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ABSTRACT 21 

Background 22 

Environmental surveillance of SARS-CoV-2 via wastewater has become an invaluable tool for 23 

population-level surveillance. Built environment sampling may provide complementary 24 

spatially-refined detection for viral surveillance in congregate settings such as universities. 25 

Methods 26 

We conducted a prospective environmental surveillance study at the University of Ottawa 27 

between September 2021 and April 2022. Floor surface samples were collected twice weekly 28 

from six university buildings. Samples were analyzed for the presence of SARS-CoV-2 using 29 

RT-qPCR. A Poisson regression was used to model the campus-wide COVID-19 cases predicted 30 

from the fraction of floor swabs positive for SARS-CoV-2 RNA, building CO2 levels, Wi-Fi 31 

usage, and SARS-CoV-2 RNA levels in regional wastewater. We used a mixed-effects Poisson 32 

regression analysis to model building-level cases using viral copies detected in floor samples as a 33 

predictor. A random intercepts logistic regression model tested whether floor samples collected 34 

in high-traffic areas were more likely to have SARS-CoV-2 present than low-traffic areas. 35 

Results 36 

Over the 32-week study period, we collected 554 floor swabs at six university buildings. Overall, 37 

13% of swabs were PCR-positive for SARS-CoV-2, with positivity ranging between 4.8% and 38 

32.7% among university buildings. Both floor swab positivity (Spearman r = 0.74, 95% CI: 0.53-39 

0.87) and regional wastewater signal (Spearman r = 0.50, 95% CI: 0.18-0.73) were positively 40 

correlated with on-campus COVID-19 cases. In addition, built environment detection was a 41 
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predictor of cases linked to individual university buildings (IRlog10(copies) + 1 = 17, 95% CI: 7-44). 42 

There was no significant difference in detection between floors sampled in high-traffic versus 43 

low-traffic areas (OR = 1.3, 95% CI: 0.8-2.1). 44 

Conclusions 45 

Detection of SARS-CoV-2 RNA on floors and viral RNA levels found in wastewater were 46 

strongly associated with the incidence of COVID-19 cases on a university campus. These data 47 

suggest a potential role for institutional built environment sampling, used together with 48 

wastewater surveillance, for predicting COVID-19 cases at both campus-wide and building level 49 

scales.  50 
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INTRODUCTION 51 

The coronavirus disease 2019 (COVID-19) pandemic was caused by the emergence of the severe 52 

acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a highly transmissible and pathogenic 53 

coronavirus1. Population-scale diagnostic testing and contact tracing have been crucial tools to 54 

inform public health responses2. In addition, environmental surveillance strategies based on 55 

shedding of the virus in wastewater and on built environment surfaces provide information on 56 

disease burden at community and building-level scales3–5. These non-invasive monitoring 57 

approaches can fill the information gap left by the decline of mass individual testing and provide 58 

continual monitoring of community-wide prevalence of infections. 59 

Wastewater-based epidemiology has successfully been used to detect the spread of SARS-CoV-2 60 

by quantifying viral RNA levels in wastewater over time6,3,7,8. Wastewater-focused surveillance 61 

programs have previously been implemented on university buildings and dormitories, and have 62 

been shown to be a successful proactive tool for outbreak monitoring on university campuses9,10. 63 

However, correlating virus levels in wastewater with epidemiologically identified cases may be 64 

challenging due to inconsistent spatial variability and resolution11. Although wastewater 65 

sampling can be used to monitor individual buildings, demonstrated by its use on university 66 

campuses, there is still a gap between community- and individual-level surveillance methods.  67 

Built environment sampling could complement these approaches by providing evidence on the 68 

presence of infected individuals at more spatially resolved scales (i.e., buildings or locations 69 

within buildings). SARS-CoV-2 transmission occurs through respiratory droplets and aerosols 70 

expelled by infected individuals, and viral particles and RNA exhibit a prolonged presence on 71 

built environment surfaces1,12. Detection of SARS-CoV-2 RNA from surface samples of the built 72 
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environment, particularly from floor swabs13,14, has shown potential as a spatially resolved 73 

COVID-19 surveillance strategy15,16. In hospitals, significant correlations have been observed 74 

between viral loads from clinical samples and positive detection of environmental samples taken 75 

from patient rooms17,18. Furthermore, we have demonstrated that detection of SARS-CoV-2 on 76 

floors in long-term care facilities is strongly associated with, and may even anticipate, COVID-77 

