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ABSTRACT 

Background and Aims: We previously reported clinical features associated with outcomes in 

pediatric ulcerative colitis (UC). Here we developed a histopathology model to predict 

corticosteroid-free remission (CSFR) on mesalamine therapy alone.  

 

Methods: Pre-treatment rectal biopsy slides were digitized in training and validation groups of 

292 and 113 pediatric UC patients, respectively. Whole slide images (WSI) underwent pre-

processing. Thirteen machine learning (ML) models were trained using 250 histomic features 

including texture, color, histogram, and nuclei. Feature importance was determined by the Gini 

index with the classifier re-trained using the top features.  

 

Results: 187571 informative patches from 292 training group patients (Male:53%; Age:13y 

(IQR:11-15); CSFR:41%) were trained on 13 ML classifiers. The best model was random forest 

(RF). Eighteen optimal histomic features were identified and trained, and the corresponding WSI 

AUROC was 0.89 (95%CI:0.71, 0.96), accuracy of 90% for CSFR. Features were re-trained on 

an independent real-world dataset of 113 patients and the model WSI AUROC was 0.85 

(95%CI:0.75, 0.95), accuracy of 85%.  

 

Conclusion: Routine histopathology obtained at diagnosis contains histomic features associated 

with UC treatment response. 
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INTRODUCTION  

The initial presentation of ulcerative colitis (UC) within the pediatric population exhibits a degree 

of uniformity, the majority characterized by extensive colitis at time of diagnosis. However, the 

response to initial therapy demonstrates marked heterogeneity.1 It is challenging to discriminate 

which patients would successfully improve on corticosteroids followed by mesalamine (5-ASA 

therapy) maintenance therapy, and those who would benefit from early introduction of biologic 

therapy. Identifying the optimal temporal window for the administration of biologic treatments 

and effective stratification of patients based on associated risk factors, remains a pivotal yet an 

unmet clinical exigency. 

 

The clinical and biological predictors of response to standardized pediatric colitis therapy 

(PROTECT) study, a multicenter study of newly diagnosed UC children, aimed to address this, 

primarily identifying those children that would be successfully maintained on mesalamine (5-ASA) 

maintenance therapy at one year.1 The study identified three early clinical features, pediatric 

ulcerative colitis activity index (PUCAI) <45, hemoglobin ≥10g/dL at time of diagnosis and week 

4 clinical remission as predictors of steroid-free clinical remission. The resultant predictive model 

demonstrated an area under the curve of 0.70 (95%CI 0.65, 0.75) and cross validation of 0.63 

(95%CI 0.57, 0.69). Moreover, PROTECT offered novel insights into the prognostic utility of 

histological features assessed at disease onset, notably surface villiform architectural 

abnormality1,2 and rectal eosinophilia. The predictive capacity of histological features has been 

most recently evaluated in the setting of clinical relapse and treatment response3, 4, but there is a 

paucity of studies evaluating the prognostic role of such features at diagnosis. 

 



The manual evaluation of histological slides remains indispensable. However, in the setting of a 

predictive tool that has the potential for wide adoption, such an approach would be restrictive. 

Manual evaluation is time consuming and the reported inter- and intra-rater variability ranging 

from 0.48 to 0.945. Alternatively, automated image processing can provide standardized 

quantitative and high-throughput analysis that has the potential to be widely implemented in 

clinical practice.  In oncopathology image analysis frameworks have been developed to evaluate 

whole slide digital pathology images for classification tasks6-8, by extracting histomorphometric 

features from the images.  These features otherwise known as histomic or handcrafted features, 

have been mathematically engineered to capture the underlying properties of the tissue9-11. 

 

In this study we used the PROTECT diagnostic treatment naïve hematoxylin and eosin (H+E) 

stained rectal biopsies for whole slide imaging (WSI) and advanced computational approaches to 

develop an automated histomics based model to predict corticosteroid free clinical remission 

(CSFR) with the only therapy being mesalamine at one year following diagnosis.   

