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Abstract  
Excessive alcohol consumption is a leading cause of preventable death worldwide. 
Neurobiological mechanisms associated with alcohol use disorder (AUD) remain poorly 
understood. To further understand differential gene expression (DGE) associated with AUD, we 
compared deceased individuals with and without AUD across two human brain regions, nucleus 
accumbens (NAc) and dorsolateral prefrontal cortex (DLPFC). Bulk RNA-seq data in both NAc 
and DLPFC from human postmortem brains (N ³ 50 with AUD and ³ 46 non-AUD) were 
analyzed for DGE using negative binomial regression adjusting for technical and biological 
covariates. The region-level results were meta-analyzed with a previously published, 
independent dataset (NNAc= 28 AUD, 29 non-AUD; NPFC= 66 AUD, 77 non-AUD). We further 
utilized these data to test for heritability enrichment of AUD-related phenotypes, gene co-
expression networks, gene ontology enrichment, and drug repurposing. We identified 176 
differentially expressed genes (DEGs; 12 in both regions, 78 only in NAc, 86 only in DLPFC) for 
AUD in our new dataset. By meta-analyzing with published data, we identified 476 DEGs (25 in 
both regions, 29 only in NAc, 422 only in PFC). Of these DEGs, we found 17 genes that were 
significant when looked up in GWAS of problematic alcohol use or drinks per week. Gene co-
expression analysis showed both concordant and unique gene networks across brain regions. 
We also identified 29 and 436 drug compounds that target DEGs from our meta-analysis in NAc 
and DLPFC, respectively. This study identified robust AUD-associated DEGs, providing novel 
neurobiological insights into AUD and highlighting genes targeted by known drug compounds, 
generating opportunity for drug repurposing to treat AUD.  
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Introduction  
 Alcohol use disorder (AUD) affected approximately 28.6 million adults in 2021 in the 
United States1, and there are 3 million deaths per year caused by harmful use of alcohol world 
wide2. AUD has 50-60% heritability3, and hundreds of genome-wide significant variants have 
been identified for alcohol dependence4, problematic alcohol use5–7, and/or consumption7–9 
(e.g., drinks per week). As a more complete picture is emerging for specific genetic variants 
underlying AUD and related phenotypes, the gene regulatory landscape associated with AUD 
remains largely unknown. Filling this critical gap will define potentially new neurobiological 
mechanisms associated with AUD and assist in the identification of possible new drug targets to 
treat AUD. By focusing on gene expression changes associated with AUD in human brain, this 
study identifies regulatory differences that may be driven by predisposing genetic variation or 
may be consequences of the alcohol exposure; both improve our understanding of the 
neurobiological mechanisms that relate to AUD. 
 Our study compares data from AUD cases and non-AUD controls in two key brain 
regions involved in the addiction cycle: the nucleus accumbens (NAc), implicated in the 
binge/intoxication stage, and the dorsolateral prefrontal cortex (DLPFC), implicated in the 
preoccupation/anticipation stage10. Both brain regions are linked to reward pathways as 
components of the dopaminergic mesolimbic system11. Exposure to alcohol increases dopamine 
levels via effects on dopaminergic neurons that originate in the midbrain and project into 
forebrain regions with NAc and prefrontal cortex (PFC) being most relevant to reward processes 
and addiction12,13. Disruption of the dopamine system in the NAc has been described as lying at 
the core of addiction14. Dopamine release into the NAc is regulated by the PFC15 and PFC 
dysfunction is associated with impulsivity, compromised executive function, and increased 
engagement in risky behavior16. Thus, the NAc and PFC are distinct, yet interrelated brain 
regions with functions highly relevant to the molecular mechanisms of AUD. 
 A few prior studies of AUD-related bulk RNA-seq gene expression in human brain have 
been reported, providing initial evidence for differential gene expression (DGE)17,18,19,20,21. 
However, none of these studies assessed results across independent datasets. Kapoor et al. 
conducted the largest prior study (N=138) with RNA-seq in PFC and identified 129 genes that 
showed significant altered expression (FDR < 0.05) between the 65 AUD cases and 73 non-AUD 
controls17. A smaller subset with RNA-seq in NAc (N=30 AUD, 30 non-AUD) showed 14 genes 
with significant altered expression19. Zillich et al. reported another dataset (N=48 AUD, 51 non-
AUD) with RNA-seq in three other brain regions and found significant evidence for DGE related 
to AUD in caudate nucleus (CN; 49 genes FDR < 0.05) and putamen (PUT; 1 gene FDR < 0.05) but 
no significant evidence in the ventral striatum (VS)18.   
 In this study, we report on a new dataset of 96 RNA-seq samples from NAc and 98 from 
DLPFC and meta-analyze results with uniform reprocessing of the Kapoor et al. dataset in NAc 
and PFC to increase sample size and statistical power to identify genes with robust evidence for 
DGE. We further evaluated overlap of differentially expressed genes (DEGs) between our study 
and Zillich et al. to compare DGE across brain regions, integrated DEGs with GWAS results to 
infer genetically driven DGE, and conducted gene ontology enrichment and gene co-expression 
analyses to explore potential mechanisms of DGE in AUD. We also looked up our AUD-
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associated DEGs in drug repurposing databases to identify pharmacotherapies that might target 
AUD.  

