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ABSTRACT 

Atopic dermatitis (AD) is a chronic inflammatory skin disease. AD has heterogeneous phenotypes, 
making it challenging to predict treatment effects for each patient and to generate personalised 
treatment recommendations. Here we aim to develop a computational model that predicts the 
evolution of AD severity and generates treatment recommendations for individual patients. We 
modelled the temporal evolution of eczema severity by applying a previously developed 
computational framework (EczemaPred) to the daily record of Patient-Oriented SCORing Atopic 
Dermatitis (PO-SCORAD) collected from 16 AD patients over 12 weeks in an observational study. 
We also leveraged historical data from 337 AD patients to kickstart the model training and reach 
more robust conclusions. We estimated the effects of topical corticosteroids and emollients on the 
next day’s PO-SCORAD, and generated personalised treatment recommendations using Bayesian 
decision analysis on whether treatment should be applied to improve PO-SCORAD on the next day 
for each of the 16 patients. We calibrated daily PO-SCORAD recorded by patients with monthly 
SCORAD assessed by clinical staff to improve the data quality. This study demonstrated a proof-
of-concept for generating personalised treatment recommendations for AD using a Bayesian model 
that integrates multiple sources of information, including PO-SCORAD, SCORAD, and treatment 
usage.  
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INTRODUCTION 

Atopic dermatitis (AD or eczema) is a chronic inflammatory skin disease characterised by dry, itchy 
skin [1]. The current treatments mainly aim to manage disease symptoms using, e.g. topical 
corticosteroids and emollients. Given the heterogeneity of the disease symptoms and treatment 
responses, designing personalised treatment strategies for AD is highly important [2]. 

A rule-based treatment algorithm for AD management and control was found effective in a 
randomised controlled trial [3]. However, rule-based algorithms cannot recommend the treatment 
that is most likely to be effective for a given patient as they cannot simulate the outcomes of 
multiple regimens. 

In this study, we aim to propose a computational pipeline that can generate personalised treatment 
recommendations for AD. We will achieve it by predicting how eczema severity on the following 
day will change if different treatment regimens are applied, e.g. if the patient applies topical 
corticosteroids and/or emollients today. The pipeline will recommend treatment regimens that will 
reduce the eczema severity predicted for the next day. 

Our proposed pipeline is based on EczemaPred [4], a computational framework to model dynamic 
changes in eczema severity. EczemaPred consists of a collection of Bayesian state-space models 
that can predict the evolution of individual severity items (e.g. dryness, redness) constitutive of 
severity scores. Aggregating the predicted scores for relevant severity items provides us with the 
prediction of eczema severity scores. EczemaPred models address multiple challenges when 
working with real-world eczema severity data and can quantify uncertainty in severity 
measurement and prediction. The effectiveness of EczemaPred was previously demonstrated for 
predicting the evolution of Patient-Oriented SCORing Atopic Dermatitis (PO-SCORAD) [5]. Here 
we use EczemaPred models to estimate the efficacy of topical corticosteroids and emollient cream 
and produce treatment recommendations by applying Bayesian decision theory [6].  

 

METHODS 

We developed a computational pipeline to generate personalised treatment recommendations (Fig. 
1A). The central part of the pipeline is a multivariate Bayesian state-space generative model based 
on EczemaPred (Fig. 1B, detailed in the Model subsection below). The model’s inputs are PO-
SCORAD assessed daily by patients, SCORAD evaluated monthly by clinical staff, and treatment 
usage (yes/no) within the past two days (grey circles in Fig. 1B). We also used knowledge from a 
prior study in the form of power priors to inform the parameters of the EczemaPred model to reach 
more robust conclusions and kickstart model training. The model produces inferences about 
treatment effects, the dynamics of the severity and its measurement biases, as well as predictions 
for future PO-SCORAD and SCORAD scores. The algorithm recommends whether or not to use 
topical corticosteroids, emollient creams, both or none on a given day to reduce predicted AD 
severity for the next day. 
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Figure 1: A) Overview of the method. The data (PO-SCORAD, SCORAD, treatment usage) and 
existing knowledge (power prior) are inputs to the model to produce inferences about treatment 
effects, the dynamics of the latent severity, and biases between SCORAD and PO-SCORAD. 
Treatment recommendations are generated from predictions on PO-SCORAD and SCORAD for a 
given utility function. B) Schematic of the EczemaPred model. Grey and white circles correspond to 
observed and latent variables, respectively 