 

  



MATERIAL AND METHODS  

Study Participants. PROTECT was a multicenter inception cohort study based at 29 centers in 

the United States and Canada12. 400 children aged 4–17 years with a diagnosis of UC based on 

established clinical, endoscopic, and histological parameters were included. Inclusion criteria 

included disease extension beyond the rectum, a baseline Pediatric Ulcerative Colitis Activity 

Index (PUCAI) score of at least 10, no previous therapy for colitis, and stool culture negative for 

enteric bacterial pathogens, including Clostridium difficile toxin. Detailed protocol and study 

description can be found in Hyams et al1, 12. Depending on the initial PUCAI score (PUCAI less 

than 10 denoted inactive disease or remission, 10−30 denoted mild disease, 35−60 denoted 

moderate disease, and 65 or higher denoted severe disease), patients received initial treatment with 

either mesalamine (mild disease), or corticosteroids (moderate and severe disease), with physician 

discretion permitted. A detailed description of treatment guidelines is provided in Hyams et al1. 

All patients on mesalamine received study drug in the form of Pentasa (Shire 

Pharmaceuticals/Pantheon, Greenville, NC, USA). 

 

In the current study, a sub-cohort of 292 treatment naïve patients with available rectal biopsy 

samples from the PROTECT study were included (Table 1) for model development. The external 

validation test cohort included 113 pediatric patients enrolled and prospectively followed in the 

Canadian Children IBD Network (CIDsCANN) inception cohort study at the Hospital for Sick 

Children (Sickkids), Toronto, one of 12 participating sites, (Supplementary Table 1).13, 14  The 

biopsy samples from both cohorts were taken from the most inflamed part of the rectosigmoid and 

were routinely processed and fixed in formalin and embedded in paraffin blocks from which 4–5 

micron sections were cut and stained with hematoxylin and eosin (H+E) (Roche, HE600). All 



slides were scanned at 20x, Aperio T2 for digital analysis. The PROTECT biopsies were all 

processed at Cincinnati Children’s Medical Center, and Sickkids biopsies in their clinical 

pathology laboratory.  

 

We used the PROTECT study primary outcome of corticosteroid-free remission (CSFR) at one 

year on mesalamine therapy alone and with no colectomy. Clinical remission was defined as a 

PUCAI score <10 and with no corticosteroid use for 4 weeks or longer immediately prior to one 

year. The outcome measure for the external test cohort was analogous to PROTECT, except the 

use of other 5-ASA therapy in addition to Pentasa was permitted. 

 

Image Pre-Processing. We implemented a two-step pre-processing strategy comprised of stain 

normalization and patch generation. We applied Python Staintools library15, a structure-preserving 

color package on the whole slide images (WSI), to standardize the slides with one WSI identified 

as the benchmark image. We first undertook brightness normalization using Luminosity 

Standardizer16, followed by stain normalization with the Vahadane method16. The digitally driven 

stain normalization process allows standardizing the stain color appearance of a source image with 

respect to a reference image (also referred to as the target image), with no specific, laboratory pre-

analytical, procedures protocols, or specific expertise required (Supplementary Figure 1).  We 

generated patches of 512*512 pixels and undertook experiments to determine the optimal overlap 

ratio and brightness threshold parameters. The overlap ratio indicates the overlap between patches, 

with the aim to provide sufficient coverage of the WSI, with the brightness threshold determining 

informative from non-informative patches. We applied the same imaging pre-processing 

parameters on both the PROTECT and Sickkids rectal biopsy slides.  



Histomic Features. Algorithms have been manually engineered, to extract distinctive 

characteristics and repeated patterns from histopathology images, that can be used as input features 

in machine learning models.  These interpretable features have been referred to as histomics. The 

features capture the texture (spatial arrangement), morphology/shape, color, inter-voxel patterns, 

and orientations in a given image. We constructed five different classes of histomic features: nuclei, 

histogram-based, hue saturation value (HSV) color features and two texture features, gray level 

co-occurrence matrix features (GLCM) and local binary pattern (LBP) to capture information at 

the patch-level. For example, LBP feature creates a binary pattern, by comparing the intensity of 

each pixel in an image to the intensity of its neighboring pixel and encodes whether it is darker or 

brighter.  To extract nuclei features we applied the Otsu threshold method, which can automatically 

separate an object of interest (e.g., nuclei), at a given threshold from the background tissue. 

