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Abstract 

Mendelian Randomization (MR), a method that employs genetic variants as instruments for 
causal inference, has gained popularity in assessing the causal effects of risk factors. However, 
almost all MR studies primarily concentrate on the population’s average causal effects. With 
the advent of precision medicine, the individualized treatment effect (ITE) is often of greater 
interest. For instance, certain risk factors may pose a higher risk to some individuals compared 
to others, and the benefits of a treatment may vary among individuals. This highlights the 
importance of considering individual differences in risk and treatment response.  

We propose a new framework that expands the concept of MR to investigate individualized 
causal effects. We presented several approaches for estimating Individualized Treatment 
Effects (ITEs) within this MR framework, primarily grounded on the principles of the “R-
learner”. To evaluate the existence of causal effect heterogeneity, we proposed two permutation 
testing methods. We employed Polygenic Risk Scores (PRS) as the instrument and 
demonstrated that the removal of potentially pleiotropic SNPs could enhance the accuracy of 
ITE estimates. The validity of our approach was substantiated through comprehensive 
simulations.  

We applied our framework to study the individualized causal effect of various lipid traits, 
including Low-Density Lipoprotein Cholesterol (LDL-C), High-Density Lipoprotein 
Cholesterol (HDL-C), Triglycerides (TG), and Total Cholesterol (TC), on the risk of Coronary 
Artery Disease (CAD) using data from the UK Biobank. Our findings indicate that an elevated 
level of LDL-C is causally linked to increased CAD risks, with the effect demonstrating 
significant heterogeneity. Similar results were observed for TC. We also revealed clinical 
factors contributing to the heterogeneity of ITE based on Shapley value analysis. Furthermore, 
we identified clinical factors contributing to the heterogeneity of ITEs through Shapley value 
analysis. This underscores the importance of individualized treatment plans in managing CAD 
risks.  
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1 Introduction 

The rising incidence and mortality rates of chronic diseases have imposed a significant burden 
on numerous countries over the past decades1. Consequently, identifying potential causal risk 
factors and designing appropriate interventions have emerged as top priorities. In the past, 
epidemiologists focused primarily on studying the average causal effect of prospective 
interventions, thereby overlooking the importance of population heterogeneity. The presence 
of heterogeneity suggests that individuals may derive varying benefits from the same 
intervention. For instance, a randomized controlled trial (RCT) demonstrated that metformin 
could have a heterogeneous impact on diabetes mellitus (DM) prevention among patients with 
impaired glucose metabolism2,3. Specifically, patients at a higher risk of diabetes might 
experience a more substantial absolute risk reduction than those at lower risk. This study 
underscores the importance of estimating individualized treatment effects (ITEs). To optimize 
intervention efficiency across the population and minimize costs, it is important to estimate the 
potential benefit a specific patient may gain from an intervention (or risk factor prevention). In 
this study, we aimed to estimate the individualized causal treatment effect of a given 
intervention to individual patients, leveraging the principles of Mendelian randomization (MR). 

It is widely accepted that the most accurate approach to estimate the causal effect is via a 
randomized controlled trial (RCT), in which both known and unknown confounding factors 
can be controlled for by treatment randomization4. However, RCTs are often prohibitively 
expensive, limited by ethical considerations or logistical constraints, and may lack 
generalizability due to strict inclusion/exclusion criteria5,6. Consequently, researchers 
frequently resort to observational studies to estimate causal effects. Unlike RCTs, a major 
concern with observational studies is that unmeasured confounding may influence causal 
inference. Mendelian Randomization (MR) serves as a valuable approach to mitigate the risk 
of unmeasured confounding and is largely immune to reverse causality. In MR, genetic variants 
are utilized as instruments to represent the exposure7.  

Following years of development and innovation, a variety of statistical methods have been 
established for Mendelian Randomization (MR) analyses, including the Wald ratio method, 
two-stage least squares, MR-Egger, weighted median, and semi-parametric methods8. 
Although these methods are robust and flexible, they still have limitations. An important one 
is that they can only estimate an average causal effect without considering the heterogeneity 
of the population, and there is a lack of innovations regarding the estimation of individualized 
treatment (or risk factor) effects.  

Our main contribution is the introduction of a novel framework, MR-ITE, capable of inferring 
individualized causal effects in observational studies based on the MR approach, utilizing the 
polygenic risk score (PRS) as an instrument. We have proposed several Individualized 
Treatment Effect (ITE) estimation methodologies within the MR framework, grounded on the 
principles of “R-learners”9. These methods offer high flexibility as they leverage supervised 
machine learning (ML) approaches for modelling, imposing virtually no restrictions on the type 
of ML models employed. Our other contributions to the MR-ITE framework include: (1) To 
mitigate the risks of bias from invalid instruments, we suggest the use of the contamination 
mixture approach to eliminate potential pleiotropic Single Nucleotide Polymorphisms (SNPs) 
prior to calculating the PRS10; (2) We also presented permutation-based approaches to test for 
the presence of heterogeneity under MR-ITE; (3) We proposed methods to evaluate the most 
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important effect modifiers in MR-ITE analyses, for instance, by employing the Shapley value; 
(4) We applied our proposed framework to study the individualized effects of lipids on risks of 
coronary artery disease (CAD); Our findings indicate that LDL-C and TC may exert 
heterogeneous causal effects on CAD risks, and we have identified major effect modifiers. In 
conclusion, this work underscores the importance of individualized causal effect estimation in 
observational studies and presents innovative methodologies to achieve this goal. 

 

2 Methods 

2.1 Set-up and notation 

2.1.1 Rubin's causal model 

A causal model needs to be formalized first. A well-established and popular choice is the 
Neyman-Rubin causal model, also called the potential outcome (counterfactual) framework11. 
We consider a dataset with 𝑁𝑁 units, indexed by 𝑖𝑖 = 1, … ,𝑁𝑁. Following the potential outcome 
framework, we define the potential outcome for unit 𝑖𝑖 in treatment and control status as 𝑌𝑌𝑖𝑖1 and 
𝑌𝑌𝑖𝑖0, respectively. For each unit, we let 𝑋𝑋𝑖𝑖 be a vector consisting of 𝑀𝑀 covariates and 𝑍𝑍𝑖𝑖 be a 
continuous instrument variable. We further define 𝑇𝑇𝑖𝑖 ∈ {0,1} as a binary indicator for the 
treatment, where 𝑇𝑇𝑖𝑖 = 0 means that the unit 𝑖𝑖 does not receive any treatment and 𝑇𝑇𝑖𝑖 = 1 means 
that the unit 𝑖𝑖 is receiving the treatment. Given the formalization above, our data can be 
regarded as a set of quadruple data point �𝑌𝑌𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ,𝑇𝑇𝑖𝑖,𝑋𝑋𝑖𝑖,𝑍𝑍𝑖𝑖� units, indexed from 1 to 𝑁𝑁. In this 
case, we further define the unit-level causal effect as the difference between two potential 
outcomes 𝑌𝑌𝑖𝑖1 and 𝑌𝑌𝑖𝑖0, τ𝑖𝑖 = 𝑌𝑌𝑖𝑖1 − 𝑌𝑌𝑖𝑖0.  

The framework discussed above is under a binary treatment setting. However, in many 
epidemiology studies, the risk factors are continuous variables, and it may be difficult to define 
an arbitrary cutoff to partition the population into treatment and control groups. The main 
difference between binary and continuous settings is that we no longer define a binary indicator 
for the treatment. In this case, the unit-level causal effect is defined as the effect of unit 
increment of treatment on the outcome, τ𝑖𝑖 = 𝑌𝑌𝑖𝑖𝑇𝑇+Δ𝑇𝑇 − 𝑌𝑌𝑖𝑖𝑇𝑇. 

