorescent confocal images of the LOC cells (scale bar = 100 μm). DAPI (nuclear) and LipidSpot (lipid 

droplet) stains are shown. Red arrows represent lipid droplet accumulation. (D) mRNA expression of canonical genes implicated in 

steatosis demonstrate expression patterns consistent with MASLD in both hepatocytes and NPCs. A total of 6 chips were included (3 

FA and 3 control). Results were analyzed by an unpaired t test and expressed as mean ± standard error of 3 independent 

experiments. Each data point represents the average of 3 technical replicates. Control is in blue and FA treated is in red. Relative 

expression is shown as fold change (delta-delta CT) relative to control, normalized to beta-actin expression. (E) mRNA expression of 

top genes on the LOC that were prioritized by proteomic and transcriptomic studies (see text). Breaks in Y axis are presented given 

disparate expression of some genes (e.g., HMGCS1 had low expression in non-hepatocytes, while HSPA1A was expressed at low 

levels in hepatocytes). ME1, CTSZ and DEFB1 were not expressed in hepatocytes; CDA, SHBG, IL1RAP and IGFBP2 were not 

expressed in NPCs. See text for details. Abbreviations: ne, not expressed (raw Ct > 40); ns, non-significant; *, p<0.05; **, p<0.01; ***, 

p< 0.001; ****,  p<0.0001. 
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