 

Data 

We used the previously published data from an observational study (ClinicalTrials.gov, 
NCT04553224) with 16 adult AD patients (mean age 25 years, SD=5) with a mean SCORAD of 
34.6 (SD=4.4) at inclusion [4]. The study was approved by IEC (CPP Ile de France V, Saint 
Antoine Hospital, n°582211) and took place at Hôtel Dieu Hospital in Toulouse, France. The study 
participants gave written informed consent. Patients recorded PO-SCORAD daily using an app 
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(https://www.poscorad.com) for up to 12 weeks (84 days), resulting in 1136 patient-day 
observations (13.6% missing values between the first and last observations). They also recorded 
whether treatment was used within the past two days in the daily app, for topical corticosteroids 
and emollient cream. During the study period, SCORAD was measured by a trained clinical staff 
every four weeks. Example data from a representative patient is shown in Fig. 2. 

SCORAD (and PO-SCORAD by extension) is defined by 0.2 � � 3.5 	 � 
 , where � � �0, 100� 
corresponds to the extent (the percentage of the area affected by eczema in the whole body, 
taking discrete values in the dataset), 	 � �0, 18� to intensity signs and 
 � �0, 20� to subjective 
symptoms. The intensity signs component (	� is the sum of the scores for six intensity signs 
(dryness, redness, swelling, oozing, scratching, and thickening), each of which is assessed on an 
ordinal scale as 0 (absent), 1 (mild), 2 (moderate) or 3 (severe). The subjective symptoms 
component (
� is the sum of scores for two symptoms (itching and sleep loss), each of which is 
assessed on a visual analogue scale from 0 (no symptom) to 10 (severe symptom), taking discrete 
values with a resolution of 0.1 in the dataset (0.0, 0.1, …, 10.0). In this study, we work with the nine 
severity items of SCORAD (extent, six intensity signs and two subjective symptoms) rather than 
the aggregate score to extract as much information as possible from the data. 

 

 

Figure 2: Data from a representative patient. Left: Trajectories of the aggregate PO-SCORAD 
severity score, the usage of emollient cream and topical corticosteroid within the past two days. 
Right: Trajectories of the nine severity items of PO-SCORAD. Orange dots correspond to the 
SCORAD measured every four weeks. The lines are broken when the measurements are missing. 

 

Model 

We used the previously published EczemaPred PO-SCORAD model [4] and extended it by 
integrating clinical measurements (SCORAD) and treatment usage data (Fig. 1B). The original 
EczemaPred PO-SCORAD model consisted of nine independent Bayesian state-space models, 
one for each severity item. The state-space models assume the observed severity items are the 
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imperfect measurement of a latent severity (representing a “true severity”) which we assumed to 
follow a random walk. 

In this paper, we modelled the severity items jointly by assuming multivariate latent dynamics, i.e. 
changes in the latent severity items are correlated. We modelled the measurement of all severity 
items using ordinal logistic distributions, which provide a way to control the variance/precision of 
the measurements. We proposed a parametrisation of the ordinal logistic distribution that is more 
interpretable and scales better to a higher number of categories, so that it can be used to model 
extent and subjective symptoms, instead of using Binomial distributions as in [4]. 

We integrated SCORAD measurements in the model by assuming that they are derived from the 
same latent score as for PO-SCORAD items but with a measurement bias between PO-SCORAD 
measured by patients and SCORAD measured by clinical staff. The bias is severity item-
dependent and can decrease with time because PO-SCORAD assessments were found to 
become closer to SCORAD with experience [5]. We also assumed that SCORAD measurements 
are more precise (with a smaller variance for the measurement error) than PO-SCORAD 
measurements. We did not calibrate subjective symptoms as they are common for PO-SCORAD 
and SCORAD. 

We included trend and treatment response components in the latent dynamics of each severity 
item. The trend component corresponds to an exponential smoothing of the difference between 
latent severity items at consecutive times. For the treatment response component, we first 
deconvolved the time-series data of treatment usage within the past two days, using deterministic 
and probabilistic inference, to obtain a time-series of daily treatment usage. The inferred daily 
treatment usage is then used to model item-dependent treatment effects for corticosteroids and 
emollients, assuming treatment usage at day � only influences the severity at day � �  1. 

Details of the model, including equations, are shown in Supplementary A. 

