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Summary: Inferring causal effects with unmeasured confounder is a main challenge in causal inference. Many

researchers impose parametric assumptions on the distribution of unmeasured confounder. However, due to the

unobservable nature of the unmeasured confounder, it is more reasonable to leave its distribution unrestricted.

Another key challenge in causal inference is the involvement of invalid instrumental variables, which may lead to biased

inference and possibly misleading scientific conclusions. To this end, we employ a flexible semiparametric model that

allows for possibly invalid instruments without specifying the distribution of unmeasured confounder in this work.

A penalized semiparametric estimator for causal effects is constructed and its oracle and asymptotic properties are

well established for statistical inference. We evaluate the performance of the estimator through simulation studies,

revealing that our proposed estimator exhibits asymptotic unbiasedness and robustness in estimating causal effects,

along with consistent selection of invalid instruments. We also demonstrate its application using Atherosclerosis

Risk in Communities Study data set, which further validates its robustness in the presence of invalid instruments.

Additionally, we have implemented the proposed method in R, and the corresponding R code is available for free

download.
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penalty; Unmeasured confounder.



1. Introduction

Causal inference is vital for elucidating cause-and-effect relationships. For observational data,

it is rather difficult to make inference due to the existence of unmeasured confounders.

Instrumental variables (IV) stand out as a widely used technique for detecting causality

and estimating the causal effect of an exposure on an outcome in this situation. A valid IV

which is suitable for estimating causal effects, must adhere to three fundamental assumptions

(Angrist, 1996; Sargan, 1958), namely:

(1) Relevance: the IV is related to the exposure;

(2) Exchangeability: the IV is independent of unmeasured confounders;

(3) Exclusion Restriction: the IV has no direct effect on the outcome.

The relevance of instruments can be scrutinized through observed data of exposure and

instruments. However, checking assumptions (2) and (3) in a data-dependent manner neces-

sitates substantial domain expertise to discern valid IVs.

In certain instances, causal effects can be deduced even with the presence of invalid IVs.

In the context of a linear outcome model, Kolesár et al. (2015) and Bowden et al. (2015)

provided solutions wherein all candidate IVs may be valid, but the strength of the IV and

its direct effect on the outcome are nearly orthogonal. Kang et al. (2016) and Windmeijer et

al. (2018) put forth consistent estimators for causal effects, assuming the majority rule that

at least 50% of the IVs are valid. Li and Guo (2020) extended the majority rule to nonlinear

outcome models, presenting the three-step inference procedure SpotIV for estimating the

conditional average treatment effect (CATE).

Semiparametric methodologies are extensively employed in causal inference. Sun et al.

(2023) introduced a class of g-estimators guaranteed to maintain consistency and asymptotic

normality in estimating the causal effect of interest, even in the presence of invalid instrumen-

tal variables. Zhang and Tchetgen Tchetgen (2022) proposed a robust estimator reaching the



efficiency bound for the semiparametric model, without imposing parametric assumptions on

the unmeasured confounder. They established the consistency and asymptotic normality of

the estimator under appropriate identification and regularity conditions. However, a general

identification condition for the semiparametric model is not explicitly stated.

Considering the assumption of majority rule in semiparametric model setting, the penalized

semiparametric estimating approaches were developed to estimate causal effects. Diverging

from various penalties imposed on the loss function in the conventional parametric models,

the semiparametric approach to estimating causal effects does not involve minimizing any

objective function. Fu (2003) proposed penalizing the estimating function, instead of the

loss function, for generalized linear models with a bridge penalty (Frank and Friedman,

1993; Fu and Knight, 2000). Subsequently, Johnson et al. (2008) presented a comprehensive

asymptotic properties of estimators derived from a broad class of penalized estimating

functions.

Given semiparametric model setting and majority rule, we explore the penalized semi-

parametric estimating method to simultaneously estimate causal effects and select invalid

instrumental variables in this work. The article is organized as follows. Section Methods

serves to introduce our model setting and discuss the identifiability of model. Subsequently,

we present the semiparametric estimating equations (SEE) for the model and introduce

the penalized semiparametric estimating equations (PSEE). Section Implementation and

Results establishes the algorithm and asymptotic theory for PSEE. In Section Simulation

Study, numerical results from simulation studies are presented. Moving to Section Real Data

Analysis, we apply the PSEE method to the Atherosclerosis Risk in Communities Study

(ARIC) dataset. Section Discussions is dedicated to providing some discussions.



2. Methods

2.1 Semiparametric model setting

Consider the causal effect of an exposure D ∈ R and outcome Y ∈ R. Z ∈ Rq denote the

q-dimensional vector of instrumental variables for inferring the causality, U ∈ R is a scalar

unmeasured confounder.

We consider the following outcome model,

E(Y | D = d,Z = z, U = u) = g1(dβ + zTα + c1u). (1)

For the exposure D, we consider

E(D | Z = z, U = u) = g2(z
Tγ + c2u), (2)

where g1, g2 are link functions, β ∈ R represents the causal parameter of interest, α ∈ Rq

and γ ∈ Rq represent the direct effect of the instruments on the outcome and exposure,

respectively, c1, c2 are fixed sensitivity parameters used to adjust the influence of confounder

on the outcome. Let θ = (γT , β, αT )T ∈ Rp denote the finite dimensional parameters with

p = 2q + 1.

In many applications (Harbord et al., 2013), the distribution of U is often assumed to

follow a parametric distribution, such as the normal distribution in Shi et al. (2023). Since

U is unobservable, it may be more appropriate to refrain from imposing any parametric

assumptions on its distribution. Therefore we are exploring a semiparametric model in

which both the outcome model and exposure model are accurately specified, as denoted

by Equations (1) and (2), respectively. The joint distribution of (U,Z) in this model remains

unrestricted.

Note that the model (1)-(2) is highly versatile, encompassing linear and nonlinear outcome

as well as exposure as special cases. For example, when g1 is identity function, it includes



continuous outcome as

Y = Dβ + ZTα + c1U + ϵ, U ⊥ ϵ, ϵ ∼ N(0, 1); (3)

when g1 is standard logistic function, it includes binary outcome as

Y | D = d,Z = z, U = u ∼ Bernoulli(logit−1(dβ + zTα + c1u)).