Materials & Methods 
 
 A workflow overview of the datasets and analyses can be found in Figure 1.  
 
AUD cases and controls among human postmortem NAc and PFC samples 

Postmortem human DLPFC (BA 46/9) and NAc tissues were obtained at autopsy from 
122 subjects (61 AUD, 61 non-AUD) as part of the Lieber Institute for Brain Development (LIBD) 
Human Brain Repository22. AUD cases and controls were defined based on two or more lifetime 
DSM-5 symptoms within a 12-month period. Non-AUD controls had no lifetime history of DSM-
5 AUD symptoms and postmortem ethanol toxicology of less than 0.06 g/dL. Decedents with 
major depressive disorder (MDD) were defined as those with a lifetime history of five or more 
DSM-5 MDD symptoms persisting for two weeks or longer. All details regarding these samples 
and phenotype data were provided in White et al.23 RNA was extracted using LIBD’s existing 
protocol24,25.  Illumina TruSeq Total RNA Stranded RiboZero Gold (Illumina Inc, San Diego, CA) 
was used for library prep. These samples will be referred to as the NAc_LIBD and PFC_LIBD 
datasets.  

The Kapoor et al. samples were obtained from the New South Wales Tissue Resource 
Center (NSW-TRC) and sequenced in two batches, one at the University of Texas at Austin (UT 
Austin) and the other at the New York Genome Center (NYGC). From both batches, fastq files 
for 143 prefrontal cortex (BA8) samples and 58 NAc samples were transferred from the 
University of Texas at Austin (Table 1). The raw data is publicly available on NCBI 
(PRJNA551775, PRJNA530758, PRJNA781630). Sequencing information was detailed in Kapoor 
et al17. The samples that were processed at UT Austin will be referred to as NAc_UT and 
PFC_UT. The samples processed at the New York Genome Center (NYGC) will be referred to as 
PFC_NYGC. 

Given that BA 46/9 (LIBD) and BA8 (NSW-TRC) are cytoarchitecturally adjacent and 
involved in similar brain functions, we chose to meta-analyze data from the two to maximize 
power. When discussing results specific to the LIBD samples, we use DLPFC to distinguish, when 
discussing results specific to the NSW-TRC samples, we use PFC, and when discussing meta-
analysis results, we use PFC.  