Delaunay triangulations, and Voronoi diagram algorithms were applied to understand the spatial 

relationships between the nuclei. Feature computation details are described in the Supplementary 

Methods. Imaging data was read by SimpleITK package in Python17, and GLCM and LBP features 

generated by skimage packages18 (graycomatrix, local_binary_pattern). We utilized HistomicsTK, 

a Python package for the analysis of digital pathology images, to count the number of nuclei19. 

Features were implemented using self-developed functions without relying on pre-existing 

packages or libraries.  

 

Model Training and Identification of Optimal Features. We trained histomic features on 13 

machine learning models (Naïve Bayes, Bagging, AdaBoost, CatBoost, and Tree-based) and 

logistic regression with 5-fold cross-validation, for patch-level classification. We fine-tuned the 



hyperparameters by grid search20 (Supplementary Figure 2). Models were implemented and built 

by Scikit-learn library21.  

 

Feature importance was determined by the mean decrease in GINI (MDG), a measure of how each 

variable discriminates each image into their correct class, averaged across all decision trees22, 23. 

Features with higher MDG, have the greatest predictive power and are most important for 

classification24. The feature importance was computed using the Scikit-Learn 

‘features_importance’ function and was normalized. We selected the optimal features for 

classification and re-trained the patch-level models.  We undertook an alternative approach to 

further understand the impact of each feature class. We trained the 5-class features independently 

and determined the most discriminative features based on the MDG. We combined the optimal 

features into a single feature pool and re-trained the ML classifier. Slide-level prediction was 

defined by threshold voting. The voting thresholds were evaluated from 0.4 to 0.6, with CSFR 

ratio as a hyperparameter.  

 

Evaluating Prediction Model Performance. The performance of patch-level and whole slide 

image (WSI) models was evaluated using area under the receiver operating characteristic curve 

(AUROC), accuracy, precision, sensitivity, specificity, F1 score, and 95% confidence intervals 

obtained by 5-fold boot strapping.  The F1 score combines precision and recall into one metric, 

and ranges from 0 to 1, 0 indicating poor model performance. We used the DeLong test to assess 

the performance difference between the AUROC of the various predictive models.  

 



Feature Interpretation. To evaluate the impact and importance of the optimal features on 

remission prediction, we generated the SHapley Additive explanation (SHAP) value24. The SHAP 

value measures the contribution of the feature value to the prediction value. Positive SHAP values 

(direction of x-axis) were indicative of CSFR, and higher mean feature value (in red color) a 

positive impact on prediction.  

  



RESULTS  

Cohort Characteristics. The training cohort consisted of 292 treatment naïve pediatric UC 

patients from the multicenter PROTECT study. The median age at presentation was 12.7 years 

(IQR 11, 15), 154 (53%) were male, 242 (83%) White and 17 (6%) Black. 118 (41%) patients 

achieved the primary outcome of corticosteroid free remission (CSFR) on mesalamine therapy 

alone at one year after diagnosis. Table 1 summarizes the demographic, phenotypic and 

histological features. The independent validation cohort consisted of 113 pediatric UC patients 

from a single center. The median age was 13 years (IQR 11,15), and 60 (53%) were male, 56 (51%) 

White, 23 (21%) South Asian and 8 (7%) Black. Forty percent achieved CSFR on 5-aminosalyciate 

therapy alone. The clinical disease severity at presentation differed between the two groups, 

medium PUCAI of PROTECT patients being 50 (IQR 35, 65) compared to 60 (IQR 40, 75) in the 

validation cohort, p=0.01 (Supplementary Table 1). 

 

Identification and Quantification of Histomic Features. Figure 1A depicts the pre-processing 

workflow to generate informative patches from our whole slide digitized H&E image (WSI). The 

figure outlines our two-step pre-processing strategy compromised of stain normalization and patch 

generation.  We adopted a brightness ratio of 0.8 and overlap patch ratio of 0.25, generating 187571 

informative 512*512 patches (Supplementary Figure 3) from the 292 WSI from the PROTECT 

data, and 85842 patches from the 113 WSI from the Sickkids data. These patches were used to 

compute the histomic features for model training.  Histomic features are objectively quantifiable 

and interpretable, representing various morphological architectures within the tissue.  We 

computed 250 histomic input features at the patch-level from five classes: 64 histogram-based 



features, 156 gray level co-occurrence matrix (GLCM), 10 local binary pattern (LBP), 9 hue 

saturation value (HSV) color features, and 11 nuclei structure features (Figure 1B).  