The exposure model (2) is similar, it includes continuous and binary exposure depending on

g2.

2.2 Identifiability of Model

The presence of direct effects of instruments on the outcome poses a significant challenge

for instrumental variable inference. Previous studies have delved into the identifiability

conditions within some models, as discussed by Kang et al. (2016) and Li and Guo (2020).

This section provides an overview of these works, laying the foundation for the subsequent

discussion of our estimating method for the model parameters.

Let s = ∥α∥0 denote the number of invalid instruments, i.e. the number of nonzero

components of α. For a continuous outcome, Kang et al. (2016) proved the identifiability of

the model under the condition of s < q/2, known as the majority rule. Additionally, they

provided a method sisVIVE for estimating the causal effect, which utilizes l1 penalization on

α. Li and Guo (2020) studied the nonlinear causal inference and proposed a method SpotIV

to estimate the CATE.

Therefore in this article, we assume that majority rule holds and our model (1)-(2) is

identifiable under majority rule. In particular, when outcome Y is continuous and Equation

(3) holds, and E(U |Z) = 0, then our model is actually identifiable under majority rule

according to Kang et al. (2016); similarly when exposure D is continuous and E(U |Z) = 0,

our model is identifiable according to Li and Guo (2020).



2.3 Semiparametric Estimating Equation

In standard semiparametric theory, we only consider estimators that are regular and asymp-

totically linear (RAL) (Newey, 1990; Bickel et al., 1993; Van der Vaart, 2000; Tsiatis, 2006).

Note that the full data F = {Fi = (Yi, Di,Zi, Ui), i = 1, 2, · · · , n}, the observed data only

consist of O = {Oi = (Yi, Di,Zi), i = 1, 2, · · · , n} as U is not observed. An asymptotically

linear estimator θ̂n of model parameter θ based on the full data satisfies

n1/2(θ̂n − θ) = n−1/2

n∑
i=1

φ(Fi) + op(1),

where the measurable random function φ(Fi) is referred to as the i-th influence function of

the estimator θ̂n and satisfies E{φ(F )} = 0, E(φφT ) is finite and nonsingular. Regularity

conditions are imposed to exclude super-efficient estimators, which are unnatural and have

undesirable local properties.

Any RAL estimator is asymptotically normally distributed; i.e.,

n1/2(θ̂n − θ)
d→ N(0, E(φφT )).

We hope to find the efficient influence function φeff(F ), which is the influence function with

the smallest variance matrix in the sense that for any influence function φ(F ) ̸= φeff(F ),

var{φeff(F)} − var{φ(F)} is negative definite.

By standard semiparametric theory, the efficient influence function based on the full data,

φeff(F ), is proportional to the full data efficient score Seff(Y,D,Z, U), which can be obtained

by projecting the full data score Sθ(Y,D,Z, U) onto the orthogonal component of the full

data nuisance tangent space ΛF , which is given by ΛF = ΛF
1 ⊕ ΛF

2 , where

ΛF
1 = {a1(Z) : E [a1(Z)] = 0}

ΛF
2 = {a2(U,Z) : E [a2(U,Z) | Z] = 0} .

Accordingly, for observed data efficient score Seff(Y,D,Z), we need to calculate corresponding



observed data score Sθ(Y,D,Z) = E[Sθ(Y,D,Z, U) | Y,D,Z] and the observed data nuisance

tangent space Λ = E[ΛF | Y,D,Z].

Zhang and Tchetgen Tchetgen(2022) derived the specific form of the observed data efficient

score for the considered model and introduced a working model f ∗(U | Z; ξ) instead of the

unknown f(U | Z) to proceed calculation:

S∗
eff(Y,D,Z) = E∗ [S

∗
θ (Y,D,Z, U) | Y,D,Z]

− E∗[a(U,Z) | Y,D,Z],

where a(U,Z) satisfies the integral equation:

E∗ [S
∗
θ (Y,D,Z) | U,Z] = E∗ {E∗[a(U,Z) | Y,D,Z] | Z, U} .

Note that the true data distribution PF can be factored as

PF = f(Y | D,Z, U)f(D | Z, U)f(U | Z)f(Z),

and the misspecified data distribution with working model is

P∗
F = f(Y | D,Z, U)f(D | Z, U)f ∗(U | Z; ξ)f(Z).

E[·] denotes expectation taken with respect to PF and E∗[·] taken with respect to P∗
F .

The efficient score S∗
eff (Y,D,Z) has an important property:

E[S∗
eff (Y,D,Z)] = 0. (4)

Equation (4) yields an estimator for θ that exhibits appealing robustness and efficiency

properties. This is achieved by substituting the expectation with its empirical analogue and

formulating the following estimating equation:

n∑
i=1

S∗
eff(Yi, Di,Zi; θ) = 0. (5)

Under suitable identification and regularity conditions, the solution θ = θ̂ to the estimating



equation (5) is consistent and asymptotically normal, with variance given by

V =
1

n
E {∂S∗

eff(Oi; θ0)/∂θ}−1E
{
S∗
eff(Oi; θ0)S

∗
eff(Oi; θ0)

T
}

× E
{
∂S∗

eff(Oi; θ0)/∂θ
T
}−1

.

(6)

If the conditional distribution f(U |Z) is correctly specified, then θ̂ is locally efficient with

asymptotic variance Veff = E[SeffS
T
eff].

2.4 Penalized Semiparametric Estimating Equation

Given estimating equation (5) and assumed identification condition, majority rule, we con-

sider the penalized semiparametric estimating equation for simultaneous estimation and

invalid instrumental variable selection. Specifically, the penalized semiparametric estimating

functions are defined as

SP (θ) = S(θ)− nqλ(|θ|) sgn(θ),

where S(θ) =
n∑

i=1

S∗
eff(Yi, Di,Zi; θ), qλ(|θ|) = (qλ,1(|θ1|), · · · , qλ,p(|θp|))T and the second term

is the componentwise product of qλ and sgn(θ). To select invalid instrumental variables, we

design qλ(|θ|) as follows: (i) for j = 1, 2, · · · , q+1, set qλ,j(|θj|) = 0; (ii) for j = q+2, · · · , p,

set qλ,j(|θj|) as SCAD penalty:

qλ(|θj|) = λ

{
I(θj ⩽ λ) +

(aλ− θj)+
(a− 1)λ

I(θj > λ)

}
with a > 2.