 

Priors 

We used a power prior for the model parameters corresponding to the measurement and latent 
dynamics [7]. The power prior is an informative prior constructed from historical data. Informative 
priors are useful when working with small data and can help kickstart the model's training as the 
model is “pre-trained”. To construct the power prior, we used the data from an already published 
study investigating the role of an emollient in 337 children with AD [8]. The data was also used to fit 
EczemaPred models [4]. The power prior was derived from the marginal posterior estimates of the 
population parameters of state-space models with ordinal logistic measurements and latent 
random walk. 

Details of the power prior and priors for other parameters are given in Supplementary B. 

 

Treatment recommendation 

Having developed a generative Bayesian model that can make severity predictions (for PO-
SCORAD, SCORAD and their constitutive items) under different treatment conditions (actions), we 
applied Bayesian decision analysis to generate treatment recommendations under uncertainty that 
balance the costs and benefits of treatment use [6]. In Bayesian decision analysis, we choose a 
utility function that quantifies the “value” of taking a particular action (e.g. application of 
corticosteroids), make predictions corresponding to different actions, and recommend the action 
that maximises the expected utility (objective function) of the associated predictions. The objective 
function can include a risk-sensitive criterion to balance the benefit of the action (expected utility) 
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and its risk (variance of utility, i.e. its uncertainty), which is also a way to balance the exploration-
exploitation trade-off. We assumed a patient could be risk-averse (penalising uncertainty, or 
pessimistic), risk-neutral, or risk-seeking (welcoming uncertainty, or optimistic). 

We used a simple utility function, ������, �� � ������ � ��������, where � denotes the action of 
using/not using topical corticosteroids or emollient creams, ���� is the predicted SCORAD for the 
following day when taking action �, and ������� corresponds to the “perceived” cost of action �. 
The “perceived” cost could represent the fear of side effects [9], the inconvenience or monetary 
cost of using treatment, and, more generally, any mechanisms that drive poor adherence. For 
example, if the cost of not using treatment is 0 and the cost of using corticosteroids is 1, a risk-
neutral patient would only use corticosteroids if the expected SCORAD after taking corticosteroids 
is 1 point less than the expected SCORAD when using no treatment. 

We generated treatment recommendations by successively training the model every day, 
considering different “perceived” costs of using treatment (no cost, normal cost or high cost) and 
tolerance to risk (risk-averse, -neutral or -seeking). More details are given in Supplementary C. 

 

Model inference and validation 

Model inference was performed using the Hamiltonian Monte Carlo algorithm in the probabilistic 
programming language Stan [10] with four chains and 2000 iterations per chain, including 50% 
warm-up. Prior predictive checks and fake data checks were conducted. 

Our base model was the EczemaPred model with ordinal logistic measurement distributions for all 
severity items, as proposed in [4]. We evaluated the contribution of each new model component to 
the model predictive performance in a stepwise manner, by successively adding the power prior, 
the correlations between severity items, the calibration of PO-SCORAD with SCORAD, treatment 
effects and the dynamic trend of severity to the base model. 

Comparison of the base model with standard time-series forecasting models was already 
conducted for all severity items and aggregate scores in [4] and was not repeated here, although 
we reported the performance of uniform and historical forecasts as references. Predictions were 
generated in a forward chaining setting where the model was retrained every four days and were 
evaluated with the logarithmic scoring rule (log predictive density, lpd) [11]. 

 

RESULTS 

We fitted the models to the data without finding any evidence for an absence of convergence by 
monitoring trace plots and checking the potential scale reduction factor (��� [12]. We conducted 
posterior predictive checks and found no clear discrepancies between the data and the models’ 
simulations.  

 

Model inference 

(1) Dynamics of severity items 

Joint fitting of the nine latent severity items of PO-SCORAD to our EczemaPred model revealed 
that changes in the severity items were positively correlated (Fig. 3A). This implies more 
uncertainty in the prediction of PO-SCORAD compared to when the severity items are 
independent, as changes accumulate rather than cancel out when we aggregate the severity items 
to derive PO-SCORAD. In particular, changes in scratching, oozing, and redness appear to be 
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strongly correlated, and changes in itching are moderately correlated with changes in all intensity 
signs. Extent is only mildly correlated with subjective symptoms or intensity signs. 

The evolution of some items is more uncertain than others (Fig. 3B). For example, the evolution of 
oozing is more uncertain than the evolution of thickening. Most of the prediction uncertainty can be 
explained by the uncertainty of the measurement process, as the uncertainty of the measurement 
process is always larger than that of the latent dynamics (Fig. 3B). This highlights the difficulty in 
accurately modelling the evolution of AD severity.  