  
Bulk RNA-seq data processing, quality control (QC) 

For all datasets, reads were trimmed and filtered using Trimmomatic26 and transcripts 
were quantified using the GENCODE v40 (GRCh38) transcriptome with Salmon (v 1.1.0)27. Gene-
level quantification was done with the tximport R package (v1.14.2)28. QC metrics were 
calculated using MultiQC v1.729. Samples were filtered using the following QC metrics: effective 
sequencing depth >10 million reads, post-Trimmomatic retained reads percentage > 60%, mean 
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read GC content between 35% and 65%, Salmon mapping percentage > 30%, gene mapping 
percentage (combined intronic and exonic mapping) > 80%, intergenic/genic mapping ratio < 
0.9, Shannon index > the Shannon index IQR-based cutoff or transcriptome mapping 
percentage > 50%, mitochondrial mapping percentage < 10%, ribosomal RNA mapping 
percentage < 1%, and RIN > 5. After QC filtering, 98 samples (51 AUD, 47 Non-AUD) remained 
for NAc_LIBD and 96 (50 AUD, 46 Non-AUD) samples for PFC_LIBD (Table 1). Because the PFC 
samples from Kapoor et al. were sequenced at two different locations (UT Austin and NYGC) 
and had different sequencing depths, samples from each location were kept separate for 
analysis. After QC filtering, 57 (28 AUD, 29 non-AUD) NAc_UT samples remained, and all 143 
(66 AUD, 77 Non-AUD) PFC samples remained (60 from PFC_UT, 83 from PFC_NYGC).  
 
Cell type deconvolution 

To estimate cell-type proportions for each dataset, the Bisque R package (v1.0.5)30 was 
used along with single-cell references31 for both NAc and DLPFC. Because both the NAc single 
cell reference and NAc_LIBD use data from LIBD, one sample coincidently overlapped. This 
sample was indicated to Bisque as overlapping. Proportions for macrophage, microglia, 
oligodendrocyte progenitor cells (OPCs), astrocytes, GABAergic neurons, oligodendrocytes, and 
medium spiny neurons (MSNs) were estimated for NAc. Proportions for mural cells, 
macrophage, T-cell, microglia, OPCs, astrocytes, GABAergic neurons, excitatory neurons, and 
oligodendrocytes were estimated for PFC. The differences in cell types by region were due to 
cell type differences in the reference datasets. Linear regression was used to test the 
association between cell-type and AUD status, accounting for MDD, smoking, age, sex, PMI, and 
RNA Integrity Number (RIN) for NAc_LIBD and PFC_LIBD and age, sex, postmortem interval 
(PMI), and RIN for the NAc_UT, PFC_UT, and PFC_NYGC. No cell-type proportion differences 
were significantly associated with AUD in any of the datasets (Supplemental Table 1). This 
motivated our decision to not include cell type proportion estimates in our DGE models. 
 
Differential gene expression analysis  

Genes were filtered for low expression using a cutoff of 10 counts in at least the number 
of samples that make up the smaller AUD status group for a given dataset. Surrogate variables 
(SVs) were calculated using the sva R package (v3.42.0)32 to serve as proxies for known 
covariates and unmeasured technical and biological confounds. Percent variance explained was 
used for model selection. Each model had an r2 value greater than 0.6 including model 
covariates other than AUD. We used the DESeq2 R package (v1.34.0)33 to test for DGE using a 
generalized linear model with gene expression as the outcome variable. The following models 
were used for DGE analyses: 

NAc_UT: expression ~ AUD + SV1 + … + SV9 
NAc_LIBD: expression ~ AUD + MDD + smoking status + SV1 + … + SV12 
PFC_UT: expression ~ AUD + SV1 + … + SV10 
PFC_NYGC: expression ~ AUD + SV1 + … + SV10 
PFC_LIBD: expression ~ AUD + MDD + smoking status + SV1 + … + SV11 
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DEGs were assessed for potential sample outlier effects and removed based on Cook’s distance 
using a threshold of over the 99th percentile of the F-distribution. A Benjamini-Hochberg false 
discovery rate (FDR) of 0.05 was used to declare statistically significant DGEs.  
 
Differential gene expression meta-analyses  

Meta-analyses were performed for each brain region using the weighted Fisher’s 
method in the metaPro R package (v1.5.5), which incorporates sample sizes of contributing 
datasets. Only genes tested for DGE across all datasets were considered for meta-analysis. An 
FDR of 0.05 was used to declare statistical significance. Genes that had discordant fold changes 
between datasets were removed after significance calling for consistency and robustness. 
 