Here we adopt the nonconvex SCAD penalty proposed by Fan and Li (2001), which results

in an estimator with oracle property: that is, the estimator has the same limiting distribution

as an estimator that konws the true model a priori.

Note that we only penalize the latter q component of S(θ) which corresponding to pa-

rameter α, therefore γ and β will not be shrunken. Intuitively, qλ(|αj|) is zero for a large

value of |αj|, while it increases significantly for a small value of |αj|. Consequently, the jth

component of the semiparametric estimating function S(θ), denoted as Sj(θ), is not penalized



when |αj| is large. Conversely, Sj(θ) is heavily penalized if |αj| is close (but not equal) to

zero, compelling the estimator of αj to shrink to zero. When αj is shrunk to zero, it implies

that the jth instrumental variable is deemed valid and is consequently excluded from the

outcome model.

3. Implementation and Results

3.1 Algorithm

To solve the penalized semiparametric estimating equation, we employ an iterative algorithm

similar to that utilized in Johnson et al. (2008), Wang et al. (2012, 2013). This algorithm

combines the minorization-maximization algorithm for the nonconvex penalty introduced by

Hunter and Li (2005) with the Newton-Raphson algorithm:

θ̂k = θ̂k−1 +
[
H(θ̂k−1) + nE(θ̂k−1)

]−1

SP (θ̂k−1).

where

H(θ) = − 1

n

∂S(θ)

∂θ
,

E(θ) = diag{0, · · · 0︸ ︷︷ ︸
q+1

,
qλn(|α1|)
ε+ |α1|

, · · · , qλn(|αq|)
ε+ |αq|

},

the constant ϵ represents a small perturbation, set to 10−6 in our simulation studies. We

initialize the algorithm with the adaptive lasso estimator θ̂0. For a chosen tuning parameter,

the algorithm iterates until the convergence criterion ∥θ̂k+1 − θ̂k∥ ⩽ 10−4 is satisfied. Typ-

ically, this criterion is met within 20 iterations in our simulation studies. Additionally, any

coefficient that becomes sufficiently small is constrained to zero; specifically, if |θ̂j| ⩽ 10−4

upon convergence, then the estimator for this coefficient is set to exactly zero.

We need to select (a, λ) for the SCAD penalty. Fan and Li (2001, 2002) demonstrated that

the choice a ≡ 3.7 performs well across various scenarios, and we adopt this recommendation

for our numerical analyses. In practice, cross-validation is a widely used data-driven method



for choosing λ. In the same vein, we employ k-fold cross-validation, minimizing the L2 norm

of the estimating equation S(θ). This approach aligns with the fact that the parameter of

interest is θ, which sets the expected value of the estimating equation to zero (see Equation

(4)).

We derive the following sandwich formula from the algorithm to estimate the asymptotic

covariance matrix of θ̂:

Cov(θ̂) ≈ [H(θ̂) + nE(θ̂)]−1M(θ̂)[H(θ̂) + nE(θ̂)]−1

where M(θ̂) =
n∑

i=1

S*
eff(Oi; θ̂) S

*
eff(Oi; θ̂)

T .

3.2 Asymptotic Theory for Penalized Semiparametric Estimator

Let θ0 = (γT
0 , β0, α

T
0 )

T = (γT
0 , β0, α

T
10, α

T
20)

T := (θT10, θ
T
20)

T denote the true value of θ, where

α10 ∈ Rs, θ10 = (γT
0 , β0, α

T
10)

T , θ20 = α20 and α0 = (α01, · · · , α0q)
T . Without loss of generality,

suppose that θ0j ̸= 0 for j ⩽ q + 1 + s and θ0j = 0 for j > q + 1 + s. For the asymptotic

theory, we require the following regularity conditions.

(a) n−1
∑n

i=1 ∂S
∗
eff(Yi, Di,Zi; θ)/∂θ exists and is continuous in an open neighborhood of β0;

(b) n−1
∑n

i=1 ∂S
∗
eff(Yi, Di,Zi; θ)/∂θ converges uniformly to its limit in a neighborhood of

θ0;

(c) E {∂S∗
eff(Y,D,Z; θ)/∂θ}|θ=θ0

is invertible;

(d) λn → 0 and
√
nλn → ∞;

Remark 1: Conditions (a)-(c) are imposed by Zhang and Tchetgen Tchetgen (2022) to

ensure the consistency and asymptotic normality of the estimator derived from the semi-

parametric estimating equation S(θ) = 0. Condition (d) represents a standard requirement

concerning the rate of the tuning parameter to attain the oracle property (Fan and Li, 2001).

Theorem 1: Assuming conditions (a)-(d), the following results hold:

a. There exists a root-n-consistent approximate solution of SP (θ), θ̂ = θ0 + Op(n
− 1

2 ), in the



sense that n− 1
2SP (θ̂) = Op(1).

b. (Oracle Property). For any root-n-consistent approximate solution θ̂ = θ0 + Op(n
− 1

2 ), we

have that P (θ̂j = 0) = 1 for j > q + 1 + s. Furthermore, if n− 1
2SP (θ̂) = op(1), then θ̂1 has

the asymptotic normality

n
1
2 (A11 + Σ11)

{
θ̂1 − θ10 + (A11 + Σ11)

−1bn

}
d→ N(0, V11),

where A11, V11 are the first (q + 1 + s) × (q + 1 + s) submatrices of A = 1
n
∂S(θ0)

∂θ
and V (as

defined by Equation (6)), Σ11 = diag{0, · · · , 0︸ ︷︷ ︸
q+1

,−q′λn(|α10|) sgn(α10)}, and

bn = −(0, · · · , 0︸ ︷︷ ︸
q+1

, qλn(|α01|) sgn(α01), · · · , qλn(|α0s|) sgn(α0s))
T .

c. Let SP
1 (θ) denote the first (q+1+ s)-components of SP (θ), then there exists θ̂1 such that

SP
1 ((θ̂

T
1 ,0

T )T ) = 0;

that is, the solution is exact.

