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Abstract  

Objectives 

We sought to compare two of the most promising plasma biomarkers for Alzheimer disease: 

pTau181 and pTau217. 

Methods 

pTau181 and pTau217 were quantified using SIMOA Quanterix and ALZpath assays in the 

well characterized prospective multicentre BALTAZAR cohort of mild cognitive impairment 

(MCI) participants.  

Results 

Among MCI participants, 55% were Aβ+ and 29% developed dementia due to AD. pTau181 

and pTau217 were higher in the Aβ+ population with fold-change of 1.5 and 2.7 respectively. 

Concentration were also higher in MCI that converted to AD versus with hazard ratio of 1.38 

(1.26-1.51) for pTau181 compared to 8.22 (5.45-12.39) for pTau217. The AUC for predicting 

Aβ+ was 0.783 (95%CI: 0.721-0.836; cut-point 2.75 pg/mL) for pTau181 and 0.914 (95%CI: 

0.868-0.948; cut-point 0.44 pg/mL) for pTau217. The predictive power of pTau217 was not 

improved by adding age, sex, and APOEε4 status in a logistic model. The confounding 

factors of age, APOEε4 or renal dysfunction were associated with both pTau levels, but 

pTau217 clinical performance was only marginally modified by these comorbidities. Using a 

two cut-point approach, a 95% positive predictive value for Aβ+ corresponded to pTau217 

> 0.8 ng/mL and a 95% negative predictive value at <0.23 ng/mL. At these two cut-points, 

the percentages of MCI conversion were 56.8% and 9.7% respectively, while the annual rates 

of decline in MMSE were -2.32 versus -0.65. 

Conclusions 

Plasma pTau217 and pTau181 both correlate with AD, but the fold-change in pTau217 make 

it better to diagnose cerebral amyloidosis, and predict cognitive decline and conversion to AD 

dementia. 
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Introduction 

Alzheimer disease (AD) is a problem that needs close monitoring for better management in 

an aging society where it is more and more prevalent. AD likely follows a trajectory; amyloid 

build-up is thought to be the preclinical starting point in cognitively unimpaired people. 

These people start to have cognitive problems in this ‘prodromal’ stage. This mild cognitive 

impairment (MCI) is associated with gradual build-up of neuronal tau tangles and conversion 

to dementia due to AD. There is an urgent need for the use in clinical practice of biomarkers 

for these early stages to better manage the disease.  

The protein at the heart of AD, Tau, exists in many post-translationally modified protein 

isotypes. Tau has many phosphorylation sites, many of which are in the proline-rich region, 

and some of these have been posited as useful biomarkers 1. Two of the moieties that have 

generated the most interest are threonines 181 and 217. Although pTau181 is a useful marker 

to predict amyloid status and conversion to dementia 2, many publications in the last three 

years are painting a picture whereby pTau217 is even more promising3. For example, in 2020 

cerebrospinal fluid (CSF) pTau217 was already found to outperform pTau181 to detect AD 4 

5. A likely crucial factor in this superiority was that the fold-change in CSF was greater for 

phosphorylation position 217 than for 1816. 

The brain changes that occur in AD can currently be assessed in patients by two methods: 

either by PET or by CSF analysis. It is thus essential to find blood biomarkers that mirror 

these more invasive/expensive/lengthy tests as a pre-screen. As mentioned above, many 

studies have also found plasma pTau217 highly specific in distinguishing AD from normal, 

e.g.7-10. Indeed, plasma pTau217 is as good as any CSF markers or as PET screening to 

discriminate AD from other diseases 11. pTau217 can also distinguish AD from other forms of 

dementia like FTLD 10. Even more importantly from a clinical perspective, plasma pTau217 

can distinguish different stages of the AD trajectory. 

Several studies have demonstrated a link between pTau217 and cerebral amyloidosis (Aβ+). 

pTau217 has the power to detect Aβ+ MCI 12 and Aβ+ can be detected with an AUC of 0.91 
13. For example, Doré and colleagues found that preclinical subjects that are Aβ+ had twice 

the level of pTau217 rising to 3.5X in cognitive impairment 14. The Hansson group have 

shown that pTau217 correlates with clinical deterioration, cognitive decline and brain atrophy 

and can detect the difference between CU Aβ+ and Aβ- making it a surrogate marker for 

preclinical and prodromal AD 3 15-17.  In fact, plasma pTau217 is a predictor of poor cognitive 
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trajectory 8 18 and conversion to AD 19 20. Plasma pTau217 builds up for two decades before 

the onset of symptoms 21 and plasma pTau217 and 231 build-up earlier than Aβ PET can 

detect changes 22. 