Lookup of meta-analysis DEGs in summary stats of other brain regions 
 To compare our results across brain regions, we looked up our meta-analysis DEGs in 
the summary statistics of the Zillich et al.18 CN, VS, and PUT DGE analyses associated with AUD. 
A Bonferroni-corrected p value was used to declare significance, correcting for the number of 
meta-analysis genes looked up in each of the brain region summary statistics (p < 0.05/48 for 
NAc and p < 0.05/401 for PFC).    
 
Gene ontology and pathway analysis 

ToppFun from the ToppGene Suite34 was used to detect functional enrichment of genes 
implicated in the DGE meta-analysis using the following GO databases: Molecular Function, 
Biological Process, Cellular Component, and KEGG Pathway. FDR < 0.05 was used to declare a 
statistically significant term.  

 
Lookup of DEGs in GWAS and Stratified Linkage Disequilibrium Score Regression (LDSC)  

We performed a lookup of DEGs in gene level summary statistics for problematic alcohol 
use5 (gene level using H-MAGMA35,36) and drinks per week9 (gene level using MAGMA37) using 
Bonferroni corrected significance p-value < 0.05, correcting for the number of our meta-analysis 
DEGs that appear in the GWAS gene level summary statistics.   

Partitioned heritability estimates and tests for enrichment of genetic loci associated 
with AUD-related phenotypes (alcohol consumption as measured by drinks per week 9 and 
alcohol dependence4) constrained to DGE loci were conducted using stratified LDSC  
(v1.0.1)38,39. An annotation window of 100kb from start and 100kb from end of the meta-
analysis significant genes was tested. A Bonferroni corrected (corrected for 2 phenotypes 
tested) p-value threshold of 0.025 was used to declare significance.  
 
Gene co-expression analysis  

The weighted gene co-expression network analysis (WGCNA) R package (v1.71)40 was 
used to construct gene networks, with hierarchical clustering and dynamic tree-cutting to 
define modules for each dataset. The PFC_UT and PFC_NYGC were combined for this analysis to 
increase sample size. Soft power was set for each brain region and dataset where the scale-free 
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topology fit index reached 0.90. Additional settings used were minimum module size = 100, 
cutting height = 0.99, deepSplit = TRUE, and pamStage = FALSE. Modules were merged based 
on an eigengene (i.e., top gene expression principal component of genes in a module) 
correlation threshold of 0.75. Covariates were accounted for using the removeBatchEffect 
function from the limma R package (v3.50.0)41. For NAc_LIBD and PFC_LIBD, MDD, smoking, 
sex, and age were used as covariates. For NAc_UT, PFC_UT and PFC_NYGC, batch and RIN were 
used as covariates, as done in Kapoor et al. Since the soft threshold step failed to converge for 
the NAc_UT dataset, that dataset was excluded from this analysis. We looked at module 
similarity across brain regions within the LIBD dataset by calculating the percentage of overlap 
between modules, defined as the number of overlapping genes divided by size of the smaller of 
the two modules. We tested for association between module eigengenes and AUD status using 
an ANOVA test. 
 
Meta-analysis DEG look-up in drug repurposing databases 

To identify the potential druggability of genes with AUD-related DGE, we used a drug 
repurposing tool42, which leverages four different drug repurposing databases (Pharos, Open 
Targets, Therapeutic Target Database, and DrugBank) and a ranking system based on 
association statistics to provide a ranked list of drug compounds that target genes of interest. 
The lists of meta-analysis DEGs ranked by FDR-corrected p-values were used for the analysis. 
For NAc, all DEGs were used for the analysis. Given the large number of AUD-associated genes 
with differential expression in PFC, to focus on the most significant results, the top 100 DEGs for 
PFC were used for the analysis. To filter the results for drugs that have specific targets, the top 
10th percentile of gene target ratio was selected to focus more on targeted therapies. The gene 
target ratio is calculated as the number of genes in our gene set that a given drug targets 
divided by the total number of genes that the drug targets.  