[Table 1 about here.]

[Table 2 about here.]

[Table 3 about here.]

4. Simulation Study

We consider a binary response Y and continuous exposure D in this section. Assume there

are n = 1000 individuals and q = 10 candidate instruments. The observations (Yi, Di,Zi), i =

1, · · · , n are generated by

Di = ZT
i·γ + c1Ui + ϵi, ϵi ∼ N(0, 1)

logit [E(Yi | Zi·, Di, Ui)] = ZT
i·α +Diβ + c2Ui,

where Zi· is drawn from a multivariate normal with zero mean and identity covariance

matrix. We set β = 2, the fixed effect γ are drawn from N(0, 1). We vary (i) the direct



effect parameter α = (1, 1, · · · , 0, 0) where we change s in ∥α∥0 = s, (ii) the distribution of

unmeasured confounder U to test the robustness of our PSEE estimator.

Under each simulation scenario, we conduct 1000 replications. Our evaluation involves

comparing the proposed PSEE method for estimating β with the original SEE method

developed by Zhang and Tchetgen Tchetgen (2022) . Additionally, we compute estimates

from the “naive” Two-Stage Least Squares (TSLS) method under the assumption that

all instruments are valid, and the “oracle” TSLS method, assuming perfect knowledge of

which instruments are valid. Our focus is on the estimation accuracy and invalid instrument

selection properties of these methods, assessed through bias and root mean square error

(RMSE), along with the average number of correct (C) and incorrect (I) zero estimates,

respectively. Additionally, we calculate the sample standard deviation of β̂ and the mean

of the estimated standard deviation using the sandwich variance, denoted as SD1 and SD2.

We also employ the sandwich variance formula to construct approximate 95% confidence

intervals, relying on asymptotic normality theory, and report the corresponding empirical

coverage probabilities.

The results of Table 1 summarize the performance of the naive TSLS, oracle TSLS, PSEE,

and SEE for different number of invalid instruments s. The true distribution of unmeasured

confounder U is Bernoulli(0.2) and c1 = c2 = 1. The PSEE (correct) and SEE (correct)

denote estimators with correctly specified working model U ∼ Bernoulli(0.2), the PSEE

(incorrect) and SEE (incorrect) denote estimators with incorrectly specified working model

U ∼ Bernoulli(0.5). We observe that when majority rule holds, PSEE performs close to oracle

TSLS in terms of instrument selection properties, and the estimated standard deviation

closely approximates the empirical standard deviation, and the empirical coverage probability

closely approaches 95%. These numerical results suggest the effective performance of the

sandwich variance formula. Additionally, it is evident that PSEE outperforms naive TSLS



and SEE in bias and RMSE, even when the majority rule is violated. We also observe that

PSEE performs well with incorrectly specified working model, these indicate Equation (4).

Table 2 summarizes the performance when the unmeasured confounder is continuous, U ∼

N(0, 1), and c1 = c2 = 0.5. Our working model for U is a discrete uniform distribution on

the interval [−0.5, 0.5] with mesh size h. For computationally efficiency, we take h = 0.5.

We observe that when majority rule holds, PSEE performs close to oracle TSLS in terms

of bias, RMSE and instrument selection properties, and coverage approaches 95%. When

majority rule does not hold, PSEE also has good performance in bias and RMSE. Table 3

presents the results for an alternative continuous unmeasured confounder setting, U ∼ t(3),

with c1 = c2 = 0.25. The working model is consistent with that of Table 2. It is concluded

from Table 3 again that PSEE exhibits robust performance across various evaluation metrics

in this scenario as well.

5. Real Data Analysis

We demonstrate the potential advantages of our method in Mendelian randomization (MR)

by analyzing the effect of BMI on suffering stroke. For this analysis, we leverage data from

the Atherosclerosis Risk in Communities Study (ARIC), which is a prospective longitudinal

epidemiological study conducted in four U.S. communities in North Carolina, Massachusetts,

Maryland, and Minnesota.

Similar to another analysis with the ARIC data, we include individuals of white origin

and extract European ancestry individuals and impute the data set on Michigan Imputation

Center with EUR population from 1000 Genomes Phase 3 v5 reference panel (Shi et al.,

2023). We remove 0.82% missing data in the following analysis. Finally, 8739 individuals are

selected.

We consider potential candidate instruments for our MR analysis using the following SNPs

in the ARIC data that have been previously associated with BMI: rs725959, rs1147199,



rs3817334, and rs6477694. While we have no specific reason to believe any of these SNPs are

invalid IVs, uncertainty arises due to incomplete knowledge about their biological functions.

Additionally, the inability to control all confounders precisely is a common scenario in MR

studies.

Under the assumption that all instruments are valid, the TSLS method estimates a causal

effect of 0.0805 (OR = 1.0838). In contrast, PSEE (with working model U ∼ Bernoulli(0.5))

estimates a causal effect of 0.1107 (SE: 0.0265, OR = 1.1171) with a 95% confidence interval

[0.0588, 0.1626], excluding 0. The difference between TSLS and PSEE may stem from the

underlying distribution of unmeasured confounder, as demonstrated in our simulations.

Importantly, PSEE does not identify any SNPs as invalid IVs.

To further validate our method, we introduce another instrument, rs42039, associated

with both BMI and stroke. Under the assumption that all four instruments are valid, TSLS

estimates an effect of -0.0331 (OR = 0.9674). Conversely, PSEE (with working model U ∼

Bernoulli(0.5)) estimates a causal effect of 0.1108 (SE: 0.0265, OR = 1.1171), similar to the

estimates when using four instruments. PSEE also excludes rs42039, suspected to be invalid.