Three different tests were compared by Janeldzide et al: ADx, Wahington U and Lilly with 

similar results 12. The Janssen test also gave similar results 20, although there are some doubts 

about its sensitivity 23. Similarly, the Lilly and MSD tests were found to be insufficiently 

sensitive to pick up pTau217 all the time 24. More recently the UGot test, gave good results 13. 

Not all the pTau217 assays used in these studies are available off-the-shelf to all 

investigators. Indeed, the ALZpath plasma pTau217 assay, which we evaluate below, is in fact 

the first scalable commercially available test. An article preprint has already suggested it is 

accurate in detecting AD pathology 25. In our results presented below this assay is comparable 

to other pTau217 assays in identifying cerebral amyloidosis, cognitive decline and conversion 

to AD dementia. Moreover, our study integrates the evaluation of comorbidities since the 

BALTAZAR cohort includes biomarkers designed to monitor metabolism, nutrition, diabetes 

and cardiovascular risk. Importantly, unlike for pTau181 the impact of comorbidities on 

performance seems to be limited probably in relation with the high fold change observed 

between normal and pathological groups. We therefore propose useful thresholds to confirm 

or rule out the presence of cerebral amyloidosis, information that can be used to stratify 

patients to select those who will benefit from the last line of anti-amyloid treatment. 

 

Materials and Methods 

Study population 

This study included MCI participants of the BALTAZAR multicenter prospective cohort 

(ClinicalTrials.gov Identifier #NCT01315639)26. All participants had clinical, 

neuropsychological, brain MRI and biological assessments (see below). Right and left 

hippocampal volumes were obtained for each participant using virtual segmentation of the 

hippocampus. APOE was genotyped in a single centralized laboratory. MCI subjects were 

selected according to the Petersen criteria 27. Participants were  assessed for conversion to 

dementia every six months for three years 26. The progression from MCI to dementia was 

defined by evaluation of the following parameters: (i) decline in cognitive function measured 

by mini-mental state examination (MMSE), (ii) disability in activities of daily living (ADL) 
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and (iii) clinical dementia rating sum of boxes. Conversions from MCI to AD dementia were 

reviewed by an adjudication committee. Participants were categorized, as amyloid-positive 

(Aβ+) or negative (Aβ-), based on their cerebrospinal fluid Aβ42/Aβ40 (ratio below 10% as 

measured with Euroimmun ELISA assays). Blood samples were taken at the first visit and, to 

minimize pre-analytical and analytical problems, identical plasma collection tubes were used 

across centers. Plasma aliquots were stored at -80°C until testing.  

Plasma pTau Measurement 

Plasma pTau was determined, using the Quanterix method that is based on ultrasensitive 

Simoa technology 28, on an HD-X analytical platform. Plasma pTau181 was measured with a 

commercial Advantage V1 kit (#104111). This assay has a low limit of detection at 0.019 

pg/mL and a low limit of quantification at 0.085 pg/mL. Quality controls, with low (QC 1 

with mean concentration of 3.82 pg/mL) or high (QC 2 - 52.4 pg/mL) assigned pTau181 

concentrations, are provided in the kits. Inter-assay coefficients of variation for QC 1 and QC 

2 were 7% and 5%, respectively. Plasma pTau217 was detected using a novel immunoassay 

developed by ALZpath, utilizing a proprietary monoclonal pTau217 specific antibody. For 

this assay, the low limit of detection is 0.0052 pg/mL and the limit of quantification was 0.06 

pg/mL. Intra- and inter-run precision were 11.4% and 14.6%, respectively. 