Results 
 
Differential gene expression results for each dataset 

Each independent dataset was tested separately for DGE to account for batch effects. 
DGE analysis of 51 AUD and 47 non-AUD samples from the NAc_LIBD dataset resulted in 90 
DEGs at FDR < 0.05. DGE analysis of 50 AUD and 46 non-AUD samples for PFC_LIBD dataset 
resulted in 98 DEGs at FDR < 0.05 (Figure 2A, Supplemental Table 2). Twelve genes overlapped 
between the significant results from NAc_LIBD and PFC_LIBD.  

Uniform processing and QC (matching the processing and QC of NAc_LIBD and 
PFC_LIBD) of the NAc_UT resulted in 28 AUD and 29 non-AUD samples after QC filtering. For 
the PFC_UT 30 AUD and 30 non-AUD samples were available for analysis. For PFC_NYGC, 36 
AUD and 47 non-AUD samples were available for analysis. DGE analysis resulted in no DEGs in 
the NAc_UT dataset, and 14 and 53 DEGs (FDR < 0.05) with no overlapping genes, in PFC_UT 
and PFC_NYGC, respectively (Figure 2B).  
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DGE meta-analyses across datasets 
Meta-analysis across the NAc samples resulted in 54 DEGs (33 upregulated and 21 

downregulated) at FDR < 0.05 with the top 5 DEGs genes being ODC1, ZNF844, ARRDC3, 
FAM225A, and GUSBP11. Meta-analysis across the PFC samples resulted in 447 DEGs (295 
upregulated and 152 downregulated) at FDR < 0.05 with the top 5 DEGs genes being TXNIP, 
ODC1, HMGN2, SLC16A9, and SLC16A6 (Supplemental Table 3). Only genes with same direction 
of effect were declared significant. Twenty-five DEGs overlapped between FDR significant 
results for NAc and PFC. Overlap between individual studies and the meta-analyses by brain 
region are shown in Figure 2C. 
 
Lookup of meta-analysis DEGs in summary statistics of other brain regions 
 After Bonferroni correction for the NAc meta-analysis genes, TTLL4 was the only gene 
significantly associated with AUD in CN, while no NAc meta-analysis genes were associated with 
AUD in VS and PUT. After Bonferroni correction, no PFC meta-analysis significant genes were 
significantly associated with AUD in CN, VS, or PUT. The lack of overlap between NAc and PFC 
results with CN, VS, and PUT results suggests brain region specific-DGE associated with AUD. 

 
Gene ontology and pathway analyses 

To assess the functions and pathways of genes implicated in our DGE meta-analysis, we 
performed ToppGene enrichment for genes in each brain region then used semantic similarity 
to cluster the results. ToppGene enrichment analysis for DEGs from the NAc meta-analysis 
resulted in enrichment of 3 GO Molecular Function terms at FDR < 0.05: choline kinase activity, 
glucosyltransferase activity, and ethanolamine kinase activity. The enrichment analysis for DEGs 
from the PFC meta-analysis resulted in no significant enrichment (Supplementary Table 4).  
 
GWAS overlap for genetically driven gene expression 

To investigate the connection between genetic variation and DGE associated with AUD, 
we performed a lookup of our meta-analysis significant genes with AUD-related GWAS 
summary statistics and used stratified LD score regression to test enrichment of GWAS signals 
in meta-analysis DEGs. For the problematic alcohol use5 GWAS, 50 NAc DEGs were tested, and 
one gene (UGGT2) were significantly associated after Bonferroni correction (p < 0.05/50); 424 
PFC DEGs were tested, and six genes (TCTA, TSPAN5, TLR6, EMX2OS, CA11, and SHISA5) were 
significant (p < 0.05/424). For the drinks per week (DPW) GWAS9, 41 NAc DEGs were tested, 
and two genes (GBA2 and GRM5) were significant (p < 0.05/41); 379 PFC DEGs were tested, and 
nine genes (HDAC7, HIPK3, ACVR2B, CDH18, TSPAN5, TTLL6, OLFML2A, SIRPA, and ATXN1L) 
were significant (p < 0.05/379).  