 

Histogram-based features represent the distribution of color or intensity values in an image using 

a histogram25. The mean and standard deviation of the pixel values in a histogram can be used to 

represent the brightness and contrast of an image, whilst the skewness and kurtosis describe the 

texture. GLCM texture features describe the spatial relationship between pixel intensities in an 

image26. LBP features compare the gray-level intensity of each pixel with its neighboring pixels27. 

Nuclei features were generated based on three different polygon methods (Otsu’s threshold, 

Delaunay triangulations, and Voronoi diagrams), and features were determined from the pixel 

value from each polygon. Five nuclei features used the Otsu’s algorithm which is a thresholding 

method to segment the images into small objects28 (Figure 2).  

 

Predictive Performance of the Patch-level Histomic Model. 187571 informative patches from 

292 patients were trained with 5-fold cross validation on 13 machine learning classifiers and 

logistic regression (Supplementary Table 2A). The optimal model trained on 250 histomic features 

at the patch-level was random forest (RF).  The AUROC was 0.92 (95%CI: 0.89, 0.95) and 

accuracy 0.92 (95%CI: 0.90, 0.94), compared to logistic regression 0.52 (95%CI: 0.44, 0.60) and 

0.53 (95%CI: 0.45,0.60), respectively (Figure 3).  Eighteen optimal features were selected based 

on the ranking of the feature importance computed by the mean decrease in Gini (MDG) (Figure 

3A, Supplementary Figure 4).  These features consisted of three gray level co-occurrence matrix 

(GLCM), eight local binary patterns (LBP), two hue saturation value (HSV) and five nuclei 

features. The best model trained on the 18 features at the patch-level, was random forest model 



(RF), with an AUROC of 0.88 (95%CI: 0.85,0.92) and accuracy of 0.90 (95%CI: 0.80, 1.00) 

(Supplementary Table 2B). Collectively, these analyses identified a set of 18 pre-treatment rectal 

histomic features associated with steroid free clinical remission. The optimal performance 

characteristics were achieved by training the data at the patch-level on a random forest classifier. 

 

To evaluate the importance of each feature class, we also trained each class using the two top 

performing models (Supplementary Table 3A and 3B).  Random forest outperformed extra trees 

at the patch-level for each class. The AUROC of histogram-based features (n=64) was 0.85 

(95%CI: 0.82, 0.88), AUROC for GLCM (n=156) was 0.87 (95%CI: 0.84, 0.90), AUROC of LBP 

features (n=10) was 0.83 (95%CI: 0.80, 0.86), AUROC of color (n=9) features was 0.80 (95%CI: 

0.78, 0.82), and AUROC of nuclei features (n=11) was 0.80 (95%CI: 0.76, 0.83). For each class, 

the optimal features based on MDG were selected, of 13 histogram-based features, 4 LBP features, 

9 GLCM features, 4 color features, and 3 nuclei features.   A total of 33 features were identified 

and were trained on RF and Extra Trees (ET) models. Random forest was the best model, with a 

patch-level AUROC of 0.89 (95%CI: 0.85, 0.93) and accuracy 0.90 (95%CI: 0.87, 0.92) 

(Supplement Table 2B). 

 

Predictive Performance of the Whole Slide Image Histomic Model. To distinguish CSFR from 

non-CSFR at the individual slide-level from patch-level predictions, we determined a voting 

threshold of 0.475 (optimal true positive and negative predictive value). Supplementary Figure 5 

summarizes the experimental findings of various voting thresholds. The AUROC and accuracy at 

the WSI from the patch-level model using the entire set of 250 histomic features was 0.87 (95%CI: 

0.73, 1.00) and 0.90 (95%CI: 0.80, 1.00) and with 33 features 0.89 (95%CI: 0.82, 0.94) and 0.90 



(95%CI: 0.80, 1.00), respectively.  The model trained using 18 optimal features was comparable 

with models trained on 250 features, with an AUROC of 0.89 (95%CI: 0.71,0.96) and accuracy of 

0.90 (95%CI: 0.80, 1.00) (Table 2A). The DeLong test demonstrated no significant statistical 

difference between the predictive performance of the random forest model using 18 versus 33 

features, p-value of 0.59.  