Biological Biomarker Measurements 

Blood samples, taken at baseline, were used for determination of routine parameters in 

ISO15189-certified laboratories: fasting glycemia, triglycerides, cholesterol (total, high-

density lipoproteins (HDL), low-density lipoproteins (LDL)), creatinine, prealbumin, 

albumin, total protein, C-reactive protein (CRP), hemoglobin, vitamin B12, thyroid 

stimulating hormone (TSH), folate, and red-cell folate 26. Estimated glomerular filtration rate 

(eGFR) based on creatinine, age, and sex was calculated using the CKD Epidemiology 

Collaboration (CKD-EPI) equation, revised in 2021 without inclusion of race29. High 

molecular weight (HMW) adiponectin was measured on stored samples using the 

LUMIPULSE G platform. 

Statistical Analyses 

General characteristics were analyzed in the MCI sample overall and in converter and non-

converter MCI subsets. Categorical variables were analyzed as percentage and counts (% 

(N)), continuous variables as mean and standard deviation (M (SD)) or median [25-75 

percentile IQR] and comparisons were made by χ2 test, t-test, Mann-Whitney U test or 
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analysis of variance (ANOVA, Kruskal-Wallis test). Cox proportional hazards regression 

models for conversion, with time to dementia as a dependent variable, were computed, with 

adjustment for age at blood draw, sex, and APOEε4 allele carrier status. We additionally 

plotted Kaplan-Meier curves for the different pTau tertiles and differences between tertiles 

were calculated by Log rank test. For all analyses, a two-sided α-level of 0.05 was used for 

significance testing. Receiving Operator Characteristic (ROC) curves, using conversion as a 

dependent variable, were also used. The corresponding areas under the curve (AUCs) were 

compared using the Delong method 30. For each comparison, the size of the different groups 

is indicated in the tables. Missing data have not been imputed. All analyses were performed 

using MedCalc (20·118) and R (R Core Team (2019)) software. 

 

Results 

Baseline MCI participant characteristics 

A subset of 473 MCI patients from the BALTAZAR cohort 26 was studied (Table 1). Mean 

age at baseline was 77.7 [SD 5.5] years. 28.5% of the subjects (135/473) converted to AD 

dementia during the 3-year period 31. Subjects who converted to AD dementia (MCI 

converters) did not differ from non-converters regarding their age, sex distribution, body 

mass index (BMI), or educational levels (Table 1). The average MMSE score was 26.4 [SD 

2.5] and 39.1% (184/470) of the MCI participants were APOE ε4 carriers. MCI converters 

had lower MMSE at baseline and a much higher MMSE decline per year, at -3.45 [SD 4.26] 

on average vs. -0.42 [SD 1.89] for the non-converter population. Hippocampal volume (R+L) 

(cm3) was also lower in converters than in non-converters. All these differences remained 

significant after adjustment for age, sex, APOE ε4 and the educational status. pTau217 levels 

were always lower than pTau181 levels; respective mean plasma levels in the MCI 

population were 0.49 [SD 0.34] vs. 3.18 [SD 1.49] pg/mL. The two sets of values were 

however correlated (Pearson correlation coefficient 0.73 [CI 95% 0.68-0.77], significance 

level p<0.0001). 

Plasma pTau217 and pTau181 in Aβ- and Aβ+ Participants 

In the subgroup of MCI with available CSF amyloid measurements, participants could be 

stratified in Aβ- and Aβ+ according to their CSF Aβ42/Ab40 ratio. Both plasma pTau217 and 

pTau181 levels were higher in Aβ+MCI than in Aβ- (0.75 [SD 0.34] vs. 0.28 [SD 0.19] 
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pg/mL for pTau217 and 3.87 [SD 1.38] vs. 2.6 [SD 1.42] pg/mL for pTau181) (Figure 1AB, 

Table 1). However, fold-change was much higher for pTau217 than for pTau181 (2.7 vs. 1.5). 

The AUC for Aβ+ detection was significantly higher for pTau217 (0.914 (95% CI: 0.868-

0.948) than for pTau181 (0.783 (95% CI: 0.721-0.836) (Figure 1, Supp Table 1). Optimal cut-

points were determined by Youden index at 0.44 pg/mL and 2.75 pg/mL for pTau217 and 

pTau181, respectively. The AUCs increased non-significantly in a logistic regression model 

with age, sex, and APOEε4 status (Figure 1CD, Table 2). Regarding the comorbidity blood 

biomarkers, folate and CRP concentrations were slightly lower in the Aβ+ population (Supp 

Table 1) but if we use a Bonferroni adjustment linked to the multiple comparison of 

comorbidities factoe, it does not reach the significance (p>0.001). 