In the real data analysis, PSEE provides similar estimates and consistently excludes

the suspected invalid instrument (rs42039) when additional instrument is introduced, this

indicates its robustness to possibly invalid instruments compared to TSLS. Furthermore,

Harshfield et al. (2021) found that heightened obesity will increase the risk of ischemic,

large artery, and small vessel stroke, which supports our PSEE results. Therefore, it is

recommended to focus on interventions that reduce obesity to mitigate the risk of stroke.

6. Discussions

In this paper, we consider a flexible semiparametric instrumental variable model accom-

modating for continuous/binary exposure/outcome. We assume identifiability of this model

under majority rule and propose a penalized semiparametric approach to estimate causal



effect. The asymptotic and oracle properties are outlined in Theorem 1 and further illustrated

in comprehensive simulation studies. Specifically, our proposed method, PSEE, demonstrates

performance close to that of the oracle TSLS regarding bias, RMSE, and instrument selection

properties for both binary and continuous unmeasured confounder scenarios when majority

rule holds. Even when majority rule does not hold, PSEE performs well in terms of bias

and RMSE. Additionally, the robustness of our estimator is evident in both simulation

experiments and real data analysis. We emphasize that PSEE does not impose specific

requirements on whether the outcome and exposure are continuous or binary; it only requires

the ability to specify the conditional probability distributions of the outcome and exposure.

However, in our simulations, we specifically consider scenarios with binary outcome and

continuous exposure. Nevertheless, it is worth noting that PSEE exhibits a lower coverage

for increased values of sensitivity parameters c1 and c2, as illustrated in the Appendix C.

Further work could involve extending the considered model to the presence of additional

complexities, such as nonlinear (Staley and Burgess, 2017) or time-varying exposure (Labrecque

and Swanson, 2019), and vector-valued confounder. One could also consider different penalty

functions, such as MCP (Zhang, 2010) and ALASSO (Zou, 2006) penalty, to compare their

estimation accuracy and instrument selection properties. Moreover, the computational chal-

lenges posed by a considerable number of instrumental variables need to be tackled in future

research. In our simulation experiments, involving a sample size of 1000 and 10 instrumental

variables, the task of conducting 1000 replications on an 80-node cluster required an average

of 30 hours. This highlights the necessity of developing efficient algorithms or optimization

techniques, which would significantly enhance the scalability and practical applicability of

our proposed method.
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Appendix

Appendix A: Proof of Theorem 1

Proof: To prove part a, we consider θ̂ = (θ̂T1 ,0
T )T , where θ̂1 = θ10 + Op(n

− 1
2 ). For

j = 1, 2, · · · , p, we have

n− 1
2SP

j (θ̂) = n− 1
2Sj(θ0) + n

1
2Aj(θ − θ0) + op(1)− n

1
2 qλn(|θ̂j|) sgn(θj)

= Op(1) +Op(1) + op(1) + op(1)

= Op(1).

where Aj is the jth row of A.

To prove part b, we consider the sets in the probability Cj =
{
θ̂j ̸= 0

}
, j = q + 1 + s +

1, · · · , p. We show that for any ε > 0, when n is sufficiently large, P (Cj) < ε. Because

θ̂j = Op(n
− 1

2 ), there exists some M such that when n is large enough,

P (Cj) = P (θ̂j ̸= 0, |θ̂j| ⩾ Mn− 1
2 ) + P (θ̂j ̸= 0, |θ̂j| < Mn− 1

2 )

<
ε

2
+ P (θ̂j ̸= 0, |θ̂j| < Mn− 1

2 )

Using the jth component of the penalized estimating function and the definition of the

approximate solution, we obtain that on the set of
{
θ̂j ̸= 0, |θ̂j| < Mn− 1

2

}
,

Op(1) = n− 1
2SP

j (θ̂)

= n− 1
2Sj(θ0) + n

1
2Aj(θ̂ − θ0) + op(1)− n

1
2 qλn(|θ̂j|) sgn(θ̂j).

The first three terms on the right side are of order Op(1). As a result, there exists some M ′

such that for large n,

P (θ̂j ̸= 0, |θ̂j| < Mn− 1
2 , n

1
2 qλn(|θ̂j|) sgn(θ̂j) > M ′) <

ε

2
.

Because limn→∞
√
n inf

|θ|⩽Mn− 1
2
qλn(|θ|) → ∞ by condition (d), θ̂j ̸= 0 and |θ̂j| < Mn− 1

2

imply that n
1
2 qλn(|θ̂j|) > M ′ for large n. Thus P (θ̂j ̸= 0, |θ̂j| < Mn− 1

2 ) = P (θ̂j ̸= 0, |θ̂j| <



Mn− 1
2 , n

1
2 qλn(|θ̂j|) sgn(θ̂j) > M ′). Therefore,

P (Cj) <
ε

2
+ P (θ̂j ̸= 0, |θ̂j| < Mn− 1

2 , n
1
2 qλn(|θ̂j|) sgn(θ̂j) > M ′) < ε.

We next show the asymptotic normality of θ̂1 when the order of n− 1
2SP (θ̂) is op(1). We have

op(1) = n− 1
2SP

1 (θ̂)

= n− 1
2S1(θ0) + n

1
2A11(θ̂1 − θ10) + op(1)− n

1
2 qλn(|θ̂1|) sgn(θ̂1).

Employing Taylor expansions of qλn(|θ̂1|) sgn(θ̂1) at θ10 yields

n
1
2 (θ̂1 − θ10) = −n

1
2 (A11 + Σ11)

−1 [S1(θ10) + bn] + op(1).

where

Σ11 = diag(0, · · · , 0︸ ︷︷ ︸
q+1

,−q′λn
(|α01|), · · · ,−q′λn

(|α0s|))

and

bn = −(0, · · · , 0︸ ︷︷ ︸
q+1

, qλn(|α01|) sgn(α01), · · · , qλn(|α0s|) sgn(α0s))
⊤.

we then obtain that

√
n(A11 + Σ11)

[
(θ̂1 − θ10) + (A11 + Σ11)

−1bn

]
d−→ N(0, V11)

where V11 is the (q + 1 + s) × (q + 1 + s) submatrix in the upper-left corner of V . This

completes the proof.