 

2.1.2 Assumptions of Instrumental Variables 

As we regard our approach as an extension of the Mendelian Randomization framework, we 
also require similar assumptions that the MR framework needs to achieve a consistent 
estimation of the causal effect. A natural way to extend the core assumptions for MR to 
individualized MR applying PRS as the instrument as follows: 

1. The polygenic risk score is associated with the exposure. 
2. The polygenic risk score is independent of the outcome given the exposure and possible 

confounders (measured and unmeasured) of the exposure-outcome association. 
3. The polygenic risk score is independent of factors that confound the exposure-outcome 

relationship. 

The first assumption is a key assumption of instrument analysis that we require the instrument 
to have a non-zero effect on the treatment, at least for some covariates, referring to the 
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instrumentation assumption or relevance assumption. The second assumption is the exclusion 
restriction assumption, which requires the instrument only to affect the outcome through its 
effect on the exposure or treatment. The last assumption is similar to the second one, where the 
instrument should not have effect on the outcome through the confounders12,13. 

 

2.2 Generalized Random Forest (GRF), including GRF using instrumental variables (IV-
GRF) 

The generalized random forest (GRF) is a forest-based estimator introduced by Athey et al14. 
It preserves the main components of the classic random forest, including recursive partitioning 
and feature subsampling14. For details of the methodology and notations, please refer to14. 
Briefly, GRF can be considered as an adaptive nearest neighbor with weights α𝑖𝑖(𝑥𝑥) that can be 
used in local estimating equations �θ�(𝑥𝑥),𝑣𝑣�(𝑥𝑥)� ∈ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝜃𝜃,𝑣𝑣 ��∑ α𝑖𝑖(𝑥𝑥)ψθ,𝑣𝑣(𝑂𝑂𝑖𝑖)𝑛𝑛
𝑖𝑖=1 ��

2
 15, where 

ψ(⋅) is some scoring function and 𝑣𝑣(𝑥𝑥) is the optional nuisance parameter.  

We can think of the weight α𝑖𝑖(𝑥𝑥) as a measurement of the relevance between the 𝑖𝑖th training 
sample and a given sample 𝑥𝑥 in fitting 𝜃𝜃(⋅), the function returning the individualized treatment 
effects (ITE). GRF uses the frequency that the 𝑖𝑖th training sample and the given sample 𝑥𝑥 are 
located in the same leaf to measure such relevance. It can be defined as α𝑏𝑏𝑏𝑏(𝑥𝑥) = 1({𝑋𝑋𝑖𝑖∈𝐿𝐿𝑏𝑏(𝑥𝑥)})

|𝐿𝐿𝑏𝑏(𝑥𝑥)| , 

α𝑖𝑖(𝑥𝑥) = 1
𝐵𝐵
∑ α𝑏𝑏𝑏𝑏(𝑥𝑥)𝐵𝐵
𝑏𝑏=1 , where 𝐵𝐵 denotes the number of trees in the forest and 𝑏𝑏 denotes the bth 

tree. 𝐿𝐿𝑏𝑏(𝑥𝑥) is the set of training examples falling in the same "leaf" as 𝑥𝑥. 

The instrumental causal forest (IV-GRF) is an important application of GRF, in which the 
gradient-based labelling ρ𝑖𝑖 is modified to fit the instrumental variable case. In the regular GRF 
causal forest, the gradient-based labeling is defined as, ρ𝑖𝑖 = 𝑌𝑌𝑖𝑖 − 𝑌𝑌�p − �𝑇𝑇𝑖𝑖 − 𝑇𝑇�𝑝𝑝�τ�𝑝𝑝, while in 
the instrumental causal forest, the gradient-based labeling is defined as, ρ𝑖𝑖 = �𝑍𝑍𝑖𝑖 −
𝑍̅𝑍𝑝𝑝� ��𝑌𝑌𝑖𝑖 − 𝑌𝑌�𝑝𝑝� − �𝑇𝑇𝑖𝑖 − 𝑇𝑇�𝑝𝑝�τ�𝑝𝑝�, where the 𝑌𝑌�𝑃𝑃, 𝑍̅𝑍𝑃𝑃 and 𝑇𝑇�𝑃𝑃 stand for the average of 𝑌𝑌, 𝑍𝑍 and 𝑇𝑇 
over the parent node 𝑃𝑃. The algorithm will further run a standard CART regression split by 
splitting the parent node into two child nodes 𝐶𝐶1 and 𝐶𝐶2 with maximizing the criterion: 

Δ�(𝐶𝐶1,𝐶𝐶2) = �
1

��𝑖𝑖:𝑋𝑋𝑖𝑖 ∈ 𝐶𝐶𝑗𝑗��
� � ρ𝑖𝑖
�𝑖𝑖:𝑋𝑋𝑖𝑖∈𝐶𝐶𝑗𝑗�

�

22

𝑗𝑗=1

 

In addition to the difference in making splits, the instrumental GRF modifies the prediction 
step by introducing the forest-weighted two-stage least squares approach, allowing a more 
accurate causal effect estimation in the instrumental case. 

 

2.4 Double robustness instrumental variable estimator (DRIV) 

Unlike instrumental causal forest, DRIV mainly focuses on designing a novel loss function 
based on machine learning models16. The method starts by a ‘preliminary’ estimate of the 
individualized treatment effect (ITE), which can be computed by minimizing the following loss 
function: 
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𝑚𝑚𝑚𝑚𝑛𝑛θ∈Θ𝐿𝐿1(θ;𝐸𝐸[𝑌𝑌|𝑋𝑋],𝐸𝐸[𝑇𝑇|𝑍𝑍,𝑋𝑋],𝐸𝐸[𝑇𝑇|𝑋𝑋])
≔ 𝐸𝐸 ��𝑌𝑌 − 𝐸𝐸[𝑌𝑌|𝑋𝑋] − 𝜃𝜃(𝑋𝑋)(𝐸𝐸[𝑇𝑇|𝑍𝑍,𝑋𝑋] − 𝐸𝐸[𝑇𝑇|𝑋𝑋])�

2
� 

where Z is the instrumental variable and 𝜃𝜃 represents estimate of the ITE. The above estimate 
is referred to as the double machine learning IV (DMLIV) estimate as described in ref 16.  

The nuisance terms 𝐸𝐸[𝑌𝑌|𝑋𝑋],𝐸𝐸[𝑇𝑇|𝑍𝑍,𝑋𝑋]  and 𝐸𝐸[𝑇𝑇|𝑋𝑋]  can be estimated from an independent 
training set using any supervised learning models. In our application, we applied the DRIV 
algorithm implemented by EconML package to estimate the ITEs17. Since finding a separate 
dataset is usually difficult, the above terms are estimated based on cross-validation (CV) to 
avoid overfitting, following EconML’s implementation. Also following the default settings by 
EconML, we used WeightedLassoCV to model the continuous dependent variables and used 
the LogisticRegressionCV to model the binary ones. Both WeightedLassoCV and 
LogisticRegressionCV are originally implemented in scikit-learn package18. The 
LogisticRegressionCV class implements a logistic regression with L2 penalty, with 
hyperparameters determined by cross validation. WeightedLassoCV is a LASSO linear model 
with hyper-parameters determined by CV. However, we emphasize that any supervised ML 
models can be used to estimate the above terms.  