19 outbreaks, suggesting that floor-based sampling can play a valuable  role in improving early 78 

outbreak identification4. 79 

As a novel tool, the integrated use of wastewater detection with surface surveillance of the built 80 

environment may thus provide an opportunity for improved SARS-CoV-2 infection prevention 81 

and control, bridging the gap between community-scale and individual-level surveillance 82 

methods. To further evaluate this idea, we performed surface sampling at six buildings at the 83 

University of Ottawa and compared the findings to publicly available wastewater data. Our 84 

objective was to quantify the association between ambient SARS-CoV-2 in the built 85 

environment, regional wastewater signal, and near real-time COVID-19 case identifications on a 86 

university campus, a setting in which surface sampling has not been fully explored. 87 

 88 

  89 
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METHODS 90 

Built environment sampling 91 

Built environment sampling was performed in six buildings on the main campus of the 92 

University of Ottawa (uOttawa), selected with input from the uOttawa COVID-19 Recovery 93 

Task Force, a multi-stakeholder committee composed of representatives from across the 94 

university charged with maintaining health and safety of the university community during the 95 

COVID-19 pandemic. (https://www.uottawa.ca/about-us/sites/g/files/bhrskd336/files/2022-96 

05/COVID%2019%20Recovery%20Taskforce%20TOR%20v.7.pdf). Floor surfaces were 97 

swabbed due to the reliable recovery of SARS-CoV-2 RNA compared to other built environment 98 

surfaces4,16. Buildings and sites were chosen to provide representative sampling of areas visited 99 

by student and staff populations and include a student residence hall (RES), the main library 100 

(LIB), and buildings hosting sports facilities (GYM), the school of management (FAC), central 101 

administration and infoservices (ADM1), and campus protection and postal services (ADM2). 102 

Two sites within each building were sampled: a high traffic site located at a main entrance or 103 

corridor, and a low traffic site at a more remote location (i.e., typically on a different level). The 104 

designation of high and low traffic site was made on the advice of building and facilities 105 

management prior to the start of sample collection. Individual classrooms were not sampled, but 106 

hallway floors outside of classrooms were swabbed in several buildings (GYM, FAC, ADM1). 107 

Floor samples were collected twice weekly (Tuesdays and Thursdays) from September 21, 2021 108 

to April 5, 2022. Sampling was paused after December 9, 2021, and resumed for the winter term 109 

on January 11, 2022 when the campus re-opened. To reduce the spread of the Omicron variant of 110 

COVID-19, the return to campus for the winter term was postponed from January 4 to January 111 
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31, 2022. As a result, five sampling sites at ADM1, FAC, and LIB were inaccessible until 112 

February 1, 2022. 113 

SARS-CoV-2 detection from floor swabs  114 

Floor swabs were collected as previously described using a P-208 Environmental Surface 115 

Collection Prototype kit from DNA Genotek4,16. An approximate 2-inch by 2-inch area of floor 116 

was swabbed for 30 seconds, and swabs were immersed in nucleic acid stabilization solution and 117 

stored at room temperature until processing. Nucleic acid extractions were performed using the 118 

MagMAX Viral/ Pathogen II (MVP II) Nucleic Acid Isolation Kit (Thermo Fisher Scientific, 119 

Waltham, MA), and SARS-CoV-2 RNA was detected by RT-qPCR amplification of the N1 gene 120 

as described4,16. Viral copies were estimated from quantification cycle (Cq) values using the 121 

virus standard curve reported in our previous study16. 122 

University CO2 and Wi-Fi measurements and regional wastewater data 123 

Carbon dioxide and Wi-Fi usage data were collected during the sampling period as proxy 124 

measures of ventilation and building occupancy. Carbon dioxide measurements were taken 125 

concurrently with each floor swab sample using a handheld digital CO2 sensor (Gain Express 126 

Model AZ 7755). Campus Wi-Fi activity was collected by the university as daily peak (number 127 

of simultaneously-connected) wireless devices per building. Wi-Fi data was collected for 5 of the 128 

6 buildings sampled, excluding the residence hall (RES). Regional waste-water data were 129 

obtained from The Public Health Environmental Surveillance Database github repository 130 

(https://github.com/Big-Life-Lab/PHESD/). 131 

 132 
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Reported cases on campus 133 