To establish part c, we examine θ1 ∈ Rq+1+s situated on the boundary of a ball centered

around θ10, defined as θ1 = θ10 + n−1/2u with |u| = r for a constant r. Leveraging the



penalized estimating function SP
1 , we derive the following expression:

n−1/2(θ1 − θ10)
TAT

11S
P
1 (θ)

= (θ1 − θ10)
TAT

11

{
n−1/2S1(θ)− n1/2qλn(|θ1|) sgn(θ1)

}
= Op(|θ1 − θ10|) + n1/2(θ1 − θ10)

TAT
11A11(θ1 − θ10)

− n1/2(θ1 − θ10)A
T
11 diag

{
q′λn

(
∣∣θ∗j ∣∣) sgn(θ0j)} (θ1 − θ10),

where θ∗j lies between θj and θ0j for j = 1, . . . , s. As A11 is nonsingular, the second term on

the right side exceeds a0r
2n−1/2, where a0 denotes the smallest eigenvalue of AT

11A11. The

first term is of order rOp(n
−1/2). Due to the convergence of maxj q

′
λn
(
∣∣θ∗j ∣∣) to 0, the third

term is dominated by the second term. Therefore, by selecting r adequately large such that,

for large n, the probability that the absolute value of the first term surpasses the second

term is less than ϵ, we obtain

P

[
min

|θ1−θ10|=n−1/2r
(θ1 − θ10)

TAT
11S

P
1 ((θ

T
1 ,0

T )T ) > 0

]
> 1− ϵ.

Applying the Brouwer fixed-point theorem to the continuous function SP
1 ((θ

T
1 ,0

T )T ), we see

that min|θ1−θ10|=n−1/2r(θ1 − θ10)
TAT

11× SP
1 ((θ

T
1 ,0

T )T ) > 0 implies that AT
11S

P
1 ((θ

T
1 ,0

T )T ) has

a solution within this ball. In other words, AT
11S

P
1 ((θ

T
1 ,0

T )T ) has a solution within this ball,

or equivalently, SP
1 ((θ

T
1 ,0

T )T ) has a solution within this ball. Thus, we can select an exact

solution θ̂ = (θ̂T1 ,0
T )T to SP

1 (θ) = 0 with θ̂ = θ0 +Op(n
−1/2). □

Appendix B: Boxplots and histograms for simulation studies
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Appendix C: Simulation results for increased values of sensitivity parameters

U ∼ N(0, 1) and c1 = c2 = 0.5.
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U ∼ t(3) and c1 = c2 = 0.5.
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Figure A1: Boxplot and histogram of estimates of the causal effect β, n = 1000, q = 10, U ∼
Bernoulli(0.2), c1 = c2 = 1, 1 invalid IV, 1000 replications.

(a) Boxplot: true value of β is represented by a horizontal red dashed line

(b) Histogram: true value of β is represented by a vertical red dashed line



Figure A2: Boxplot and histogram of estimates of the causal effect β, n = 1000, q = 10, U ∼
Bernoulli(0.2), c1 = c2 = 1, 3 invalid IVs, 1000 replications.

(a) Boxplot: true value of β is represented by a horizontal red dashed line

(b) Histogram: true value of β is represented by a vertical red dashed line



Figure A3: Boxplot and histogram of estimates of the causal effect β, n = 1000, q = 10, U ∼
Bernoulli(0.2), c1 = c2 = 1, 5 invalid IVs, 1000 replications.

(a) Boxplot: true value of β is represented by a horizontal red dashed line

(b) Histogram: true value of β is represented by a vertical red dashed line



Figure A4: Boxplot and histogram of estimates of the causal effect β, n = 1000, q = 10, U ∼
Bernoulli(0.2), c1 = c2 = 1, 7 invalid IVs, 1000 replications.

(a) Boxplot: true value of β is represented by a horizontal red dashed line

(b) Histogram: true value of β is represented by a vertical red dashed line



Figure A5: Boxplot and histogram of estimates of the causal effect β, n = 1000, q = 10, U ∼
N(0, 1), c1 = c2 = 0.25, 1 invalid IV, 1000 replications.

(a) Boxplot: true value of β is represented by a horizontal red dashed line

(b) Histogram: true value of β is represented by a vertical red dashed line



Figure A6: Boxplot and histogram of estimates of the causal effect β, n = 1000, q = 10, U ∼
N(0, 1), c1 = c2 = 0.25, 3 invalid IVs, 1000 replications.

(a) Boxplot: true value of β is represented by a horizontal red dashed line

(b) Histogram: true value of β is represented by a vertical red dashed line



Figure A7: Boxplot and histogram of estimates of the causal effect β, n = 1000, q = 10, U ∼
N(0, 1), c1 = c2 = 0.25, 5 invalid IVs, 1000 replications.

(a) Boxplot: true value of β is represented by a horizontal red dashed line

(b) Histogram: true value of β is represented by a vertical red dashed line



Figure A8: Boxplot and histogram of estimates of the causal effect β, n = 1000, q = 10, U ∼
N(0, 1), c1 = c2 = 0.25, 7 invalid IVs, 1000 replications.

(a) Boxplot: true value of β is represented by a horizontal red dashed line

(b) Histogram: true value of β is represented by a vertical red dashed line



Figure A9: Boxplot and histogram of estimates of the causal effect β, n = 1000, q = 10, U ∼
t(3), c1 = c2 = 0.25, 1 invalid IV, 1000 replications.

(a) Boxplot: true value of β is represented by a horizontal red dashed line

(b) Histogram: true value of β is represented by a vertical red dashed line



Figure A10: Boxplot and histogram of estimates of the causal effect β, n = 1000, q =
10, U ∼ t(3), c1 = c2 = 0.25, 3 invalid IVs, 1000 replications.

(a) Boxplot: true value of β is represented by a horizontal red dashed line

(b) Histogram: true value of β is represented by a vertical red dashed line



Figure A11: Boxplot and histogram of estimates of the causal effect β, n = 1000, q =
10, U ∼ t(3), c1 = c2 = 0.25, 5 invalid IVs, 1000 replications.