Plasma pTau217 and pTau181 predict cognitive decline and conversion to AD dementia 

For MCI participants that converted to AD versus those that did not, the respective values 

were 0.69 [SD 0.37] vs. 0.41 [SD 0.29] pg/mL for pTau217 and 3.81 [SD 1.53] vs. 2.93 [SD 

1.39] pg/mL for pTau181 (Table1).  In a Cox proportional hazard model, conversion to AD 

dementia, during our three-year follow-up after adjustment for age, sex, and APOE ε4 status, 

showed a significant risk for age, MMSE, APOE ε4, hippocampal volume, pTau181 and 

pTau217 (Table 3). pTau217 had a higher hazard ratio at 8.30 (5.46-12.61), compared to 1.38 

(1.26-1.52) for pTau181. Importantly, none of the comorbidity biomarkers were 

independently associated with an increased risk of conversion (Supp Table 2). The relative 

risks of conversion to AD dementia, as predicted by high plasma pTau217 and pTau181, is 

illustrated by Kaplan-Meier curves of pTau tertiles (Figure 2AB). The hazard ratios (HRs) 

between the 1st and the 3rd tertile were 7.37 [95%CI: 4.86-11.16] and 3.83 [95%CI: 2.54 -

5.79] for plasma pTau217 and pTau181, respectively. We also tracked changes in MMSE over 

18 months (Figure 2CD). and found the steepest decline for the p217-high, third, tertile. The 

three p217 tertiles each predicted distinct cognitive decline trajectories. The differences were 

less significant for pTau181 with a smaller different between low and medium and no further 

effect in the third pTau181 tertile. 

Association of plasma pTau217 and pTau181 levels with different biomarkers and cohort 

characteristics 

The relationships, between plasma pTau concentrations and demographic or biological 

factors, collected at baseline in the BALTAZAR cohort, were studied using a linear 

regression approach. Plasma pTau217 and pTau181 were associated with BMI and APOE 
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status (Figure 3A). The presence of at least one  APOE ε4 allele was associated with 

significantly higher pTau values (t-test between APOE ε4 negative and positive population: 

p<0.0001). Levels of both pTau isoforms were also strongly related to renal function 

parameters: creatinine and eGFR (panel B). CRP for both isoforms and total protein for 

pTau181 were the only other biomarkers clearly associated with pTau levels. To further assess 

the impact of renal function on pTau performance, participants were stratified using eGFR 

values between normal, slightly reduced or impaired renal function (Figure 3CD). Impaired 

renal function was associated with increased pTau values in both the Aβ- and Aβ+ MCI 

populations. Renal function had a significant impact on the performance of pTau181, with the 

optimal cut-point not separating the two populations well. On the other hand, renal 

parameters had little effect on plasma pTau217 performance, likely because this biomarker 

showed a much higher fold change between the Aβ- and Aβ+ populations than pTau181. 

Definition of pTau217 cut-point to detect cerebral amyloidosis 

At the optimal threshold of 0.44 ng/mL, deduced from the ROC analysis, the positive 

predictive value (PPV) for Aβ+ detection was 88.5% and the negative predictive value (NPV) 

was 84.0% (Table 2). To achieve a PPV of 95%, plasma pTau217 had to be above 0.8 ng/mL, 

while to achieve an NPV of over 95%, pTau217 must be below 0.23 ng/mL. At these two cut-

points, the percentage of MCI converting in three years into AD dementia was 56.8% and 

9.7% respectively, while the annual rate of decline in MMSE was -2.32 and -0.65 (Table 4). 

Discussion 

This study examines the performance of plasma pTau181 and pTau217 in monitoring 

Alzheimer's disease (AD) parameters in the BALTAZAR cohort 26 with data on 473 

participants with mild cognitive impairment (MCI) over a three-year period, with regular 

assessments and biological fluid tests. Our main finding is that plasma pTau217 can 

accurately assess the presence of cerebral amyloidosis, with a confidence level above 95%, 

and that this biomarker predicts conversion of MCI to Alzheimer's-type dementia and 

cognitive decline. Plasma pTau217 performs significantly better than plasma pTau181 and 

overall, our results confirm previous observations in other large cohorts 3 18 24. 