Testing the meta-analysis DEGs for enrichment in GWAS with fully available summary 
statistics (DPW9 and alcohol dependence4) using stratified LDSC resulted in enrichment 
(Bonferroni correction for two traits) for DPW in the PFC (Enrichment = 1.46, p = 0.0131) 
(Supplementary Table 5). Both the lookup in gene-level GWAS and the stratified LDSC analysis 
of SNP-level GWAS suggest there may be a genetic component to some of the AUD-associated 
DGE.  
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Gene co-expression analysis 
WGCNA was used to explore the co-expression of genes within the datasets and test for 

module association with AUD. WGCNA generated 15 modules for the PFC_LIBD dataset, 14 
modules for the NAc_LIBD dataset, and 22 modules for the PFC_UT and PFC_NYGC combined 
dataset (Supplementary Table 6). After FDR correction, no modules were associated with AUD. 
Module consistency across brain regions was tested by calculating the percentage of 
overlapping genes between modules. Comparing NAc_LIBD and PFC_LIBD modules, each 
module overlapped with at least one other module with a minimum of 39.2% and maximum of 
97.8% sharing (Supplementary Figure 2), which supports prior evidence that there is both 
shared and region-specific co-expression across brain regions43.  
 
DEG look-up in drug repurposing databases 

Using the Drug Repurposing Database tool42 and our meta-analysis DEGs, 11 of the 54 
genes with AUD-associated DGE in NAc were targeted by 29 drug compounds (Supplemental 
Table 7). 64 of the top 100 genes with AUD-associated DGE in DLPFC were targeted by 436 drug 
compounds. To focus more on targeted therapies, the 436 compounds were then subset to 67 
compounds that have the highest 10% of prioritized genes to all genes targeted ratio (ratio ³ 
0.33). This step was not conducted for the NAc results due to the much smaller numbers of 
DEGs and compounds.   

Discussion 
 
 This study reports many newly identified DEGs, providing neurobiological insights into 
gene expression signatures of AUD that are shared across or specific to key brain regions for 
addiction. For NAc, there were no DEGs in the NAc_UT dataset, when analyzed alone, but when 
uniformly processed and meta-analyzed with our NAc_LIBD dataset, we identified 54 DEGs 
associated with AUD. By uniformly processing and meta-analyzing our new PFC_LIBD dataset 
with the previously published PFC_UT and PFC_NYGC datasets, we were able to increase the 
number of DEGs from 129 that Kapoor et al. reported to 447 DEGs for PFC. Overall, 25 genes 
were differentially expressed with AUD in both NAc and PFC. Unlike prior studies, independent 
datasets were combined via meta-analysis, enabling us to model the complexities of each 
dataset and take advantage of the combined sample size for more statistical power to detect 
AUD-associated DGE.  

Of the 54 significantly expressed genes in the NAc meta-analysis, a lookup in the Zillich 
et al. summary statistics of VS, CN, and PUT regions resulted in only one significant gene (TTLL4) 
that overlapped between our NAc results and the CN results. These results provide initial 
evidence for cross-region DGE in relation to AUD, though many genes appear to have tissue-
specific DGE. We also observed both shared brain region expression and region specificity 
through the cross-region WGCNA module analysis.  

The overlap of several of our meta-analysis DEGs in alcohol behavior GWAS suggests 
that at least some of the AUD-associated DGE may be genetically driven. By conducting a 
stratified LDSC analysis, we tested for enrichment of alcohol behavior-associated genetic loci in 
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and around DEGs for AUD. Significant enrichment between the drinks per week summary 
statistics and PFC DEGs further supports a genetic component to the DEGs.  