 

Feature Validation on an External Cohort. We evaluated the histomics feature set on a real-

world cohort of pediatric UC patients. We applied the optimal 18 histomic features on an 

independent external cohort.  The AUROC and accuracy at the patch level was 0.88 (95%CI: 0.84, 

0.91) and 0.88 (95%CI: 0.82, 0.92) respectively. Similarly, at the WSI level AUROC of 0.85 

(95%CI: 0.75, 0.95), and accuracy of 0.85 (95%CI: 0.75, 0.95) respectively (Table 2A). The 

optimal histomics feature in an external validation cohort exhibited comparable performance 

(Table 2A). 

 

Interpretability of Histomic Features. The interpretability of the optimal features was evaluated 

by the Shapley Additive exPlanations (SHAP) value, as illustrated in Figure 4A. The y-axis 

indicates the feature.  The x-axis indicates the SHAP-value, a positive value indicative of CSFR 

and a negative value of non-CSFR. The magnitude of the feature value is represented by a color 

bar, red being high and blue low. Each individual patient is represented by a dot. We noted nuclei 

features with a higher value, Otsu_equivalent_diameter, Otsu_area, and Otsu_perimeter, have a 

positive impact upon the likelihood of CSFR. Conversely, a high value of LBP_2_5 has a negative 

impact (negative SHAP value) on the likelihood of CSFR.  Figure 4B visualizes the feature 



Otsu_equivalent_diameter at the slide level. We observed a similar trend in our external cohort 

(Supplementary Figure 6).  

 

  



DISCUSSION  

In this multicenter study, we discovered and externally validated 18 histomic features extractable 

from routine clinical rectal histopathology samples collected at diagnosis. These features 

accurately predicted which pediatric UC patients would achieve CSFR on mesalamine therapy 

alone.   

 

In the PROTECT inception cohort study of standardized corticosteroid and mesalamine induction 

therapy, we evaluated features at diagnosis and following four weeks of induction therapy 

predictive of week 52 CSFR on mesalamine alone.  We found patients with a pediatric ulcerative 

colitis index <45 and hemoglobin ≥10g/dL at diagnosis, together with achieving clinical remission 

by four weeks following diagnosis, were more likely to experience this outcome.12  The clinical 

and laboratory features demonstrated only modest predictive utility in classifying patients for this 

outcome, which is in contrast to the 18 histomic features, exhibiting superior predictive capability. 

 

Our analysis of routine histopathology demonstrated children presenting with more severe clinical 

disease activity at diagnosis exhibited lower levels of rectal eosinophilic inflammation, and higher 

levels of surface epithelial villiform changes.2  Consistent with this, patients with a higher rectal 

biopsy eosinophil count were less likely to escalate to anti-TNF therapy.1, 12   However, no standard 

histopathology features were found to be predictive of the primary outcome, CSFR on mesalamine 

alone.  A recent study utilized digitized colonic biopsies from 273 adult UC patients to automate 

classification of histologic severity, and to predict future flares of disease.29  The model accurately 

distinguished colonic samples with histopathologic activity from those in histologic remission, and 

performed similarly to expert pathologists in predicting flares of clinical disease activity.  Similarly, 

a computer-aided diagnosis system automated the PICaSSO Histologic Remission Index (PHRI), 



a simplified scoring system that detects mucosal neutrophils, reliably identifying active from 

quiescent UC in a subset of 138 biopsies.30  Consistent with this, in the current study we have 

discovered and validated 18 predictive rectal histomic features extractable from routine clinical 

histopathology specimens.  Importantly, the machine-learning based histomic features models 

were superior to logistic regression, and models based on clinical, endoscopic, and histopathologic 

measures of severity for patient classification.  These recent studies emphasize the likely high 

impact of incorporating automated histopathology analysis into UC patient classification, ideally 

with further refinement of these approaches in the context of additional cohort studies and clinical 

trials.   