(a) Boxplot: true value of β is represented by a horizontal red dashed line

(b) Histogram: true value of β is represented by a vertical red dashed line



Figure A12: Boxplot and histogram of estimates of the causal effect β, n = 1000, q =
10, U ∼ t(3), c1 = c2 = 0.25, 7 invalid IVs, 1000 replications.

(a) Boxplot: true value of β is represented by a horizontal red dashed line

(b) Histogram: true value of β is represented by a vertical red dashed line



Figure A13: Boxplot and histogram of estimates of the causal effect β, n = 1000, q =
10, U ∼ N(0, 1), c1 = c2 = 0.5, 1 invalid IV, 1000 replications.

(a) Boxplot: true value of β is represented by a horizontal red dashed line

(b) Histogram: true value of β is represented by a vertical red dashed line



Figure A14: Boxplot and histogram of estimates of the causal effect β, n = 1000, q =
10, U ∼ N(0, 1), c1 = c2 = 0.5, 3 invalid IVs, 1000 replications.

(a) Boxplot: true value of β is represented by a horizontal red dashed line

(b) Histogram: true value of β is represented by a vertical red dashed line



Figure A15: Boxplot and histogram of estimates of the causal effect β, n = 1000, q =
10, U ∼ N(0, 1), c1 = c2 = 0.5, 5 invalid IVs, 1000 replications.

(a) Boxplot: true value of β is represented by a horizontal red dashed line

(b) Histogram: true value of β is represented by a vertical red dashed line



Figure A16: Boxplot and histogram of estimates of the causal effect β, n = 1000, q =
10, U ∼ N(0, 1), c1 = c2 = 0.5, 7 invalid IVs, 1000 replications.

(a) Boxplot: true value of β is represented by a horizontal red dashed line

(b) Histogram: true value of β is represented by a vertical red dashed line



Figure A17: Boxplot and histogram of estimates of the causal effect β, n = 1000, q =
10, U ∼ t(3), c1 = c2 = 0.5, 1 invalid IV, 1000 replications.

(a) Boxplot: true value of β is represented by a horizontal red dashed line

(b) Histogram: true value of β is represented by a vertical red dashed line



Figure A18: Boxplot and histogram of estimates of the causal effect β, n = 1000, q =
10, U ∼ t(3), c1 = c2 = 0.5, 3 invalid IVs, 1000 replications.

(a) Boxplot: true value of β is represented by a horizontal red dashed line

(b) Histogram: true value of β is represented by a vertical red dashed line



Figure A19: Boxplot and histogram of estimates of the causal effect β, n = 1000, q =
10, U ∼ t(3), c1 = c2 = 0.5, 5 invalid IVs, 1000 replications.

(a) Boxplot: true value of β is represented by a horizontal red dashed line

(b) Histogram: true value of β is represented by a vertical red dashed line



Figure A20: Boxplot and histogram of estimates of the causal effect β, n = 1000, q =
10, U ∼ t(3), c1 = c2 = 0.5, 7 invalid IVs, 1000 replications.

(a) Boxplot: true value of β is represented by a horizontal red dashed line

(b) Histogram: true value of β is represented by a vertical red dashed line



Table 1
Estimation Results for β (n = 1000, q = 10, U ∼ Bernoulli(0.2), c1 = c2 = 1): comparison of

naive TSLS, oracle TSLS, PSEE (correct), SEE (correct), PSEE (incorrect) and SEE
(incorrect). Here “correct” denotes estimator with correctly specified working model, i.e.,
f ∗(U | Z; ξ) = Bernoulli(0.2); “incorrect” denotes estimator with incorrectly specified

working model, i.e., f ∗(U | Z; ξ) = Bernoulli(0.5). SD1 and SD2 denote the sample standard
deviation and the mean of the estimated standard deviation using the sandwich variance. C
and I denote the average number of correct and incorrect zero estimates, respectively. True

β equals 2.0.

Bias RMSE SD1 SD2 Coverage C I

Majority rule holds
1 invalid IV

PSEE(correct) 0.053 0.180 0.162 0.172 93.4% 8.644 0.026
SEE(correct) 0.065 0.231 0.216 0.222 95.1%

PSEE(incorrect) 0.051 0.180 0.162 0.172 93.4% 8.652 0.021
SEE(incorrect) 0.089 0.239 0.216 0.222 95.1%

Oracle -0.008 0.161 9 0
Naive -0.814 0.817

3 invalid IVs
PSEE(correct) 0.043 0.183 0.170 0.178 94.8% 6.877 0.097
SEE(correct) 0.067 0.242 0.227 0.233 94.1%

PSEE(incorrect) 0.042 0.183 0.171 0.178 94.4% 6.868 0.078
SEE(incorrect) 0.090 0.250 0.227 0.233 93.6%

Oracle -0.007 0.164 7 0
Naive -0.781 0.784

Majority rule is violated
5 invalid IVs
PSEE(correct) 0.079 0.217 0.181 0.202 91.8% 4.881 0.235
SEE(correct) 0.099 0.271 0.235 0.252 93.6%

PSEE(incorrect) 0.078 0.216 0.180 0.202 91.8% 4.883 0.268
SEE(incorrect) 0.122 0.281 0.235 0.253 93.3%

Oracle 0.026 0.187 5 0
Naive -0.724 0.728

7 invalid IVs
PSEE(correct) 0.072 0.221 0.181 0.208 91.7% 2.951 0.756
SEE(correct) 0.081 0.263 0.230 0.251 93.6%

PSEE(incorrect) 0.074 0.222 0.181 0.210 91.5% 2.945 0.753
SEE(incorrect) 0.106 0.272 0.230 0.251 93.0%

Oracle 0.066 0.208 3 0
Naive -0.901 0.903



Table 2
Estimation Results for β (n = 1000, q = 10, U ∼ N(0, 1), c1 = c2 = 0.25): comparison of

naive TSLS, oracle TSLS, PSEE, SEE. Working model for U is a discrete uniform
distribution on the interval [−0.5, 0.5] with mesh size h, here we take h = 0.5. SD1 and SD2

denote the sample standard deviation and the mean of the estimated standard deviation
using the sandwich variance. C and I denote the average number of correct and incorrect

zero estimates, respectively. True β equals 2.0.