However, the 𝜃𝜃� estimated from the first step was shown to be not robust enough16. An 
improved estimator that is doubly robust can be applied instead16,  

𝑚𝑚𝑚𝑚𝑛𝑛θ∈Θ𝐿𝐿2�θ;θ𝑝𝑝𝑝𝑝𝑝𝑝 ,β,𝐸𝐸[𝑌𝑌|𝑋𝑋],𝐸𝐸[𝑍𝑍|𝑋𝑋],𝐸𝐸[𝑇𝑇|𝑋𝑋]�

≔ 𝐸𝐸 ��θ𝑝𝑝𝑝𝑝𝑝𝑝(𝑋𝑋) +
�𝑌𝑌� − θ𝑝𝑝(𝑋𝑋)𝑇𝑇��𝑍𝑍�

β(𝑋𝑋) − θ(𝑋𝑋)�

2

� 

where β(X) = 𝐸𝐸[(𝑇𝑇 − 𝐸𝐸[𝑇𝑇|𝑋𝑋])(𝑍𝑍 − 𝐸𝐸[𝑍𝑍|𝑋𝑋])|𝑋𝑋]. This term is also estimated by CV similar to 
above.  

Note that we can further apply SHAP analysis directly to assess the effect modifier importance 
since the DRIV allows a flexible specification of machine learning models in the training step, 
which is not feasible in a causal forest model. SHAP can only provide an approximation of 
variable importance of causal forest model, as causal forest does not make the predictions based 
on a simple averaging of predictions of individual trees14,19.  

2.5 Polygenic Risk Score 

A single trait-associated genetic variant can usually only explain a small proportion of variance 
of the phenotype. Evidence suggests that many common disease/phenotypes are mediated by 
multiple genetic variants simultaneously, where each individual genetic variant only 
contributes a small effect20,21.  Polygenic risk score can be used to summarize the estimated 
effect of multiple trait-associated genetic variants on an individual's phenotype, which is 
usually defined as a weighted sum of trait-associated risk alleles across multiple genetic loci22.  

In our study, we apply PRSice-2 to calculate the individualized PRS as an instrument for further 
analysis. PRSice-2 is an efficient PRS calculating software that can automate PRS analyses, 
which can identify the precise P-value threshold by calculating the PRS at multiple threshold23. 
In our analysis, we set the P-value threshold to 5e-8.  
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2.6 Contamination Mixture Model  

A major concern of applying an allelic score as an instrument in MR is that it may violate the 
assumption of an instrumental variable. Including pleiotropic SNPs in calculating the allelic 
score may significantly affect the overall performance of the results24. Therefore, it is necessary 
to remove the pleiotropic SNPs to ensure the calculated PRS is a valid instrument.  Here we 
assume that same SNPs show imbalanced horizontal pleiotropy both at the population and 
individual level. In this study, we propose the application of the contamination mixture 
(ConMix) approach to identify invalid SNPs in our framework10. This approach has been 
shown to be robust to the presence of pleiotropic effects25. The contamination mixture approach 
assumes that the valid genetic variants follow a normal distribution centered at the true causal 
parameter θ with standard deviation equal to the ratio estimate's standard error 𝑠𝑠𝑠𝑠�𝜃𝜃�𝑗𝑗�, while 
the invalid genetic variant is normally distributed around 0, with variance comprising the 
uncertainty in the ratio estimates (which is 𝑠𝑠𝑠𝑠�𝜃𝜃�𝑗𝑗�) and the proposed variability in the invalid 
estimand (denoted as ψ2). The ConMix approach first specify a likelihood function 𝐿𝐿(𝜃𝜃, 𝜉𝜉) 
integrating information from all genetic variants, defined as, 

𝐿𝐿(θ, ξ) = �ξ𝑗𝑗𝐿𝐿𝑉𝑉,𝑗𝑗
𝑗𝑗

+ �1 − ξ𝑗𝑗�𝐿𝐿𝐹𝐹,𝑗𝑗 

= �ξ𝑗𝑗
𝑗𝑗

×
1

�2π𝑠𝑠𝑠𝑠�𝜃𝜃�𝑗𝑗�
2
𝑒𝑒𝑒𝑒𝑒𝑒 �−

�θ − 𝜃𝜃�𝑗𝑗�
2

2𝑠𝑠𝑠𝑠�θ𝚥𝚥� �
2�

+ �1 − ξ𝑗𝑗� ×
1

�2π �ψ2 + 𝑠𝑠𝑠𝑠�𝜃𝜃�𝑗𝑗�
2
�
𝑒𝑒𝑒𝑒𝑒𝑒�−

−𝜃𝜃�𝑗𝑗
2

2 �ψ2 + 𝑠𝑠𝑠𝑠�𝜃𝜃�𝑗𝑗�
2
�
� 

where ξ is a vector denoting the configuration of the valid and invalid instruments, 𝐿𝐿{𝑉𝑉,𝑗𝑗} is the 
likelihood contribution when genetic variant 𝑗𝑗 is valid and 𝐿𝐿{𝐹𝐹,𝑗𝑗} is the likelihood contribution 
when genetic variant 𝑗𝑗  is invalid. In the likelihood, ξ𝑗𝑗 = 1  if genetic variant 𝑗𝑗  is a valid 
instrument, while ξ𝑗𝑗 = 0 if genetic variant 𝑗𝑗 is invalid. Instead of making inferences with this 
likelihood, the ConMix method applies a profile likelihood approach, in which the causal 
estimate 𝜃𝜃  is assumed fixed. When 𝜃𝜃  is fixed, the optimal 𝜃𝜃  that maximizes the 
aforementioned likelihood function can be easily inferred, that is, ξ𝑗𝑗 equals to 1 when 𝐿𝐿𝑉𝑉,𝑗𝑗 is 
greater than 𝐿𝐿𝐹𝐹,𝑗𝑗 for genetic variant 𝑗𝑗. The ConMix approach iterates through a range of values 
of 𝜃𝜃 and picks the one maximizing the profile likelihood. In summary, the ConMix approach 
tries to identify the invalid SNPs based on the distance between variant-specific estimate 𝜃𝜃�𝑗𝑗  
and the proposed causal parameter 𝜃𝜃, in other words, if the 𝜃𝜃�𝑗𝑗  is closer to the 𝜃𝜃, the SNP 𝑗𝑗 is 
more likely to be a valid SNP. Here we removed the likely pleiotropic SNPs based on the 
ConMix approach before construction of the PRS as the instrument.  

 

2.7 Assessing the Presence of Treatment Effect Heterogeneity 



8 
 

In addition to estimating the individual treatment effect, we also presented two permutation-
based methods to assess the presence of heterogeneity among the estimated treatment effect. 
Typically, the heterogeneity of treatment effect can be defined as a non-random, explainable 
variability in the direction and magnitude of individualized treatment effect obtained from a 
population26. Another way to think of heterogeneity of treatment effects is that whether the 
predicted treatment effects are different from the average effect by chance27. These definitions 
offer valuable insight in developing methods for us to estimate ITE and assess heterogeneity. 
For example, in each split, the causal tree will try to maximize the variance of the estimated 
treatment effect across leaves as well as penalize the uncertainty of estimated treatment 
effects28. If covariates cannot contribute to the heterogeneity, the variance of the predicted ITE 
across leaves should be smaller than splitting on covariates that contribute to the heterogeneity, 
inspiring us to develop the heterogeneity testing methods based on covariate permutation. 

Here we present two permutation-based methods, including the permutation-variance and 
permutation-τ-risk test, to evaluate whether there is significant heterogeneity. While the same 
principles can also be applied to ordinary HTE models (see ref29, Chapter 4), here the tests are 
specifically catered for our framework with instrumental variables, especially for the test based 
on the (modified) τ-risk.  