Many of the top DEGs and DEGs that overlapped with GWAS results were previously 
reported to play a role in AUD or other psychiatric disorders. ODC1, which was significant in 
both NAc and PFC meta-analyses and associated with cell proliferation of neural progenitor 
cells, was reported to be downregulated in psychiatric phenotypes by loss of function 
variants44. TXNIP, a top DEG in the PFC, was upregulated in mice PFC in schizophrenia-like 
states45 and implicated in astrocytic glucose hypometabolism in depressive state rats46. 
Differential expression of HMGN2, a top DEG in the PFC, was reported for schizophrenia-
associated DGE in peripheral blood mononuclear cells 47. SLC16, a top DEG in the PFC, with 
many other solute carrier transporters having reported roles in neuropsychiatric disorders, such 
as SLC6 in depression and post-traumatic stress disorder48. TSPAN5, a DEG in the PFC and 
significant in both PAU and DPW GWAS, is downregulated by acamprosate49, one of only three 
FDR-approved treatments for AUD. TLR6, a Toll-Like Receptor (TLR), was a DEG in the PFC and 
significantly associated in problematic alcohol use GWAS. Dysregulation of TLRs, which are 
directly involved in the regulation of inflammatory reactions, has been reported in AUD due to 
an inflammatory response to excessive alcohol consumption50. CDH18, a DEG in the PFC and 
significantly associated in DPW GWAS, and other cadherin pathway genes have been associated 
with schizophrenia, bipolar disorder and MDD through GWAS51. These converging associations 
could indicate a shared genetic, and ultimately transcriptomic, risk for AUD and some 
psychiatric disease, a hypothesis supported by shared genetic correlations52. While several of 
our DEGs have known associations with AUD and other psychiatric disorders, many of the DEGs 
are novel to the AUD phenotype and their roles in AUD should be investigated further. 

By integrating our DGE results with drug repurposing databases, we identified many 
drug compounds that target the DEGs in both NAc and DLPFC. Some of the listed compounds 
are already used for AUD treatment, such as clomethiazole which targets the GABA receptors 
and is used for alcohol withdrawal treatment53 and acamprosate, which targets GRM5 and is 
used for treatment of alcohol dependence. GRM5 also overlapped between our NAc DGE 
results and the drinks per week GWAS. GRM5 is also targeted by cinacalcet, rufinamide, and 
glutamic acid, which could be considered as candidate drugs to treat AUD with support from 
both GWAS and differential expression. Another gene with overlapping support from both DGE 
and GWAS was GBA2, which is targeted by miglustat and used for treatment of Gaucher’s 
Disease54. Though we identified some compounds already used for AUD treatment, lending 
confidence to our approach, most of the compounds that we identified are used for purposes 
unrelated to AUD and merit further investigation as potential novel therapeutics for AUD. 

This study comes with limitations. The data are limited to European ancestry, so results 
merit testing in other datasets of diverse ancestries to assess their generalizability. Though this 
is the largest combined sample size of human brain samples in NAc and PFC to date (N up to 
239), even larger sample sizes across diverse populations and brain regions that play a role in 
the addiction cycle are needed. This study is also based around lifetime history of AUD, so some 
gene expression could have returned to control levels over time if drinking was reduced or 
eliminated prior to death, biasing the results for those genes towards the null. No estimated 
cell type proportions in any of the datasets were significantly associated with AUD, though this 
analysis was limited by the small sample sizes available for single-nuclei RNA-seq datasets. 
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Because estimation is fully based on the reference dataset, having a small reference dataset can 
lead to bias. There was also only overlap of one sample with the reference data which affects 
the estimation. Since the estimation only reflects the proportions seen in the single-nuclei 
reference dataset, using a larger sample size dataset in the future and a larger overlap with bulk 
samples will help improve this analysis.  

This work is the first meta-analysis of DGE of AUD in NAc and DLPFC human brain 
regions. Meta analyzing DGE results from two different studies using uniform processing and 
analysis helped identify more robust results than from one study alone. Many identified top 
DEGs are known to be involved in AUD and other psychiatric disorders, while others are novel. 
Overlap of several DEGs with alcohol use-related GWAS and enrichment in GWAS of drinks per 
week, suggests that these DGE findings may have a genetic component. By using a drug 
repurposing tool, we were able to identify pharmacotherapies that have already been used for 
AUD as well as many novel candidate pharmacotherapies for AUD.  
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Tables and Figures 
 