However, commercially available assays of proven accuracy are required before pTau217 can 

move to the clinic. Most published studies on pTau217 had one drawback: the tests were not 

commercially available to standard clinical laboratories. These studies used in-house or 

proprietary assays that were not commercially available. With interest in pTau217, this 
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picture is set to change rapidly and, to date, no published work uses a commercially available 

assay. Our data will therefore be essential for the general deployment of clinical tests, which 

must comply with ISO15189 standards and be based on previously validated studies. 

As well as clinical reproducibility, interpreting plasma pTau217 levels will require knowledge 

of the medical context to be useful. An important factor for real-life use of assays in large 

populations is knowledge of the confounding factors that induce bias in the measurements. 

Indeed, it has been established that certain comorbidities, and in particular impaired renal 

function, can significantly modify the predictive value of plasma biomarkers. Other 

parameters such as age or BMI can also confound the value of AD prognostic biomarkers.  

For pTau181, we previously found impaired renal function likely undermines diagnostic 

performance 32. In the same cohort, we now study pTau217 and we observed that renal 

function and other potential confounding factors have a minimal effect on its performance. 

This is likely due to the high fold-change observed between normal and pathological 

situations. These results pave the way for wider, independent use of this marker. Note that 

none of the other factors we tested, such as age, sex, BMI, level of education or ApoE �4 

genoytpe, either separately or together, significantly improve the independent predictive 

value of plasma pTau207 by more than an AUC of 0.02. 

We are therefore in a situation where this marker alone is capable of providing major 

information for patient management, not only with regard to the presence of cerebral 

amyloidosis, which is important for anti-amyloid treatment selection and for diagnostic 

strategy 33, but also, for prognosis. Indeed high plasma pTau217 levels are associated with a 

high risk of conversion to AD dementia within three years. We can also see that cognitive 

evolution can be stratified with this marker, which is important information for the clinician. 

For clinical use, it is also necessary to define one or more pathological cut-points, and recent 

papers have proposed for pTau217 different approaches depending on the medical need 3 25 34 

35. A universally applicable plasma pTau217 cutting would be useful for the management of 

patients presenting cognitive disorders. General practitioners would then greatly appreciate a 

threshold ‘diagnosing’ cerebral amyloidosis with a 95% confidence level. In our cohort, the 

cut-point of > 0.44 pg/mL is a useful combination of sensitivity and specificity (>85%) and 

the cut-point of > 0.8 pg/mL gives a 95% positive predictive value for cerebral amyloidosis. 

Conversely, it is also very useful for patient management to be able to exclude the presence 

of cerebral amyloidosis with a high level of confidence (>95%). In our case, this low cut-
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point value is < 0.23 pg/mL. The intermediate zone of our study, or grey zone, between these 

two thresholds, represents 55% of the population. This percentage seems higher than in 

previous studies 3. The explanation certainly lies in our study population, which includes only 

MCI participants, and in the methods for detecting Aβ+ and pTau217. 

The present study has some limitations. To increase the likelihood of conversion to AD we 

excluded participants with Lewy Body, Parkinson, frontotemporal or vascular MCI disorders. 

Therefore 77% of subjects had amnestic MCI and 28% of participants developed AD 

dementia. Amyloid status was available in only a part of the population, since the 

BALTAZAR study focused on conversion, and it was defined using CSF biomarkers rather 

than with PET amyloid. 

The main strengths of the study lie in the large sample size of MCI participants that are well 

described, the controlled pre-analytical conditions, the use of a commercially available 

plasma pTau217 assays and the consideration of clinical chemistry analyte measurement 

realized at baseline. 