The two tests are briefly described below.  For the permutation-variance test, we aimed to 
compare the variance of predicted individualized treatment effect estimated from original set 
of covariates and permuted covariates. The rationale behind this approach is that if we permute 
the covariates, they should no longer to modify the treatment effects and contribute to the τ 
heterogeneity. In this case, if there is heterogeneity that the covariates can explain, we will 
have 𝑉𝑉𝑉𝑉𝑉𝑉� 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ≥ 𝑉𝑉𝑉𝑉𝑉𝑉� 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 , where Var denotes variance of τ . We can further set up a 
statistical test by repeating the permutation procedure N times, and the p-value can be obtained 

by  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = #�𝑉𝑉𝑉𝑉𝑉𝑉� 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜≤𝑉𝑉𝑉𝑉𝑉𝑉� 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�
𝑁𝑁

. Note that we did not re-calculate the residualized Y and 
W; we only permute the covariates when the covariates are fit into the causal forest (or other 
ITE-finding procedures). The reason is that we still wish to correct Y and W for possible 
confounders; the permutation is employed to mimic the case in which no covariates serve as 
effect modifiers.  

Another method we proposed is the permutation-τ -risk test, which aims to test whether 
introducing heterogeneity in treatment effects can lead to a better goodness-of-fit than 
assuming homogenous treatment effects. To assess the goodness-of-fit of a causal model, Nie 
et al. proposed a loss function based on Robinson transformation9,30, defined as, 

τ∗(⋅) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚
τ

{𝐸𝐸([(𝑌𝑌𝑖𝑖 − 𝐸𝐸[𝑌𝑌𝑖𝑖|𝑋𝑋𝑖𝑖]) − (𝑊𝑊𝑖𝑖 − 𝐸𝐸[𝑊𝑊𝑖𝑖|𝑋𝑋𝑖𝑖])τ(𝑋𝑋𝑖𝑖)]2)} 

It is also referred to as the R-loss function. In the instrumental case, we propose a modification 
of the R-loss to 

𝐿𝐿�{τ(⋅)}  =  ��[(𝑌𝑌𝑖𝑖 − 𝐸𝐸[𝑌𝑌𝑖𝑖|𝑋𝑋𝑖𝑖]) − (𝑊𝑊𝑖𝑖 − 𝐸𝐸[𝑊𝑊𝑖𝑖|𝑋𝑋𝑖𝑖])τ(𝑋𝑋𝑖𝑖)](𝑍𝑍𝑖𝑖 − 𝐸𝐸[𝑍𝑍𝑖𝑖|𝑋𝑋𝑖𝑖])�
2

i

 

We also termed this loss as τ risk. 

In addition, we define the improvement of introducing heterogeneity as, 
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𝐿𝐿�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = ��[(𝑌𝑌𝑖𝑖 − 𝐸𝐸[𝑌𝑌𝑖𝑖|𝑋𝑋𝑖𝑖]) − (𝑊𝑊𝑖𝑖 − 𝐸𝐸[𝑊𝑊𝑖𝑖|𝑋𝑋𝑖𝑖])τ�(𝑋𝑋𝑖𝑖)](𝑍𝑍𝑖𝑖 − 𝐸𝐸[𝑍𝑍𝑖𝑖|𝑋𝑋𝑖𝑖])�
2

i

−��[(𝑌𝑌𝑖𝑖 − 𝐸𝐸[𝑌𝑌𝑖𝑖|𝑋𝑋𝑖𝑖]) − (𝑊𝑊𝑖𝑖 − 𝐸𝐸[𝑊𝑊𝑖𝑖|𝑋𝑋𝑖𝑖])τ�(𝑋𝑋𝑖𝑖)](𝑍𝑍𝑖𝑖 − 𝐸𝐸[𝑍𝑍𝑖𝑖|𝑋𝑋𝑖𝑖])�
2

i

 

Where τ�(𝑋𝑋𝑖𝑖) represents the average treatment effect (i.e., assume no heterogeneity in treatment 
effects), and 𝜏̂𝜏{𝑋𝑋𝑖𝑖} represents the individual treatment effect.  

The rationale behind the permutation-τ -risk test is that we expect the total R-loss of a 
heterogeneous model to be smaller than the homogeneous model, if heterogeneity truly exists. 
Here we used permutation to model the null hypothesis. Intuitively, if we permute the 
covariates, we eliminate covariates’ contribution to the heterogeneity, which mimic the null 
scenario. In practice, we permute the covariates 𝑁𝑁 iterations and recalculate the 𝐿𝐿�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖. With 
this procedure, we can model the null model of 𝐿𝐿�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, and the permutation p-value can be 

computed as 𝑝𝑝𝜏𝜏−𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = #�𝐿𝐿�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜≤𝐿𝐿�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�
𝑁𝑁

. Similar to the above, the 
residualized Y, W and Z would not be re-calculated; only the covariates were permuted when 
they were fit into the forest (or other ITE-finding procedure).  

 

2.8 Measuring Variable Importance 

In addition to identifying the individualized treatment effect, we aimed to identify which 
covariate may contribute more to the heterogeneity.  In other words, we wish to identify 
important effect modifiers that lead to differential treatment effects across different people.  

We mainly used two approaches to achieve the goal. The first approach is mainly designed for 
the generalized random forest algorithm since it calculates the variable importance based on 
the split frequencies. The idea is firstly proposed by Eoghan et al.31, in which they define the 
variable importance as the frequency that a variable is selected by the causal forest algorithm 
to perform the split. The grf package also adopts the split-count idea and implements a simple 
but efficient algorithm to calculate the feature's importance14, where the importance of variable 
𝑥𝑥𝑖𝑖 of interest up to a depth of 𝑛𝑛 is defined as, 

imp�𝑥𝑥𝑗𝑗� =
∑ �

∑ number depth-k splits onall trees  𝑥𝑥𝑗𝑗
∑ total number of depth-k splitsall trees

� 𝑘𝑘−2𝑛𝑛
𝑘𝑘=1

∑ 𝑘𝑘−2𝑛𝑛
𝑘𝑘=1

 

Although the split-frequency-based approach is a flexible method to identify variable 
importance, it has a few drawbacks. First, it can only be applied to machine learning models 
with node-splitting procedures, such as decision trees and random forests.  Another concern is 
that the split-frequency approach cannot provide a reliable measurement of global feature 
importance owing to the inconsistency32. In other words, the feature's importance calculated 
via ways like gain33 and split frequency34 may sometimes not be able to demonstrate the 
feature's true impact on the model's output. 

Besides, considering the coming age of precision medicine, we are also interested in how much 
a covariate would contribute to the individual prediction, which is impossible to interpret via a 
split-frequency-based approach. To avoid the drawbacks of the split-frequency-based approach, 
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we apply SHAP (SHapley Additive exPlanations) values proposed by Lundberg et al. in our 
framework, which can provide a robust and consistent measurement of feature importance35. 
Lundberg et al. further developed TreeExplainer to efficiently compute SHAP value for tree-
based models like random forest and XGBoost19, which will be used by our framework to 
interpret the causal forest model. Briefly, the Shapley value captures each feature's contribution 
after considering the rest of the features, and the Shapley value can be computed for each 
individual and the whole sample.  

 

2.9 Quantifying effect modifiers with segmented regression 

In our study, we followed a similar two-step procedure discussed by Athey et al. to explore 
effect modification36. We first visualized the relationship between the interested covariate 𝑋𝑋𝑘𝑘 
and estimated treatment effect 𝜏𝜏 via a scatter plot , and we performed a segmented regression 
to quantify the magnitude of the relationship37. We also fitted an ordinary least square model 
to test whether 𝑋𝑋𝑘𝑘 was associated with 𝜏𝜏 after controlling for other covariates. 

 

2.10 Individualized treatment effect estimation framework – A summary 

This project aims to present a novel causal analytic framework, MR-ITE, to study the causal 
effect of risk factors at an individual level. The proposed framework integrates the idea of 
Mendelian Randomization (MR) to identify individualized treatment effects (ITEs), which 
reduces the risks of unmeasured confounding and reverse causality.  