Table 1. Demographic information of samples in each dataset. 
 LIBD NSW-TRC 

  NAc_LIBD PFC_LIBD NAc_UT  PFC_UT  PFC_NYGC  

  

Non-AUD AUD 
P-
value Non-AUD AUD 

P-
value Non-AUD AUD 

P-
value Non-AUD AUD 

P-
value 

Non-
AUD AUD 

P-
value 

(N=47) (N=51)   (N=46) (N=50)   (N=29) (N=28)   (N=30) (N=30)   (N=47) (N=36)   

AgeDeath     0.496     0.873    0.760   1.000   0.864 

Mean (SD) 
53.7 
(14.1) 

51.8 
(12.6)  

52.2 
(14.0) 

52.6 
(11.7)  

57.8 
(8.94) 

57.0 
(8.87)  

57.5 
(8.93) 

57.5 
(9.07)  

53.5 
(13.3) 

54.0 
(13.5)  

Sex     0.338     0.235    0.943   1.000   0.753 

Male 
35 
(74.5%) 

43 
(84.3%)  

32 
(69.6%) 

41 
(82.0%)  

23 
(79.3%) 

21 
(75.0%)  

23 
(76.7%) 

23 
(76.7%)  

39 
(83.0%) 

28 
(77.8%)  

Female 
12 
(25.5%) 8 (15.7%)  

14 
(30.4%) 9 (18.0%)  6 (20.7%) 7 (25.0%)  7 (23.3%) 7 (23.3%)  

8 
(17.0%) 

8 
(22.2%)  

RIN     0.022     0.591    0.322   0.241   0.109 

Mean (SD) 
7.57 
(0.672) 

7.27 
(0.576)  

7.42 
(0.576) 

7.49 
(0.636)  

7.06 
(0.653) 

7.21 
(0.544)  

7.07 
(0.645) 

7.25 
(0.550)  

6.87 
(1.23) 

6.46 
(1.09)  

PMI     0.551     0.890    0.252   0.272   0.015 

Mean (SD) 
25.6 
(8.26) 

26.6 
(9.02)  

27.4 
(9.92) 

27.7 
(9.62)  

31.2 
(12.2) 

35.4 
(14.9)  

30.7 
(12.3) 

34.6 
(14.8)  

24.0 
(13.1) 

32.4 
(16.4)  

Smoking     0.570     1.000           
Case 

24 
(51.1%) 

30 
(58.8%)  

24 
(52.2%) 

26 
(52.0%)  

18 
(62.1%) 

18 
(64.3%) 0.249 

18 
(60.0%) 

20 
(66.7%) 0.412 

8 
(17.0%) 

12 
(33.3%) 0.042 

Control 
23 
(48.9%) 

21 
(41.2%)  

22 
(47.8%) 

24 
(48.0%)  

10 
(34.5%) 6 (21.4%)  

10 
(33.3%) 6 (20.0%)  

19 
(40.4%) 

6 
(16.7%)  

Not 
Reported       1 (3.4%) 4 (14.3%)  2 (6.7%) 4 (13.3%)  

20 
(42.6%) 

18 
(50.0%)  

MDD     0.001     0.000              
No 

25 
(53.2%) 

10 
(19.6%)  

26 
(56.5%) 8 (16.0%)               

Yes 
22 
(46.8%) 

41 
(80.4%)   

20 
(43.5%) 

42 
(84.0%)                     
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Figure 1. Overview of analysis workflow. 
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Figure 2. (A) Volcano plots of the differentially expressed genes (FDR < 0.05) by AUD status in 
the LIBD datasets. Blue triangles represent significant downregulated genes and red triangles 
represent significantly upregulated genes. Genes not significantly differentially expressed are 
colored grey. (B) Volcano plots of the differentially expressed genes (FDR < 0.05) by AUD status 
in the NSW-TRC datasets. Blue triangles represent significant downregulated genes and red 
triangles represent significantly upregulated genes. Genes not significantly differentially 
expressed are colored grey. (C) Upset plots displaying the gene overlap count between the 
individual datasets DEGs and meta-analysis DEGs by brain region. 
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