Conclusion 

These data place us at the dawn of a major change in the management of AD patients. This is 

linked to the clinical use of the plasma marker pTau217, whose performance using 

commercially available assays is exceptional both in terms of identifying cerebral 

amyloidosis and, as we have shown in this article, in predicting progression to Alzheimer's 

dementia and accelerated cognitive decline. This information is essential for optimal patient 

management, including diagnostic strategy, prevention and access to disease modifying 

therapy. 
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Figure legends 

Figure 1 Distribution and ROC curves of plasma pTau217 and pTau181 in MCI 

according to amyloid status. Values of pTau217 (A) and pTau181 (B) in pg/mL are 

represented in the Aβ- and Aβ+ populations. (C) ROC curves. Both biomarkers were 

significantly different between these two populations and a logistic regression model 

combining pTau values with age, sex, and APOEε4 status gave slightly higher AUCs.  (D) 

AUCs with 95% CIs. A Delong test was used to compare the different AUCs. 

 

Figure 2 – Conversion to AD dementia and MMSE evolution according to pTau181 or 

pTau217 tertiles Plasma pTau217 and pTau181 measurements were separated into tertiles 

and conversion to AD dementia determined at six-month intervals over three years (Panels 

AB). A very significant overall difference was observed for both pTau217 and pTau181 

(Logrank test (overall difference) 76.1 and 46.7 respectively, both P < 0.0001). However, 

hazard ratio (HR) between 1st vs 3rd tertile was 7.37 (4.86 to 11.16) compared to just 3.83 

(2.54 to 5.79 for plasma pTau217 and pTau181, respectively. The average slopes of MMSE 

decline per year in pTau terciles are plotted in panels CD. Grey shadows show the confidence 

interval. Lower lines show increasing tertile: first tertiles are green, second tertiles, blue, and 

third tertiles are orange. 

 

Figure 3 – Association of plasma pTau217 and pTau181 levels with different biomarkers 

and cohort characteristics Forest plots of associations between demographic (panel A) and 

comorbidity (panel B) biomarkers and plasma pTau217(red) or pTau181(blue), using linear 

regression of z-scores.  Means and 95% confidence intervals (CIs) are provided. The 

concentrations of plasma pTau217 (panel C) or pTau181(panel D), in Aβ- (orange) and Aβ+ 

(blue) participants, are represented in participants stratified by their estimated glomerular 

filtration rate (eGFR), (eGFR<=60: impaired renal function; 60-90 mildly reduced renal 

function, >90 normal renal function). The value corresponding to the optimal cut-points for 

Aβ+ detection (Youden index) in all the population is represented by a dotted line. Note that 

the line separates the Aβ- and Aβ+ population for pTau217 only. Abbreviations: APOE, 

apolipoprotein E; BMI, body mass index; eGFR, estimated glomerular filtration rate; MMSE, 

Mini–Mental State Examination.
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Tables 

Table 1. Patient characteristics. 

 
Total 

n 
MCI 

Value 
(Mean(sd)) 

Aβ- 
Value 

(Mean(sd)) 
Aβ+ 

Value 
(Mean(sd)) 

Aβ- vs 
Aβ+ 
(p) 

Adjusted 
age, sex, 
APOE 
ε4, 

education 

n MCI 
Non 

Converter 

Value 
(Mean(sd)) 

n MCI  
Converter 

Value 
(Mean(sd)) 

Converter 
vs. non 

converter 
(p) 

Adjusted 
age, sex, 
APOE 
ε4, 

education 

Age (years) 473 77.7 (5.5) 97 76.6 (5.1) 116 78 (5.9) 0.0780 / 338 77.4 (5.4) 135 78.4 (5.7) 0.0918 / 

Men (%) 473 38.7 97 45.4 116 36.2 0.1782 / 338 38.4 135 39.4 0.7135 / 

BMI (kg/m2) 466 25 (3.8) 97 25.4 (3.7) 112 24.2 (3.6) 0.0207 0.2558 334 25.1 (3.8) 132 24.7 (3.7) 0.3021 0.8348 

MMSE (/30) 462 26.4 (2.5) 94 27.1 (2) 113 25.8 (2.5) <.0001 0.0003 328 26.7 (2.5) 134 25.6 (2.5) <.0001 0.0003 

MMSE / year 417 -1.38 (3.18) 89 -1.2 (2.87) 105 
-1.87 
(4.24) 

0.1902 0.1061 285 -0.42 (1.9) 132 -3.45 (4.26) <.0001 <.0001 

1 or 2 APOE4 alleles (%) 470 39.1 97 15.5 116 53.4 <.0001 / 335 31.9 135 57.0 <.0001 / 