The MR-ITE framework comprises several main steps. First, we identify valid SNPs associated 
with the exposure of interest, while minimizing the risk of pleiotropic effects. Second, using 
the identified SNPs, we estimate a polygenic risk score (PRS) that serves as an instrumental 
variable. Third, we employ two approaches, including GRF and DRIV, to estimate the ITEs. 
These methods can potentially handle nonlinear relationships and high-dimensional data, 
making them suitable for estimating the ITEs in large-scale datasets. Finally, we use 
permutation-based methods to test for the presence of heterogeneity in the treatment effects 
across individuals.  

 

2.11 Simulation study 

We conducted two simulations to assess the performance of our proposed framework in 
estimating ITEs and the power of our proposed heterogeneity testing methods. 

We set up a simulation study with different pleiotropic scenarios to compare our proposed 
framework's performance with the regular causal forest. We also compared individualized 
versus constant treatment effects to demonstrate the importance of inferring individualized 
treatment effects when heterogeneity is present. Overall, three different pleiotropic scenarios 
were included in our simulations10: 

1. Balanced pleiotropy: some genetic variants directly affect the outcome, with pleiotropic 
effects that are a mixture of positive and negative effects averaging to zero. 
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2. Directional pleiotropy: some genetic variants directly affect the outcome, with all 
pleiotropic effects being positive. 

3. Pleiotropy via a confounder: some genetic variants affect the outcome via a confounder. 
In this case, the Instrument Strength Independent of Direct Effect (InSIDE) assumption 
is violated. 

The simulation is set up following a similar idea from Burgess et al., and the data is generated 
as follows: 

𝑈𝑈𝑖𝑖 = �ξ𝑗𝑗𝐺𝐺𝑖𝑖𝑖𝑖

𝐽𝐽

𝑗𝑗=1

+ ϵ𝑈𝑈𝑈𝑈  

𝑇𝑇𝑖𝑖 = �γ𝑗𝑗𝐺𝐺𝑖𝑖𝑖𝑖

𝐽𝐽

𝑗𝑗=1

+ 𝑈𝑈𝑖𝑖 + ϵ𝑋𝑋𝑋𝑋 

𝑌𝑌𝑖𝑖 = �α𝑗𝑗𝐺𝐺𝑖𝑖𝑖𝑖

𝐽𝐽

𝑗𝑗=1

+ τ(𝑋𝑋𝑖𝑖)𝑇𝑇𝑖𝑖 + 𝑈𝑈𝑖𝑖 + ϵ𝑌𝑌𝑌𝑌 

where, 

𝐺𝐺𝑖𝑖𝑖𝑖 ∼𝑖𝑖.𝑖𝑖.𝑑𝑑 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(2, 0.3) 
ϵ𝑈𝑈𝑈𝑈 , ϵ𝑋𝑋𝑋𝑋, ϵ𝑌𝑌𝑌𝑌 ∼𝑖𝑖.𝑖𝑖.𝑑𝑑 N(0,1) 
γ𝑗𝑗 ∼𝑖𝑖.𝑖𝑖.𝑑𝑑 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈(0.03, 0.1).  

Here, 𝑈𝑈 represents the confounders that contributes to both the treatment 𝑇𝑇 and outcome 𝑌𝑌. We 
simulated 𝑋𝑋 as potential effect modifiers and it only contributes to the individualized treatment 
effect (τ(𝑋𝑋𝑖𝑖)). We incorporated eight different treatment effect functions τ(𝑋𝑋𝑖𝑖) to simulate the 
treatment effect τ; details can be found in Appendix A38. We simulated 100 genetic variants 
𝐺𝐺𝑗𝑗 , 𝑗𝑗 = 1,⋯ ,100  in each scenario and considered three cases with 20, 40, and 60 invalid 
instruments. We simulated two types of effect modifier 𝑋𝑋, including continuous and binary 
variables. We simulated X as both continuous (standard normal) and binary (binomial with 
probability 0.5) variables. Following the setting from Powers et al.38 , we simulated  50 𝑋𝑋𝑠𝑠 for 
scenario 1 and 2, 40 𝑋𝑋𝑠𝑠 for scenarios 3 and 4, 30 𝑋𝑋𝑠𝑠 for scenarios 5-6 and 20 𝑋𝑋𝑠𝑠 for scenarios 
7-8. Among these 𝑋𝑋𝑠𝑠, half of them were simulated as continuous variables, and another half as 
binary variables.  

We set the α𝑗𝑗  and ξ𝑗𝑗  to 0 for valid instruments. For invalid instruments, α𝑗𝑗  and ξ𝑗𝑗  were set 
differently for different scenarios. In the balanced pleiotropy scenario (scenario 1), α𝑗𝑗  was 
simulated from uniform(-0.1, 0.1), and the ξ𝑗𝑗  was set to 0. For the directional pleiotropy 
scenario (scenario 2), α𝑗𝑗  was simulated from uniform(0, 0.1), and we set ξ𝑗𝑗 to 0. In scenario 3 
(Pleiotropy via a confounder), α𝑗𝑗  were set to 0 and ξ𝑗𝑗 were drawn from uniform(-0.1, 0.1). We 
fit a regression forest to model the relationship between exposure and instruments, and used 
the prediction from the regression forest model as the instrument in the simulation39. The 
simulation was repeated 50 times in each scenario.  

To avoid overfitting issues, we simulated four independent datasets with shared instruments 
and were used for different steps of our framework. The four datasets contained 10000 samples 
each. We used the first two datasets to model the association between instruments Z and 
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outcome Y, instruments Z and treatment T, respectively, which mimic the case that we have 
two summary statistics results for treatment and outcome of interest. We will apply the 
contamination mixture approach to obtain the valid SNPs based on the first two datasets. The 
third dataset will be subsequently used for the training of regression forest model mentioned 
above, where only valid SNPs will be included in the model. The last dataset will be used as 
the target dataset, where we will use the causal model to predict the treatment effects.   

The performance of our proposed HTE-testing methods is evaluated through simulation as well. 
We set up the simulation data following similar approaches discussed above, but only 40 
invalid SNPs were included. Similarly, we repeated the simulation 50 times for each scenario. 

To evaluate the performance of our proposed framework in capturing heterogeneity, we 
compared the estimated ITE with the true ITE and computed the mean squared error (MSE). 
Lower MSE indicates better performance. In addition, we examined the bias of the proposed 
approaches in estimating the ITE for the whole population and the subgroup of individuals with 
true ITE ranked at the top 10%. 

 

2.12 Applications in real data: Heterogeneous effects of lipid traits on coronary artery 
disease 

Overall analytic strategy 

Using data from the UK-Biobank (UKBB) study, we applied our framework to study the 
heterogeneous treatment effect for several lipid-related risk factors on coronary heart disease 
(CAD). UK-Biobank is a large-scale cohort consisting of genetic and clinical data from 
~500,000 participants. We selected white participants with data available for principal 
component analysis, to minimize risks of population stratification. The current study was  

Exposure 

The main exposure is lipid levels including LDL, HDL, triglyceride and total cholesterol. They 
were extracted from the UKBB. 

Outcome and covariates 

CAD diagnosis was determined by International Classification of Diseases, Tenth Revision 
(ICD-10) code I25 in field 41202-0.0 and date in field 41262-0.0. We only considered those 
CAD patients with CAD diagnosis after the date of the biomarker assessment.  

For covariates, we selected clinical variables likely influencing both outcomes and exposure, 
which can be roughly classified into three groups: biomarkers, medical history and lifestyle 
history (detailed in Table 2). We converted discrete variables to dummy variables, and missing 
data was imputed by the missRanger package40.  