Bias RMSE SD1 SD2 Coverage C I

Majority rule holds
1 invalid IV

PSEE 0.015 0.168 0.159 0.168 93.9% 8.694 0.005
SEE 0.105 0.245 0.215 0.221 94.4%
Oracle 0.006 0.162 9 0
Naive -0.715 0.719

3 invalid IVs
PSEE 0.033 0.173 0.167 0.170 95.0% 6.942 0.018
SEE 0.128 0.259 0.221 0.225 94.1%
Oracle 0.027 0.167 7 0
Naive -0.724 0.728

Majority rule is violated
5 invalid IVs

PSEE 0.047 0.187 0.177 0.181 94.1% 4.976 0.076
SEE 0.124 0.265 0.226 0.234 93.8%
Oracle 0.048 0.183 5 0
Naive -0.641 0.646

7 invalid IVs
PSEE 0.050 0.227 0.181 0.222 89.4% 2.943 0.438
SEE 0.124 0.270 0.229 0.240 93.4%
Oracle 0.059 0.204 3 0
Naive -0.940 0.942



Table 3
Estimation Results for β (n = 1000, q = 10, U ∼ t(3), c1 = c2 = 0.25): comparison of naive
TSLS, oracle TSLS, PSEE, SEE. Working model for U is a discrete uniform distribution on
the interval [−0.5, 0.5] with mesh size h, here we take h = 0.5. SD1 and SD2 denote the
sample standard deviation and the mean of the estimated standard deviation using the
sandwich variance. C and I denote the average number of correct and incorrect zero

estimates, respectively. True β equals 2.0.

Bias RMSE SD1 SD2 Coverage C I

Majority rule holds
1 invalid IV

PSEE 0.004 0.160 0.155 0.160 94.1% 8.633 0.014
SEE 0.163 0.268 0.208 0.213 90.4%
Oracle -0.010 0.155 9 0
Naive -0.780 0.783

3 invalid IVs
PSEE 0.023 0.186 0.168 0.185 94.0% 6.886 0.040
SEE 0.182 0.297 0.224 0.235 89.6%
Oracle 0.014 0.179 7 0
Naive -0.782 0.785

Majority rule is violated
5 invalid IVs

PSEE 0.049 0.191 0.175 0.185 94.5% 4.927 0.119
SEE 0.187 0.299 0.226 0.233 91.5%
Oracle 0.049 0.191 5 0
Naive -0.633 0.638

7 invalid IVs
PSEE 0.061 0.220 0.179 0.212 91.5% 2.905 0.599
SEE 0.195 0.310 0.231 0.241 89.5%
Oracle 0.065 0.206 3 0
Naive -0.917 0.919



Table A1
Estimation Results for β (n = 1000, q = 10, U ∼ N(0, 1), c1 = c2 = 0.5): comparison of
naive TSLS, oracle TSLS, PSEE, SEE. Working model for U is a discrete uniform

distribution on the interval [−0.5, 0.5] with mesh size h, here we take h = 0.5. SD1 and SD2

denote the sample standard deviation and the mean of the estimated standard deviation
using the sandwich variance. C and I denote the average number of correct and incorrect

zero estimates, respectively. True β equals 2.0.

Bias RMSE SD1 SD2 Coverage C I

Majority rule holds
1 invalid IV

PSEE -0.005 0.165 0.158 0.165 94.9% 8.683 0.024
SEE 0.201 0.300 0.217 0.223 87.9%
Oracle -0.023 0.161 9 0
Naive -0.834 0.837

3 invalid IVs
PSEE 0.005 0.180 0.163 0.180 92.4% 6.878 0.079
SEE 0.194 0.299 0.219 0.227 88.1%
Oracle -0.006 0.169 7 0
Naive -0.830 0.833

Majority rule is violated
5 invalid IVs

PSEE 0.045 0.210 0.180 0.206 92.2% 4.858 0.265
SEE 0.208 0.322 0.234 0.246 89.1%
Oracle 0.029 0.194 5 0
Naive -0.667 0.672

7 invalid IVs
PSEE 0.065 0.217 0.176 0.207 91.4% 2.908 0.973
SEE 0.207 0.320 0.227 0.244 86.9%
Oracle 0.057 0.202 3 0
Naive -0.983 0.984



Table A2
Estimation Results for β (n = 1000, q = 10, U ∼ t(3), c1 = c2 = 0.5): comparison of naive

TSLS, oracle TSLS, PSEE, SEE. Working model for U is a discrete uniform distribution on
the interval [−0.5, 0.5] with mesh size h, here we take h = 0.5. SD1 and SD2 denote the
sample standard deviation and the mean of the estimated standard deviation using the
sandwich variance. C and I denote the average number of correct and incorrect zero

estimates, respectively. True β equals 2.0.

Bias RMSE SD1 SD2 Coverage C I

Majority rule holds
1 invalid IV

PSEE -0.049 0.174 0.146 0.167 88.0% 8.628 0.142
SEE 0.281 0.355 0.204 0.218 76.7%
Oracle -0.062 0.163 9 0
Naive -0.990 0.991

3 invalid IVs
PSEE -0.018 0.194 0.159 0.194 87.2% 6.481 0.347
SEE 0.291 0.365 0.217 0.220 77.4%
Oracle -0.049 0.168 7 0
Naive -0.949 0.951

Majority rule is violated
5 invalid IVs

PSEE 0.075 0.254 0.177 0.243 89.1% 4.268 0.815
SEE 0.323 0.410 0.233 0.253 76.2%
Oracle -0.010 0.177 5 0
Naive -0.831 0.835

7 invalid IVs
PSEE 0.113 0.242 0.172 0.215 89.1% 2.715 2.188
SEE 0.323 0.400 0.228 0.236 75%
Oracle 0.061 0.191 3 0
Naive -1.056 1.057
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