The university administration recorded 217 self-reported COVID-19 cases between July 2020 134 

and early February 2022. These records include one or more dates (with data missing for a subset 135 

of cases), describing the onset of symptoms (53% missing), the test date (77% missing), the 136 

positive test result date (13.5% missing), or the date when the isolation period ended (3% 137 

missing). We used the test result dates as index dates for cases. For cases where test result dates 138 

were unavailable, we filled in values using the isolation-end date minus five days, or if 139 

unavailable, then we used the symptoms onset date plus three days. These corrections were based 140 

on the mean differences between the various events where multiple events were recorded and 141 

reflect reasonable estimates of the onset of infection given data on the reported events2. 142 

 143 

Statistical analysis 144 

Statistical analysis was performed using R version 4.2.2 (2022-10-31)19. Graphics were created 145 

with ggplot2 (v3.4.1). Code and data are available from our GitHub repository: 146 

https://github.com/CUBE-Ontario/UOttawa-Analysis (to be made public upon publication).  147 

To examine the relationship between the university case burden and environmental surveillance 148 

variables, we fit Poisson regression models with the number of cases as the outcome. We 149 

employed backward elimination to select predictors from the aggregated results (means) of 150 

surface swabbing, waste-water testing, CO2, and Wi-Fi user counts. Predictors were centered and 151 

scaled to facilitate comparison of regression coefficients. Models were fit using `glm` in R. The 152 
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assumption of equidispersion was tested and multicollinearity was evaluated through generalized 153 

variance inflation factors. 154 

To investigate the relationship between case incidence and surface swab results on a per-building 155 

basis, we used mixed-effects models with a random intercept for each building. First, we 156 

evaluated a logistic regression model with the presence of SARS-CoV-2 infected individuals as a 157 

binary outcome (i.e., positive event: one or more cases occurring during a week), with surface 158 

swab PCR-positivity as a fixed-effect, and with a random intercept for each building. We fit a 159 

second logistic regression model to test whether high-traffic locations contained greater 160 

quantities of viral RNA than low-traffic locations.  Mixed-effects models were created using the 161 

`glmer` function from the `lme4` package20. 162 

To model case counts at the building level, we fit a Poisson regression with a random intercept 163 

for each site, using the quantity of SARS-CoV-2 RNA recovered by PCR as a predictor. For this 164 

model, our predictor was the log-transformed mean number of viral copies (plus one) per-165 

building during weekly intervals. Our model formula was: ����� ~ ��	��
������ 
  1�  
166 

 
1|�����. This random effects model was created using the ‘glmer’ function from the 'lme4' 167 

package. From the fitted model, we computed incidence ratios and Wald-type 95% Confidence 168 

Intervals (CIs).  169 
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RESULTS 170 

Environmental detection of SARS-CoV-2 correlates with COVID-19 cases on campus 171 

There were 116 reported cases of COVID-19 among students and staff on campus during 172 

the study period, with case reporting ending in February 2022. Low numbers of cases were 173 

reported in the fall term, and the highest numbers reported in January, coinciding with a campus-174 

wide closure in response to the Omicron variant (Fig. 1). The aggregate built environment 175 

surveillance trends broadly paralleled case incidence, with low SARS-CoV-2 detection during 176 

the fall term (September to December) and a spike in floor swab positivity in January (Fig. 1). A 177 

decline after the January peak preceded a second increase in environmental SARS-CoV-2 signal 178 

observed in late March (Fig. 1). These university case and built environment detection trends 179 

correspond with two increases in COVID-19 prevalence reported in Ottawa city-wide 180 

wastewater data (Fig. 1). 181 

We observed positive correlations between university cases, swab positivity, and City of 182 

Ottawa wastewater signal (Fig. 2). The strongest correlations were between cases and swab 183 

positivity (Spearman r = 0.74, 95% CI: 0.53-0.87) and Ottawa wastewater and swab positivity 184 