We trained two models with different covariates sets. For the first model, we only included age 
and gender as covariates; this mimics practical applications when there is only limited covariate 
information. For the second model, we additionally adjusted for multiple biomarkers and socio-
demographic covariates (Table 2). With the incorporation of a larger set of covariates, we hope 
to identify covariates contributing to potential heterogeneity of the effect of lipids on CAD 
outcomes. This real-world application serves to demonstrate our framework's ability to capture 
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treatment effect modification/heterogeneity and inform precision prevention strategies using 
large-scale epidemiological data.  

Genetic instruments 

The GWAS summary statistics for lipid traits was obtained from the Global Lipids Genetics 
Consortium41. We also obtained CAD summary statistics dataset from 
CARDIoGRAMplusC4D Consortium42. In addition, we also checked that the summary 
statistics dataset used for PRS calculations had no overlap with the UKBB cohort. 

Considering that we are using polygenic risk score as an instrument, additional quality control 
of genetic data is required. We followed the recommended quality control pipeline of PRSice-
2 to ensure target data meets GWAS standards. Specifically, we removed SNPs with low 
genotyping rate (-geno 0.01), low minor allele frequency (-maf 0.001), and individuals with 
the low genotyping rate (-mind 0.01) 43,44 following the default settings. Only variants strongly 
associated with the exposure were included for subsequent analysis (P-value < 1e-8).  

ITE analysis  

Overall, there were 276054 subjects included in the study, 13010 of which were identified as 
CAD (occurring after biomarker measurement). The main outcome is the development of 
coronary artery disease (CAD) after the measurement of lipid levels. In our application, we 
also compared IV-GRF and DRIV approaches with a more standard (non-instrumental) 
approach, causal forest (CF, implemented in the R package GRF), in which the risk factor was 
directly modelled without genetic instruments.  

Since so far ML-based ITE models are mainly developed for linear outcomes, we model the 
outcome (CAD) also as a continuous outcome, hence the treatment effects are on a linear 
probability scale (i.e., it reflects the changes in absolute risk or incidence of CAD per unit 
change of the exposure/treatment). In fact, it is not uncommon to employ linear models for 
binary outcomes in GWAS studies45, and such use may be justified by the observation that 
linear model is a first order Taylor approximation to a generalized linear model46. 

As for the “treatment” variable, we considered two cases: lipid levels as a continuous and a 
binary treatment. In the former case of a continuous ‘treatment’, the ITE reflects the change in 
the absolute risk of CAD per unit increase of lipid level; whereas for a binary treatment, the 
ITE is the change in absolute risk of CAD for a change from dyslipidaemia (LDL>130 mg/dL47; 
TC > 220mg/dL48; HDL-C <46mg/dL49; TG>150mg/dL47,50) to normal levels.  

 

2.13 Validation of the Heterogeneity Testing Results with Subgroup Analysis 

A gold standard to validate the testing results is usually to check whether similar results can be 
found in an external validation dataset. However, such an external dataset is not feasible since 
it is difficult to find an external dataset with a comparable sample size and similar covariate 
sets as UKBB. Therefore, to validate our testing results, we mainly adopt the subgroup analysis 
approach.  

Its main goal is to determine the heterogeneity of the treatment effect across subpopulations51. 
The rationale is that if heterogeneity indeed exists in the population, there must exist some 
subgroups whose average treatment effect is significantly different from the others. Note that 
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the true ITE for each individual is not verifiable as ITE is based on a (hypothetical) 
counterfactual outcome; however, the treatment effects in a subgroup can be estimated and 
used to validate our ITE model.  

In subgroup analysis, we first trained an ITE estimation model using a generalized random 
forest, and selected the ‘best representative tree’ (the tree with the lowest R-loss) as the final 
model to partition people into different subgroups. To retrieve clinically meaningful subgroups 
from the population, we further restricted the depth of the tree to 3, leading us to find four to 
five subgroups using the best representative tree. Using 15% of samples for training and 85% 
for testing, we inferred average causal effects for each subgroup via IVreg,  and performed 
one-way ANOVA to test for differences in treatment effects across subgroups. This analysis 
also suggests an important clinical application of the MR-ITE framework, namely subgrouping 
patients/individuals with diverse responses to treatment/risk factors.  

 

3.1 Simulation Study 

Figure 1 illustrates the simulation outcomes for various treatment effect scenarios, considering 
different counts of invalid SNPs. In the balanced pleiotropy scenario, the Instrumental Causal 
Forest (IV-CF) significantly outperformed the regular Causal Forest (CF), as evidenced by a 
substantially lower Mean Squared Error (MSE) (Fig.1A). Under balanced pleiotropy, the 
removal of invalid pleiotropic SNPs does not appear to influence the performance of the 
estimator, as no significant difference is observed between methods that keep or remove the 
pleiotropic SNPs.  

We now turned to the scenarios of directional pleiotropy and pleiotropy via a confounder. As 
expected, IV-CF outperformed ordinary CF across all treatment effect scenarios, although the 
degree of improvement gradually diminished with an increase in the count of invalid SNPs. 
Contrary to the balanced pleiotropy scenarios, the removal of invalid pleiotropic SNPs 
significantly enhanced the performance of IV-CF (Fig.1D-I) under directional pleiotropy or 
pleiotropy via a confounder. The simulation results underscored the importance of 
incorporating an appropriate step for the removal of invalid pleiotropic SNPs within the 
framework. We further evaluated the efficacy of the ConMix approach in eliminating invalid 
SNPs. Our findings reveal that the ConMix approach can detect invalid SNPs with an accuracy 
of approximately 80% in our simulation (Supp Table 11). 

To highlight the importance of inferring individualized treatment effects, we also compared the 
performance of the ATE and ITE estimators. ATE represents the average treatment effect 
which assumes a constant treatment effect across all individuals, while ITE allows the 
treatment effects to differ by individual. Under heterogeneous treatment effect scenarios 
(scenarios 2-8), the MSE results of ATE are notably higher than those of ITE (ITE vs. ATE   or  
MR-ATE (remove pleiotropy) vs. MR-ITE (remove pleiotropy)). On the contrary, under the 
homogeneous treatment effect scenario (scenario 1), no significant difference is observed when 
ATE was compared to ITE. These findings emphasize the importance of inferring individual 
treatment effects in the presence of heterogeneity. To support our findings, we plotted the bias 
and observed that our proposed MR-ITE approach exhibits superior bias control compared to 
conventional methods in our simulations (Supplemental Fig.2). 
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In addition to benchmarking the performance of applying PRS as an instrument in inferring 
heterogeneous treatment effects, we conducted a simulation to validate our proposed 
heterogeneity-detecting methods. The results, summarized in Table 1, reveal that both methods 
maintain good type 1 error control in a scenario with no heterogeneity (scenario 1). They also 
demonstrate good power in several simple scenarios (scenarios 2, 3, 5), where the 
heterogeneous treatment effect functions (𝜏𝜏(⋅)) are simple linear combinations of the same 
types of covariates or exhibit weak nonlinear effects without interaction between different 
types of covariates. However, the permutation 𝜏𝜏-risk test outperforms the permutation-variance 
test when an interaction between different types of covariates is present (Scenarios 4, 6). 
Interestingly, the permutation-variance test exhibits low power in scenario 7, where a strong 
nonlinear effect exists in the 𝜏𝜏(⋅), while the permutation 𝜏𝜏-risk maintains relatively good power 
in this scenario. 