 

 

Figure 1: Posterior estimates of the state-space model. A) The expected correlation of the changes 
between the nine latent severity items. An ellipse in the upper diagonal matrix represents the 
strength of the correlations. The lower diagonal matrix displays the expected correlation 
coefficients. B) Estimates of the measurement and latent dynamic standard deviations for all 
severity items (normalised by the range of the score, mean and 90% credible intervals). 

 

(2) Calibration of PO-SCORAD with SCORAD 

We estimated the measurement bias between patient-assessed PO-SCORAD and clinician-
assessed SCORAD in our model. The direction and amplitude of the biases were item-dependent 
(Fig. 4A). For example, patients tend to overestimate the extent and scratching, but underestimate 
dryness, redness, swelling, and oozing, compared to clinicians, on average. The biases mostly 
stayed constant over time, except for scratching, for which the bias is nearly 0 after the second 
measurement at week 4 (Fig. S3). We would have expected the biases to decrease with time if 
patients were getting better at assessing their symptoms. It is possible that the patients in this 
dataset may have already been familiar with PO-SCORAD assessments or that learning did not 
happen without any feedback provided. 

Using the estimated measurement biases, we converted PO-SCORAD predictions into SCORAD 
predictions (i.e. forecasting SCORAD) and inferred SCORAD values as if they had been measured 
daily (i.e. backcasting and nowcasting SCORAD, Fig. 4B). The severity trajectory for a 
representative patient (Fig. 4B) demonstrates that the expected SCORAD would have been higher 
than the observed PO-SCORAD. This is consistent with our estimates that clinicians tend to score 
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intensity signs higher than patients (Fig. 4A) and with the fact that the intensity signs component 
(3.5 	) contributes more to the total SCORAD than the extent component (0.2�). 

 

 

Figure 2: Calibration of PO-SCORAD measurements using SCORAD. A) Estimates of the initial 
bias (at day one) for SCORAD relative to PO-SCORAD (mean and 90% credible intervals; positive 
bias means SCORAD > PO-SCORAD), normalised by the range of the score. For example, 
patients are expected to overestimate the extent (with the range of �0, 100�) by 0.13 � 100 � 13 
compared to the score given by clinicians. B) PO-SCORAD trajectories and the corresponding 
estimates of SCORAD a posteriori. The distribution is represented by stacked credible intervals in 
shades of blue. For this representative patient, estimated SCORAD (i.e. what a clinician would 
have measured) would be higher than PO-SCORAD (assessed by the patient), on average. 

 

(3) Treatment effects  

The model parameters corresponding to treatment effects were estimated as negative, confirming 
that the application of treatment is associated with a decrease in AD severity (Fig. 5A). Topical 
corticosteroids were more effective than emollient creams in reducing AD severity on the following 
day, although estimates of treatment effects were small in absolute values. Treatment effects were 
also uncertain with a large CI, probably because nearly half of the patients (7/16, when excluding 
missing values in treatment usage) reported never using corticosteroids or emollients. In addition, 
treatment effects were highly heterogeneous across severity items. For example, a patient with 
severe scratching but no thickening of the skin would respond more to corticosteroids than a 
patient with no scratching but severe thickening, all else being equal. 

 

Treatment recommendations 

We generated treatment recommendations for different decision profiles defined by no/normal/high 
perceived cost of treatment and a risk-averse/neutral/seeking nature of the patient (Fig. 5B). We 
confirmed a high perceived cost of treatment is associated with no treatment being recommended. 
In contrast, a null perceived cost of treatment is associated with both treatments being 
recommended, which was anticipated considering that application of either treatment is associated 
with a decrease in AD severity (Fig. 5A). The most recommended action for a “normal” perceived 
cost of treatment is to use corticosteroids but not emollients. This is consistent with the result that 
corticosteroids are more effective than emollients (Fig. 5A), as the benefit of additional use of 
emollients may not be worth their “perceived” cost in the “normal” cost scenario. 
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For a “normal” perceived cost of treatment, the algorithm is more likely to recommend “using both 
treatments” for a risk-averse patient (who penalises uncertainty in the outcome) than for a risk-
seeking patient (who welcomes uncertainty in the outcome), for whom the algorithm recommends 
“using no treatments” more often because taking treatment does not sufficiently improve the best-
case scenario for the cost of taking the treatment. 