Hippocampal volume (R+L) (cm3) 383 4.55 (1.12) 82 4.64 (1.23) 98 4.52 (0.95) 0.4677 0.9674 271 4.79 (1.06) 112 3.99 (1.06) <.0001 <.0001 

Educational level (years) 472 5.2 (1.6) 97 5.3 (1.5) 115 5.4 (1.6) 0.0277 / 337 5.2 (1.6) 135 5.2 (1.6) 0.6877 / 

pTtau217 (pg/mL) 473 0.49 (0.34) 97 0.28 (0.19) 116 0.75 (0.34) <.0001 <.0001 338 0.41 (0.29) 135 0.69 (0.37) <.0001 <.0001 

pTtau181 (pg/mL) 473 3.18 (1.49) 97 2.60 (1.42) 116 3.87 (1.38) <.0001 <.0001 338 2.93 (1.39) 135 3.81 (1.54) <.0001 <.0001 

 

Values in the number (n) of MCI participants for which different data types were available and comparison between non-converter and 

converters, with t-student or χ2 and linear regression adjusted for age, sex, and the presence of the APOE ε4 allele; numbers were used to 

describe categorical variables. mean ± standard deviation for continuous variables. 

Abbreviations: MCI: mild cognitive impairment; APOE: apolipoprotein E; BMI, body mass index; MMSE, Mini–Mental State Examination; sd, 

standard deviation. 
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Table 2: AUCs of ROC curves for Aβ+ detection 

ROC analysis for of Aβ+ AUC in total population (95% CI) Cut-point (Youden index) Sensibility (%) Specificity (%) 

pTau217 0.914 (95% CI: 0.868-0.948) > 0.44 (pg/mL) 86.21 86.60 

pTau 181 0.783 (95% CI: 0.721-0.836) > 2.75 (pg/mL) 80.17 68.04 

pTau217 with Age Sex APOE ε4 0.913 (95% CI: 0.889-0.961) > 10.8 87.1 90.7 

pTau181 with Age Sex APOE ε4 0.824 (95% CI: 0.767-0.873) > 6.7 75.86 72.16 

Abbreviations: AUC: area under the curve; ROC: Receiver Operation Curve; CI: confidence interval. 

Table 3: Risk factors associated with conversion to dementia during followup 

Factors n HR Conversion (95%CI) p p adjusted (age, sex, APOE ε4) 

Age 473 1.03 (1-1.07) 0.0443 / 

Sex 473 0.87 (0.62-1.23) 0.4256 / 

BMI 466 0.99 (0.95-1.04) 0.7878 0.5496 

MMSE 462 0.84 (0.79-0.89) <0.0001 <0.0001 

APOE ε4 470 2.34 (1.67-3.3) <0.0001 / 

Hippocampal volume 383 0.58 (0.5-0.67) <0.0001 <0.0001 

Educational level 472 0.95 (0.85-1.05) 0.3032 0.3014 

pTau217 473 8.30 (5.46-12.61) <0.0001 <0.0001 

pTau181 473 1,38 (1,26-1,52) <0.0001 <0.0001 

 

Cox proportional hazard model of conversion to dementia in follow-up before and after adjustment for age, sex, educational level, and the APOE 

ε4 status. Abbreviations: HR, hazard ratio for conversion; CI: confidence interval; MCI, mild cognitive impairment; APOE: apolipoprotein E; 

BMI, body mass index; MMSE, Mini–Mental State Examination 
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Table 4. Characteristics of MCI participants at different pTau217 cutpoints 

pTau217 cut-points (ng/mL) % of MCI population PPV of Aβ+ (%) NPV of Aβ+ (%) % AD dementia conversion MMSE/year 

> 0.44 53.1 88.5 (95% CI: 82.2-92.8) 84.0 (95% CI: 76.8-89.3) 46.3 -2.07 

> 0.80 20.3 95.3 (95% CI: 83.6-98.8) 55.9 (95% CI: 52.5-59.2) 56.8 -2.32 

< 0.23 24.4 70.8 (95% CI: 66.4-74.9) 96.2 (95% CI: 86.2-99.0) 9.7 -0.65 

Abbreviations: Positive and negative predictive values: PPV, NPV; MMSE, Mini–Mental State Examination  
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