 

3.2 Treatment effect of lipid-related traits on coronary artery disease  

3.2.1 Baseline Characteristics of included participants. 

The baseline characteristics of the study’s continuous and categorical covariates are 
summarized in the supplementary materials. A partial F-test was conducted to evaluate the 
strength of the polygenic risk score as an instrument52. The results indicate that the polygenic 
risk score can be considered a strong instrument, as the F-statistics in all cases significantly 
exceed 10 (refer to Table 3). The covariates included for various lipid-related traits are also 
outlined in the supplementary materials, with most covariates being common across different 
traits. We also compared the estimate of overall treatment effect based on standard regression 
against that from an ordinary regression, using the Wu-Hausman test as implemented in IVreg53,54,55. 
If the null hypothesis is rejected, it indicates that the explanatory variable is endogenous. In 
this case, the IV estimator is consistent, while the standard regression estimator is not. 
Conversely, if the null hypothesis is not rejected, the IV and the ordinary regression estimator 
are considered to be both consistent, although the IV estimator has a larger variance. The 
original regression estimator is preferred in this case. Our results suggest that the IV estimator 
is preferred in the studies of LDL-C and Total Cholesterol (refer to Table 3). Consequently, 
our discussion primarily focuses on the results of these studies. 

 

3.2.2 LDL-C 

3.2.2.1 LDL-C Imposes Heterogeneous Effects on CAD 

We initially utilized our framework to investigate the causal association between LDL-C and 
CAD under both continuous and binary exposure scenarios. The findings from our study 
reaffirmed that an increase in LDL-C levels is causally linked to an increased risk of CAD. 
This association was consistently observed across two distinct models (refer to Fig. 2A, 2B, 
and Supplementary Fig. 5A, 5B). 

In our study on CAD, we observed that IV-GRF, DRIV, and Causal Forest predict positive 
treatment effects for all participants. Notably, IV-GRF and DRIV yielded higher predictions 
than CF in Model 2. Additionally, DRIV detected a less significant treatment effect compared 
to IV-GRF. In Model 1, the CF approach failed to detect a significant treatment effect in most 
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patients, with individualized treatment effects centered around zero. We hypothesize that this 
is due to the inclusion of only two covariates, age and gender, in Model 1, leading to a failure 
in controlling for potential confounders. This is contrary to the mainstream finding that an 
increment of LDL-C imposes a higher risk of CAD. Our results support the assertion that 
incorporating an instrument in an observational study can enhance the accuracy of 
Individualized Treatment Effect (ITE) estimation. It’s important to note that we modeled the 
original risk factor without using instruments under the CF approach, as previously described. 
In Model 2, analyses using IV-GRF and DRIV indicate that a per unit (1 mg/dL) increment of 
LDL-C increases the individual CAD risk by approximately 0.03%. In contrast, for CF, the 
average risk increase was less than 0.02% (Fig. 2A LDL-C). Under a ‘binary treatment’ 
scenario (normal lipid levels vs. hyperlipidemia), IV-GRF/DRIV also yielded higher treatment 
effect predictions. Our findings suggest that reducing LDL-C levels to a normal range below 
the optimal cutoff (130 mg/dL) could lead to a roughly 3% reduction in CAD incidence. 

Intriguingly, we found that the Causal Forest (CF) only detects an average CAD risk reduction 
of approximately 0.5% in the ‘binary treatment’ setting. This is significantly less than what is 
detected in the MR-ITE framework (Fig. 2B). This pattern aligns with our expectations, as the 
results of the Wu-Hausman test indicate that only the IV estimator can return a consistent 
estimation. Our findings are corroborated by several studies. For instance, Brian et al. reported 
an absolute risk reduction in Atherosclerotic Cardiovascular Disease (ASCVD) ranging from 
2.1% to 8.6% for patients whose LDL-C levels were controlled under 100 mg/dL following 
LDL-C reduction therapy56. Notably, compared to ordinary MR methods, our proposed MR-
ITE framework enables the estimation of a causal effect for each individual.  

We further evaluated the heterogeneity of treatment effects using our proposed permutation-
based tests. Our findings indicate that LDL-C modification results in heterogeneous effects on 
CAD in both continuous and binary treatment settings (refer to Table 4). These findings are 
supported by several Randomized Controlled Trial (RCT) studies. For instance, Pravastatin 
was reported to exhibit heterogeneous efficacy in reducing coronary events57. It was found that 
the effect of Pravastatin in reducing coronary events varies between females and males. 
Moreover, patients with higher pretreatment levels of LDL-C were observed to receive a 
greater protective effect from Pravastatin. This phenomenon may corroborate our finding that 
LDL-C manipulation results in a heterogeneous effect on CAD, with the heterogeneity of the 
treatment effect potentially attributable to several covariates, such as gender. Another 
noteworthy finding is from a study by Oscar et al., who identified heterogeneity in cost-
effectiveness ratios after adjusting for absolute risk58. This underscores the importance of a 
personalized statin prescription policy for CAD prevention in the population. 

Additionally, our findings of heterogeneity are supported by the subgroup analysis. We 
observed a significant ANOVA p-value in both binary and continuous treatment settings 
(Continuous Model: ANOVA p-value = 0.0241; Binary Model: ANOVA p-value = 0.0273) 
(refer to Supplementary Tables 4 and 6). This suggests significantly different treatment across 
the subgroups identified by our MR-ITE framework. 

 

3.2.2.2 Features that contribute to the heterogeneity of LDL-C on CAD  



17 
 

Beyond the identification of heterogeneity in the impact of LDL-C on CAD, our interest 
extends to the covariates that contribute to this heterogeneity. Figures 3A and 3C depict the 
SHAP patterns of the top 10 most important clinical features, as identified through the DRIV 
model of LDL-C’s influence on CAD. These patterns are presented under both continuous and 
binary treatment settings, utilizing a beeswarm plot for visualization. Furthermore, we 
segmented the population into deciles based on the corresponding feature values, enabling the 
visualization of potential effect modifiers. 

Primarily, we discovered that the body fat percentage is the most significant variable in the 
model under both continuous and binary treatment settings (Fig.3A, C). We observed that 
LDL-C reduction in patients with a higher body fat percentage showed weaker protective effect 
on CAD, as opposed to those with lower fat percentage. This pattern is also evident in other 
obesity indicators such as BMI (Fig.4E, 4F, 4S, 4T). These findings align with several studies 
that highlight the robust relationship between obesity and CAD. For example, Sandfort et al. 
demonstrated that obese patients with hyperlipidemia experience more severe atheroma 
progression despite optimized statin therapy59. The authors suggested that hyperlipidemic 
patients with obesity may have an elevated risk of CAD, as atheroma progression can lead to 
atherosclerosis, the primary cause of CAD60. This also elucidates our observation that obese 
patients derive less benefit from LDL-C reduction. Our results strongly advocate for a 
combination therapy of weight and LDL-C reduction to achieve a more substantial protective 
effect against CAD. 

Furthermore, we identify systolic blood pressure as an important variable, akin to the obesity-
related covariates previously mentioned, in both continuous and binary treatment settings 
(Fig.3A, 3C, 4C, 4D, 5E, 5F). Numerous studies have established hypertension as one of the 
most potent risk factors for cardiovascular diseases, including coronary artery disease61,62. Our 
research suggests that hypertension may act as an effect modifier of LDL-C’s impact on CAD. 
We note a reduced protective treatment effect in the population with systolic blood pressure in 
the top 10% (Fig.5F), and the SHAP analysis yields a positive SHAP estimation for systolic 
blood pressure exceeding 150 in the binary model. The segmented least square analysis further 
corroborates that the optimal threshold is approximately 150. These findings imply that 
hypertension could significantly weaken the protective effect of lowering LDL-C against CAD. 
Our results also endorse the assertion that a combination therapy of LDL-C and blood pressure-
lowering agents is associated with a lower risk of CAD compared to mono-therapy63.    