(Spearman r = 0.68, 95% CI: 0.5-0.81). Neither of the building occupancy proxies (i.e., CO2 185 

levels or Wi-Fi usage) correlated with campus COVID-19 cases or floor swab detection during 186 

the study period (Fig. 2). CO2 concentrations were stable across buildings and time (Fig. 1), at 187 

levels indicating high indoor air quality (median: 531 ppm, range: 418 - 905 ppm). Wi-fi usage, 188 

on the other hand, fluctuated during the term, with expected drops during reading week, winter 189 

break, and individual building closures (Figs. 1, 3). These results suggest that built environment 190 
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surveillance could serve as a predictor for estimating active campus cases and that environmental 191 

detection of SARS-CoV-2 at the university paralleled city-wide trends.  192 

Predictive modeling of campus-wide cases based on environmental detection and building 193 

occupancy estimates 194 

Non-invasive approaches to monitoring SARS-CoV-2 levels such as environmental sampling are 195 

valuable when systematic testing of individuals is not feasible. We evaluated predictors of the 196 

campus-wide case burden using Poisson regression models selected by backward elimination. 197 

Predictors specified in the full model included surface swab positivity (across 6 buildings), CO2 198 

concentrations (at the time of swab collection), regional wastewater metrics, and Wi-Fi user 199 

counts. Backward elimination dropped the CO2 and Wi-Fi terms and indicated swab positivity 200 

and regional waste-water signals as significant, positive predictors of case counts (Table 1). The 201 

regional wastewater signal and swab positivity terms had similar incidence rate ratios in the final 202 

model (Table 1). The selected model did not violate the assumption of equidispersion (dispersion 203 

= 1.35, p > 0.05). 204 

Modeling cases in individual buildings from built environment detection 205 

Campus buildings visited by individuals infected with COVID-19 were self-reported during 206 

collection of campus-wide case data. We, therefore, leveraged the spatial resolution of our built 207 

environment sampling to determine whether cases in individual buildings were associated with 208 

higher levels of SARS-CoV-2 detection from floor swabs collected from the same buildings. 209 

Indeed, two sites with high positivity in January 2022 at the university residence (RES) and an 210 

administrative building (ADM2), were associated with clusters of reported cases in students and 211 

staff, respectively (Fig. 3).  212 
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We sought to evaluate surface detection of SARS-CoV-2 as a predictor of case burden at the 213 

building level. We applied a mixed-effects Poisson regression analysis; random intercepts were 214 

specified for buildings to account for repeated measurements. The incidence ratio, relating a 10-215 

fold increase in the number of viral copies (plus one) to the total number of reported cases, was 216 

large and significant with a high level of certainty (IR = 17, 95% CI 7-44). IRs for individual 217 

sites ranged from 0.57 (ADM2) to 2.3 (FAC) with moderate variance among sites overall (SD = 218 

0.62), but differences between sites were small relative to the uncertainty on their intercepts 219 

(Table S1). 220 

Surface detection of SARS-CoV-2 was not greater in high-traffic areas 221 

At each building where environmental surveillance by surface swabbing was performed, we 222 

selected one high-traffic area where people often travel or congregate and a second low-traffic 223 

area for contrast. We hypothesized that the floors in commonly frequented locations would have 224 

greater rates of SARS-CoV-2 detection. However, positivity rates were similar across high-225 

traffic (14.3%, N=280) and low-traffic sites (11.7%, N=274). To confirm this, we fit a mixed-226 

effects logistic regression model, with the surface swab result as a binary outcome, the traffic 227 

level as a fixed effect, and specified random intercepts for each building to account for the 228 

clustering of sites. This model indicated that higher-traffic locations did not have significantly 229 

greater positivity rates than low-traffic locations (OR = 1.3, 95% CI: 0.77 - 2.1). 230 
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DISCUSSION 231 

In this study, we performed longitudinal environmental surveillance of SARS-CoV-2 232 

across a university campus. We found that over the course of an academic year, detection of 233 

SARS-CoV-2 from built environment sampling sites across the campus correlated with reported 234 

campus-associated COVID-19 cases. Environmental detection of SARS-CoV-2 at university 235 

sites and regional SARS-CoV-2 wastewater signal were associated with an increase in campus-236 

wide cases, according to a Poisson regression analysis. These results support other studies 237 

demonstrating that environmental sampling of SARS-CoV-2 RNA can be used to monitor 238 

COVID-19 cases at university campuses9,10,21. 239 

The university setting provided a convenient test case for comparing the different scales 240 

of environmental testing. Built environment detection varied by building, with the residence hall 241 

associated with the highest burden (Fig. 3). Importantly, SARS-CoV-2 detection at two sites in 242 

January correlated with clusters of cases, indicating the usefulness of this method at identifying 243 

building-level case incidence. In contrast, a high built environment signal in the main library in 244 