It is worth emphasising that recommendations can be “personalised” even though treatment 
parameters are not patient-dependent. Different actions can be recommended for patients with the 
same SCORAD (Fig. S4B) because treatment responses depend on the composition of severity 
items (Fig. 5A) i.e. the clinical phenotype. For example, application of treatments (corticosteroids 
and/or emollients) is recommended more often than no application when the severity is high (Fig. 
S4B), even though this is not explicitly implemented in the utility function. This may be a side effect 
of more severity items being present for severe AD and each severity item triggering treatment, 
resulting in more potential for improvement and overall better responses to treatment. The severity-
dependence of the recommendations could also be confounded by the fact that patients tend to 
have a higher severity at the beginning of the study when the algorithm recommends “using both 
treatments” more (Fig. S4A). This also illustrates how recommendations can change as more data 
comes in, and treatment effects are learnt. These possible explanations highlight the difficulty of 
interpreting the descriptive summaries of recommendations post-hoc. Nonetheless, every 
recommendation can be transparently explained by examining the utility function of the patient and 
their tolerance to risk. 

 

Figure 3: A) Average treatment effects on each severity item for topical corticosteroids (black) and 
emollient cream (orange), normalised by the range of the score (mean and 90% CI). For example, 
the expected effect of corticosteroids on the latent sleep loss item, defined in [0, 10], is �0.02, 
meaning that taking corticosteroids will decrease the sleep loss score by 0.02 � 10 � 0.20 on 
average. B) Distribution of recommended actions for no/normal/high perceived cost of treatment 
(vertical facets) and a risk-averse/neutral/seeking patient (horizontal facets). 
 and 
� correspond to 
the action of using and not using corticosteroids, respectively;   and  ! correspond to the action of 
using and not using emollients, respectively. 

 

Model validation 

We validated the model to assess whether its new features (compared to the previously published 
EczemaPred models) were associated with improvements in predictive performance (Fig. S5). We 
did not find evidence that using additional information (power priors, SCORAD measurements, 
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treatments) was associated with noticeable long-term improvements in predictive performance. 
This may not be surprising as the main contribution of the power prior is to accelerate the learning 
process, the addition of at most four SCORAD measurements is unlikely to change the 
performance of 12-week-long daily time-series by much, and treatment effects were expected to be 
small [13]. Similarly, modelling the trend in the latent dynamics did not improve performance, as 
the dynamic trend was estimated to be null (Fig. S2). More surprisingly, modelling correlations 
between severity items did not significantly change the average predictive performance measured 
by the lpd, although the resulting predictive distributions were different. 

 

DISCUSSION 

In this study, we developed a computational pipeline to generate personalised treatment 
recommendations for AD (Fig. 1). The pipeline integrates multi-dimensional data (Fig. 2) and uses 
EczemaPred [4] to predict the evolution of eczema severity and infer treatment effects. Our model 
demonstrated that changes in eczema severity items are positively correlated (Fig. 3A). We 
estimated the effects of using topical corticosteroids and emollient creams on AD severity and 
demonstrated a proof-of-concept to generate personalised recommendations (Fig. 5). To support 
treatment decision, we calibrated self-assessed PO-SCORAD using SCORAD assessed by clinical 
staff (Fig. 4). We also leveraged existing knowledge about the dynamics of the disease by 
designing an informative prior derived from historical data to accelerate model training (Fig. S1).  

This study clarified the strong heterogeneity in the latent dynamics of severity, in the biases 
between self-assessed and clinician-assessed severity, and in treatment effects. For example, we 
found that patients are expected to overestimate the extent but underestimate redness, and that 
topical steroids are more effective in reducing scratching than skin thickening (lichenification). As a 
result, treatment effects measured with an aggregate severity score (e.g. SCORAD) may appear 
different between two patients with the same score but with distinct clinical phenotypes (e.g. 
measured in PO-SCORAD with different values of extent or intensity of signs like scratching or 
thickening), even though treatment effects are not patient-dependent per se [14]. The fact that the 
clinical phenotype of patients may confound treatment effects highlights the importance of 
modelling severity items rather than the aggregate scores. 