 

Our study has several strengths, but also some limitations.  We applied a novel machine-learning 

pipeline to derive and test histomic features associated with an important clinical outcome in 

pediatric UC patients.  Our discovery cohort was from a large multicenter study which utilized 

standardized corticosteroid and mesalamine induction therapy, while our validation cohort 

reflected real world experience.  Despite increased clinical and endoscopic disease severity in the 

validation cohort, the frequency of steroid-free remission with mesalamine alone was comparable 

to the discovery cohort.  Moreover, the 18 optimal rectal histomic features exhibited similar test 

characteristics for patient classification in the two cohorts.  This may suggest shared biology 

underlying histomic features and treatment responses, not accounted for by current clinical severity 

measures.   Following further validation in adult UC patients, these histomic features are likely to 

have strong generalizability.  Moreover, following digitization and pre-processing, the rectal 

biopsy slides obtained for routine clinical care yielded reliable histomic data, supporting 

widespread testing of this approach to supplement routine histopathologic assessments. Also, 



histomic features are agnostic and unlike deep learning are interpretable, reproducible, and easily 

employed in digital pathology for automation.   

 

In the current study, we have validated 18 rectal histomic features which when incorporated in a 

machine learning model predicted steroid-free remission on mesalamine alone in children with 

Ulcerative Colitis. These morphometric features capture the properties within the tissue, and 

further support the development of an agnostic automated histopathology based predictive tool for 

classifying treatment response in UC patients.  

  



Table 1: Demographic clinical and histological characteristics of training cohort stratified 

by primary outcome of corticosteroid free remission on mesalamine alone at one year 

 

 Steroid free remission 

N=118 

Not in steroid free 

remission 

N=174 

P-value 

Age (years) 13 (10, 15) 13.5 (11, 15) 0.59 

 

Race    

0.37 White 101 141 

Black 6 11 

Asian 7 5 

Male 63 (53%) 91 (52%) 0.89 

 

Disease Extentⴕ 

Distal (E1/E2): 

Extensive(E3/E4) 

 

31 (26%) : 87 (74%) 

 

26 (15%) : 148 (85%) 

 

0.05 

 

Disease activity at presentation 

PUCAIⴕⴕ 45 (25, 60) 55 (40, 70) 0.0003 

 

Endoscopic Mayo    

0.002 Mayo 1 22 (19%) 16 (9%) 

Mayo 2 70 (59%) 88 (51%) 

Mayo 3 26 (22%) 70 (40%)  

Nancy Index*    

Grade 1 18(56%) 14(44%)  

Grade 2 74(44%) 95(56%) 0.009 

Grade 3 26(29%) 65(71%)  

Initial Induction therapy 

Mesalamine 56 (47%) 42 (24%)  

0.0003 

 
Oral corticosteroids 36 (31%) 65 (37%) 

IV corticosteroids 26 (22%) 67 (39%) 

Expressed as median (interquartile range); ⴕDisease extent: E1 ulcerative proctitis; E2 Left 

sided UC; E3 Extensive (hepatic flexure distally); E4 Pancolitis; ⴕⴕPUCAI: Pediatric 

Ulcerative Colitis Activity Index; *Nancy index: Grade 1 none/chronic inflammation only; 

Grade 2 inclusive of acute inflammation without crypt abscesses; Grade 3 inclusive of abscess 

 

 

  



Table 2A: Whole slide image model performance metrics using the 18 optimal Histomic 

features 

 

 Sensitivity Specificity Precision F1 score Accuracy AUROC 

 

PROTECT cohort 

 

Random 

Forest 

0.84 

(0.78,0.90) 

0.94 

(0.82,1.00) 

0.91 

(0.82,1.00) 

0.87 

(0.82,0.92) 

0.90 

(0.80,1.00) 

0.89 

(0.71,0.96) 

Logistic 

regression 

0.47 

(0.30,0.63) 

0.50 

(0.41,0.58) 

0.59 

(0.50,0.67) 

0.48 

(0.40,0.56) 

0.48 

(0.42,0.54) 

0.48 

(0.41,0.56) 

SICKKIDS cohort 

 