January was not reflected in the case data, which could be an example of environmental 245 

surveillance identifying a location with unknown or unreported cases. 246 

         Despite evidence validating the use of environmental surveillance approaches, it is 247 

important to consider that factors specific to the study period may affect the accuracy of case 248 

trend projections. First, infection control measures were in place to reduce COVID-19 infections 249 

at the university including mandatory vaccination and masking for students, staff, and visitors to 250 

the University of Ottawa (Policy 129; https://www.uottawa.ca/about-us/policies-regulations), 251 

along with fewer campus in-person activities, smaller class sizes, and more on-line courses than 252 
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in typical years. These mitigation measures likely contributed to the low COVID-19 case counts 253 

and low environmental detection observed in the Fall term. Second, the study period occurred 254 

during the global spread of the highly transmissible Omicron variant of SARS-CoV-2, which 255 

was likely responsible for the relatively large number of cases identified in January. The campus 256 

was closed for in-person learning in January 2022 to reduce spread of the Omicron variant. This 257 

would have limited the spatial distribution of cases on campus to buildings accessible to 258 

university members, such as the residence halls and administrative buildings. 259 

         For the above reasons, the specific trends in viral prevalence observed during the study 260 

period may be affected by pandemic-era mitigation measures and a unique episode of SARS-261 

CoV-2 evolution. Future surveillance efforts can thus show what campus-wide trends occur after 262 

infection control measures are removed. In conclusion, our study validates the effectiveness of 263 

built environment surveillance to track SARS-CoV-2 prevalence in congregate settings, from 264 

university campuses to hospitals and long-term care homes16,4. At a practical level, 265 

environmental surveillance trends can be communicated to university community members to 266 

provide awareness of infectious disease risk on campus. Furthermore, as demonstrated for 267 

wastewater surveillance22, monitoring can be extended to other relevant infectious diseases (e.g., 268 

influenza), to provide a more complete picture of pathogen prevalence. 269 

  270 
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FIGURES 332 

 333 

 334 

Figure 1. Time-series of (top to bottom): important events at the university, university 335 

COVID-19 cases, proportion of PCR-positive floor swabs, biweekly mean ambient CO2 (across 336 

collection sites), biweekly mean peak number of Wi-Fi connections (across 5 buildings), 337 

biweekly mean regional waste-water detection (relative to PPMoV). Points show biweekly 338 

means. Trend lines fit with the Loess method. 339 
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 340 

 341 

 342 

Figure 2. Spearman correlation between biweekly campus-wide variables: self-reported 343 

cases, floor swab positivity (Swab PCR), mean CO2, mean daily peak Wi-Fi connections, waste-344 

water signal at the regional level (Ottawa WW),  345 
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347 

Figure 3. Campus COVID-19 cases, swab results, and daily peak Wi-Fi connections by building.348 

Cases plots show counts of self-reported cases as bars and fitted values from the poisson mixed349 

model as blue points. Case data collection was abandoned in early February 2022 (shaded area).350 

Swab plots show results at two locations within each building, with one sample collected in a351 

high-traffic area (blue) and the other in a low-traffic area (red). Swab PCR results are expressed352 

as the number of SARS-CoV-2 viral copies plus one, on a log-scale. Points represent the result353 
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for a single swab. Wi-fi plots show the peak daily number of simultaneous connections per 354 

building. No Wi-Fi data was available for the RES building. Shaded areas on the ‘copies’ and 355 

‘wifi’ panels indicate university closures and study breaks. 356 
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TABLES 358 

 359 

Table 1. Summary of the Poisson regression model selected by backward elimination, 360 

considering main effects only (n=29). 361 

Term 

Incidence Rate 

Ratio 95% CI  

Intercept 1.4 0.9 - 1.9 

Swab Positivity 1.7 1.2 - 2.3 

Regional WW 1.7 1.2 - 2.4 

 362 
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APPENDIX 364 

 365 

Table S1. Summary of the random intercepts logistic regression model used for testing the effect 366 

of traffic-level (high vs. low traffic) on detection of SARS-CoV-2 in surface swabs by PCR. 367 

effect group term estimate std.error statistic p.value conf.low conf.high 

fixed  Intercept 0.11 0.04 -6.31 < 0.0001 0.05 0.21 

fixed  traffic:high 1.28 0.33 0.95 0.34 0.77 2.13 

ran_pars site SD (Intercept) 0.71      

 368 
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