We showed how EczemaPred can be used to simultaneously make predictions, inferences about 
treatment effects, and treatment recommendations. Using the same model ensures producing 
consistent results when addressing several research questions. For example, our treatment 
recommendations are consistent with the inferred treatment effects and the model’s predictions for 
PO-SCORAD and SCORAD. This would not necessarily be the case if we used different 
models/analytical methods for score predictions and treatment recommendations, or interpreted 
the decisions of a black-box treatment recommendation algorithm a posteriori where model 
explanations may not reflect their actual decision process [15]. The recommendations also account 
for the correlated dynamics between severity items, and benefit from the knowledge of prior 
studies, while considering uncertainty in measurements, parameters and predictions. 

For medical decision-making, we usually have only imperfect data but the decisions cannot be 
postponed until more evidence is collected. Under such circumstances, it is crucial to have a 
flexible model that can integrate all the available information [16]. For example, PO-SCORAD 
(assessed by patients) is supposedly less accurate than SCORAD (assessed by trained clinical 
staff) but can be measured daily, unlike SCORAD which can only be measured infrequently when 
patients visit a clinic. By calibrating PO-SCORAD with SCORAD, we can get the best of high-
quality (SCORAD) and high-frequency (PO-SCORAD) measurements to improve the training data 
quality and build trust in the model’s output. Using informative priors from historical data also 
mitigates the cold-start problem. 
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This study has some limitations. Our proposal to generate treatment recommendations is very 
much a proof-of-concept. Even if the recommendations were optimal and reliable, the 
recommended treatments would only be associated with small improvements in AD severity 
because the estimated treatment effects are small and uncertain. More importantly, the model is 
not causal. This is why we did not attempt to evaluate the quality of the recommendations. 
Potentially many confounding factors are missing, making counterfactual inference not possible. 
For example, better quality treatment data would be required, such as the daily usage, potency and 
quantity of treatment applied. It is also possible that the self-reported treatment usage may 
sometimes be inaccurate. The suggested recommendations are illustrative, as the utility function 
and decision parameters would need to be adjusted to match patients’ preferences and could 
evolve over time. We did not detect any improvement in the predictive performance despite the 
additional complexity implemented in the model, highlighting the difficulty of accurately predicting 
the evolution of eczema severity. Data from a larger cohort would be required to investigate 
patient-dependence (in treatment effects, measurement biases, or even dynamical parameters) 
and to ensure our results can be generalised. It would also be relevant to include additional 
treatments such as topical calcineurin inhibitors and PDE4 inhibitors in the data. 

In a clinical setting, our model could be used to help track the evolution of AD severity scores 
between two visits with great accuracy, by removing the biases of self-assessed severity 
measures. The model could also provide insights into the evolution of the disease and be a tool to 
initiate a discussion between clinicians and patients. The decision to initiate treatment could be 
fully data-driven with prior knowledge (e.g. from similar patients) being incorporated systematically. 
Switching from non-effective treatment could also be sped up compared to standard care because 
the model would continuously refine its estimate of treatment effects. Such an algorithm would 
therefore work as if patients were in their own adaptive clinical trial, and personalised treatment 
recommendation algorithms could improve the care of AD patients in future. 

As a future direction, the proposed model could be used to reduce the dimensionality of the latent 
severity space to search for common patterns in the severity trajectories and cluster patients into 
different endotypes [17]. We can hypothesise that the correlated latent trajectories associated with 
different severity items may be partly redundant and the manifestation of a few potentially 
independent mechanisms that could stratify patients. This type of model-based clustering has 
already been applied to investigate whether the “atopic march” hypothesis was supported by data 
[18]. Data-driven modelling may be more useful if applied to better understand AD dynamics than 
for prediction only, considering the difficulty in accurately predicting AD severity's evolution. 

 

REFERENCES 

[1] S. M. Langan, A. D. Irvine, and S. Weidinger, “Atopic dermatitis,” The Lancet, vol. 396, no. 
10247, pp. 345–360, Aug. 2020, doi: 10.1016/S0140-6736(20)31286-1. 

[2] S. J. Galli, “Toward precision medicine and health: Opportunities and challenges in allergic 
diseases,” Journal of Allergy and Clinical Immunology, vol. 137, no. 5, pp. 1289–1300, May 
2016, doi: 10.1016/j.jaci.2016.03.006. 

[3] J. Schmitt, M. Meurer, U. Schwanebeck, X. Grählert, and K. Schäkel, “Treatment following 
an evidence-based algorithm versus individualised symptom-oriented treatment for atopic 
eczema: A randomised controlled trial,” Dermatology, vol. 217, no. 4, pp. 299–308, 2008, 
doi: 10.1159/000151355. 