Random 

Forest 

0.78 

(0.49,1.00) 

0.91 

(0.81,1.00) 

0.84 

(0.57,1.00) 

0.82 

(0.59,1.00) 

0.85 

(0.63,1.00) 

0.85 

(0.75, 0.95) 

Logistic 

regression 

0.42 

(0.34,0.50) 

0.43 

(0.39,0.49) 

0.53 

(0.50,0.59) 

0.43 

(0.40,0.47) 

0.48 

(0.44,0.51) 

0.47 

(0.40,0.55) 

 

Table 2B: Model performance metrics using baseline clinical disease severity variables  

 

 Sensitivity Specificity Precision F1 score Accuracy AUROC 

 

PROTECT cohort (model development with PUCAI, NANCY histological score and 

Endoscopic MAYO)  

 

Random 

Forest  

0.32 

(0.24,0.41) 

0.70 

(0.63,0.77) 

0.42 

(0.36,0.48) 

0.37  

(0.34,0.39) 

0.55  

(0.51,0.59) 

0.51  

(0.47,0.56) 

Logistic 

regression 

0.36  

(0.28,0.45) 

0.81  

(0.75,0.87) 

0.57  

(0.48,0.66) 

0.44  

(0.38,0.51) 

0.63  

(0.59,0.67) 

0.59  

(0.54, 0.63) 

  



Figure 1: Histomic feature extraction approach 

 (A) A two-step pre-processing approach, including stain normalization and patch generation. The 

Vahadane method was applied to stain normalize, and two thresholds were used for patch 

generation process to select informative patches, and to provide sufficient coverage of the WSI (B) 

We then computed 250 histomic input features at the patch-level for model training, from five 

classes: Histogram-based features, color features, nuclei features and two texture features: Gray 

level co-occurrence matrix features, local binary pattern features 

 

 

 

  



               

Figure 2: Example images of nuclei Histomic features  

(A) Image shows hematoxylin and eosin after stain normalization, (B) an image of nuclei 

segmentation, (C) Otsu threshold polygon and (D) nuclei bounding boxes generated by  

histomics TK19  

 

  



Figure 3: Overview machine learning approach and comparative patch-level predictive 

model performance  

(A) Overview of histomic predictive machine learning approach, shows two parrallel approaches. 

Thirteen machine learning models trained using  i) the entire 250 features and ii) 5 class features 

independently. Feature importance determined by mean decrease in GINI (MDG) for each 

approach and re-trained to classify corticosteroid free clinical remisson (CSFR) on mesalamine 

alone at one year. Plot (B) shows under the receiver operative curve (AUROC) with 95% 

confidence interval (CI), 5-fold cross validation (CV), for patch-level performance using the 

optimal 18 features derived from the 250 features. Plot (C) shows AUROC with 95% CI and 5-

fold CV, for patch-level performance using the optimal 33 features from the 5-class feature 

approach. Venn diagram (D) shows shared histomic features between the 18 and 33 optimal 

features, and includes 12 features: GLCM_contrast_3_2, GLCM_contrast_1_2, LBP_2_5, 

LBP_2_0, LBP_2_7, LBP_2_1, LBP_2_6, H_mean, Otsu_equivalent_diameter, Otsu_area, 

Otsu_perimeter, Otsu_extent.  

 

 

          



Figure 4: Histomic feature importance represented by the SHapley Additive exPlanations 

(SHAP) values  

Plot (A) shows the relationship between the 18 histomic features and the outcome of CSFR with 

mesalamine alone at one year.  Positive SHAP-values (x-axis) are indicative of clinical remission, 

and negative value of non-remission. The magnitude of each feature value is represented by the 

color bar, red being high and blue low. Features include LBP: Local Binary Pattern, GLCM: Gray 

Level Co-occurrence Matrix; Histogram features: H_third moment and H_mean and Nuclei 

features: Otsu_perimeter, Otsu_eccentricity, Otsu_area and Otsu_equivalent_diameter. Image (B1) 

shows non-overlapping patches of H&E stain normalized whole slide images, and (B2) heatmap 

of the Otsu equivalent diameter, a nuclei feature and the color bar representing feature values, high 

value in red/brown, low value in blue.  
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