[4] G. Hurault et al., “EczemaPred: A computational framework for personalised prediction of 
eczema severity dynamics,” Clinical and Translational Allergy, vol. 12, no. 3, p. e12140, 
Mar. 2022, doi: 10.1002/clt2.12140. 



12 

 

[5] J. F. Stalder et al., “Patient-Oriented SCORAD (PO-SCORAD): A new self-assessment 
scale in atopic dermatitis validated in Europe,” Allergy: European Journal of Allergy and 
Clinical Immunology, vol. 66, no. 8, pp. 1114–1121, Aug. 2011, doi: 10.1111/j.1398-
9995.2011.02577.x. 

[6] J. O. Berger, Statistical Decision Theory and Bayesian Analysis. New York, NY: Springer 
New York, 1985. doi: 10.1007/978-1-4757-4286-2. 

[7] J. G. Ibrahim, M. H. Chen, Y. Gwon, and F. Chen, “The power prior: Theory and 
applications,” Statistics in Medicine, vol. 34, no. 28, pp. 3724–3749, 2015, doi: 
10.1002/sim.6728. 

[8] G. S. Tiplica et al., “The regular use of an emollient improves symptoms of atopic dermatitis 
in children: a randomized controlled study,” Journal of the European Academy of 
Dermatology and Venereology, vol. 32, no. 7, pp. 1180–1187, Jul. 2018, doi: 
10.1111/jdv.14849. 

[9] A. W. Li, E. S. Yin, and R. J. Antaya, “Topical Corticosteroid Phobia in Atopic Dermatitis,” 
JAMA Dermatology, vol. 153, no. 10, p. 1036, Oct. 2017, doi: 
10.1001/jamadermatol.2017.2437. 

[10] B. Carpenter et al., “Stan�: A Probabilistic Programming Language,” Journal of Statistical 
Software, vol. 76, no. 1, pp. 1–32, 2017, doi: 10.18637/jss.v076.i01. 

[11] A. Gelman, J. Hwang, and A. Vehtari, “Understanding predictive information criteria for 
Bayesian models,” Statistics and Computing, vol. 24, no. 6, pp. 997–1016, Nov. 2014, doi: 
10.1007/s11222-013-9416-2. 

[12] A. Vehtari, A. Gelman, D. Simpson, B. Carpenter, and P.-C. Bürkner, “Rank-Normalization, 
Folding, and Localization: An Improved Rˆ for Assessing Convergence of MCMC (with 
Discussion),” Bayesian Analysis, vol. 16, no. 2, Jun. 2021, doi: 10.1214/20-BA1221. 

[13] G. Hurault, E. Domínguez-Hüttinger, S. M. Langan, H. C. Williams, and R. J. Tanaka, 
“Personalized prediction of daily eczema severity scores using a mechanistic machine 
learning model,” Clinical and Experimental Allergy, vol. 50, no. 11, pp. 1258–1266, Aug. 
2020, doi: 10.1111/cea.13717. 

[14] S. Senn, “Statistical pitfalls of personalized medicine,” Nature, vol. 563, no. 7733, pp. 619–
621, Nov. 2018, doi: 10.1038/d41586-018-07535-2. 

[15] C. Rudin, “Stop explaining black box machine learning models for high stakes decisions and 
use interpretable models instead,” Nature Machine Intelligence, vol. 1, no. 5, pp. 206–215, 
May 2019, doi: 10.1038/s42256-019-0048-x. 

[16] A. E. Ades and A. J. Sutton, “Multiparameter evidence synthesis in epidemiology and 
medical decision-making: current approaches,” Journal of the Royal Statistical Society: 
Series A (Statistics in Society), vol. 169, no. 1, pp. 5–35, Jan. 2006, doi: 10.1111/j.1467-
985X.2005.00377.x. 

[17] T. Bieber et al., “Clinical phenotypes and endophenotypes of atopic dermatitis: Where are 
we, and where should we go?,” Journal of Allergy and Clinical Immunology, vol. 139, no. 4, 
pp. S58–S64, Apr. 2017, doi: 10.1016/j.jaci.2017.01.008. 

[18] D. C. M. Belgrave et al., “Developmental Profiles of Eczema, Wheeze, and Rhinitis: Two 
Population-Based Birth Cohort Studies,” PLoS Medicine, vol. 11, no. 10, p. e1001748, Oct. 
2014, doi: 10.1371/journal.pmed.1001748. 

  