Furthermore, we identified age and testosterone as significant variables in the CAD DRIV 
model under both continuous treatment settings (Fig.3A). We observed that the SHAP value 
gradually increases after 60 years of age, and the segmented least square analysis also indicated 
that age becomes a stronger effect modifier after the threshold of 60 years (Fig.4K, 4L). This 
observation is supported by other studies. For instance, Nozue et al. compared coronary 
atherosclerosis and vascular responses to statin therapy between elderly (> 65 years old) and 
non-elderly individuals64. They found that coronary atherosclerosis was more advanced in 
elderly patients, which aligns with our finding that elderly patients exhibit a higher CAD risk 
in response to an increase in LDL-C. LDL-C is considered to be independently associated with 
the presence and extent of early systemic atherosclerosis in the absence of major cardiovascular 
risk factors (CVRFs)65.  
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Testosterone exhibits a similar pattern to age (Fig.4I, 4J), suggesting that males may receive a 
larger protective effect against CAD with the decrease of LDL-C to a normal range. This 
finding is consistent with a study showing that statin treatment is less effective in improving 
the plasma lipid profile in dyslipidemic women compared to men66, which may leave impact 
on clinical outcomes. Moreover, Petretta et al. demonstrated that statin therapy can reduce the 
risk of CHD events in men without prior cardiovascular disease, while its effect on women is 
less significant67. This is consistent with our finding regarding testosterone’s pattern in 
modifying the treatment effect of LDL-C on CAD. 

Another finding is that the serum calcium level is identified as the primary variable contributing 
to the heterogeneity of LDL-C’s causal effect on CAD in both continuous and binary models. 
Our results indicate that a high level of calcium corresponds to a positive SHAP value under 
the binary model (Fig.4Q, 4R, 5M, 5N), suggesting an inverse relationship with the protective 
effect of lowering LDL-C against CAD. This aligns with several studies that have highlighted 
the association between genetically elevated serum calcium and increased odds of coronary 
artery disease and myocardial infarction68,69. Interestingly, our results also suggest that Vitamin 
D, which exhibits a pattern inverse to that of serum calcium, is another significant variable. 
Numerous studies have reported a positive correlation between Vitamin D deficiency and the 
pathogenesis of CAD70,71. We found that an elevated Vitamin D level corresponds to a negative 
SHAP under the binary treatment analysis, implying that it can enhance the protective effect 
of lowering LDL-C against CAD. Further studies have also shown that an increased level of 
Vitamin D intervention is associated with lower systolic blood pressure72, supporting our 
finding regarding the association between the treatment effect of lowering LDL-C and the 
levels of Vitamin D and systolic blood pressure.  

Also, we observed that Cystatin C, a marker of renal dysfunction, is among the top effect 
modifiers in both the continuous and binary LDL-C models (Fig.4O, 4P, 5K, 5L). Existing 
research already demonstrates that elevated serum Cystatin C levels are associated with an 
increased burden of coronary atherosclerotic plaque, indicating its causal effect on the 
heightened risk of coronary atherosclerosis73. Our findings reveal that a higher Cystatin C level 
correlates with a diminished protective treatment effect (Fig.5K, 5L). These results are 
supported by other studies. For example, Pontremoli et al. highlighted that reducing LDL-C in 
patients with Chronic Kidney Disease (CKD) can be beneficial in preventing major 
atherosclerotic events74.  

 

3.2.3 Total Cholesterol   

3.2.3.1 Total Cholesterol Increment Heterogeneously Increases the Risk of CAD  

In addition to LDL-C, we also investigated whether total cholesterol is a causal risk factor for 
CAD. Elevated cholesterol levels in the blood can precipitate atherosclerosis, potentially 
increasing the risk of CAD75. Our ITE analysis reveals an increased risk of CAD associated 
with each unit increment of total cholesterol (Fig.2A Total Cholesterol, Supplemental Fig.5A 
Total Cholesterol). 

In parallel with LDL-C, the causal forest framework in Model 1 did not detect a significant 
treatment effect. This observation supports our assertion that the inclusion of an instrument 
could enhance causal effect estimation in the presence of unobserved confounders. Our 
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findings align with several meta-analyses and prospective studies75,76. Furthermore, we also 
observe a similar risk increment between altering LDL-C and total cholesterol. This 
observation might suggest a similar underlying mechanism influencing these particles’ effect 
on CAD. We also evaluated heterogeneity using our proposed test and detected heterogeneity 
in individualized treatment effects. This finding indicates that the effects of total cholesterol on 
CAD vary across the population. Our subgroup analysis further corroborates these findings, as 
the ANOVA p-values for both models are less than 0.05 (Supplemental Tables 8 and 10). This 
evidence suggests that the effects of total cholesterol on CAD are indeed heterogeneous across 
different subgroups within the population. 

 

3.2.3.2 Features that Contribute to the Individualized Treatment Effect of Total 
Cholesterol on CAD  

In our analysis, we utilized SHAP to evaluate the top variables (Fig.3B, 3D). Notably, there 
was a significant overlap among the top 10 variables between the LDL-C and TC models in 
both continuous and binary treatment settings. For example, BMI and weight emerged as key 
variables in the LDL-C model, mirroring the pattern observed for body fat percentage. This 
suggests that obesity is a critical variable in the total cholesterol model as well. Furthermore, 
Vitamin D and Calcium exhibited a similar pattern in the total cholesterol model as seen in the 
LDL-C model. The substantial overlap of key variables between the LDL-C and TC models 
suggests a common underlying mechanism influencing CAD risk, potentially linked to 
progressive atherogenesis under elevated LDL-C/TC levels. 

A noteworthy observation from our study is that C-reactive protein (CRP) emerged as the most 
important variable in the total cholesterol model. Numerous studies have identified CRP as a 
crucial predictor of future CAD77-79. The association between elevated CRP levels and 
increased CAD risk may be attributed to arterial inflammation. CRP binds to Low-Density 
Lipoprotein (LDL) and is present in atherosclerotic plaques, potentially contributing to CAD 
onset80. Our findings suggest that individuals with higher CRP levels may derive less benefit 
from the protective effect against CAD offered by lowering total cholesterol. Interestingly, 
Insulin-like Growth Factor 1 (IGF-1) was also identified as a key variable in the total 
cholesterol model, exhibiting a pattern similar to CRP. This is corroborated by a Mendelian 
randomization study which found that elevated serum IGF-1 levels are associated with a higher 
CAD risk81. 

Surprisingly, our study identified Sex Hormone-Binding Globulin (SHBG) as the most top 
variable in both the binary and continuous TC-CAD models, ranking 1st and 2nd respectively. 
Previous research has indicated that participants with a high number of cardiovascular risk 
factors tend to exhibit lower SHBG levels82. Furthermore, an inverse correlation has been 
observed between SHBG and high C-reactive protein levels83, a finding that aligns with the 
pattern we observed between C-reactive protein and SHBG (Fig.6G, 6H, 6E, 6F, 7A, 7B, 7G, 
7H). 
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4 Discussion 

4.1 Overview 

In this study, we extend the regular Mendelian randomization approach to infer the 
individualized causal effects of risk factors/treatments in observational studies. Traditional 
Mendelian randomization primarily focuses on inferring the average causal effect84, which may 
not suffice in the era of precision medicine. Although the estimated average effect is still 
meaningful in designing policy/treatment for the population, it may obscure individual 
responses. To address this limitation, we introduce a novel framework that integrates 
Mendelian Randomization and machine learning methodologies to estimate the individualized 
treatment effect. Additionally, we present two permutation-based tests to assess the presence 
of effect heterogeneity within our framework. Through a simulation study, we demonstrate the 
applicability of our proposed MR framework in practical scenarios likely involving unobserved 
confounders. Furthermore, we evaluate the performance of our proposed heterogeneity testing 
approaches through an additional simulation.  

As a proof-of-concept example, we applied our framework to study the individualized causal 
effects of several lipid-related traits on CAD, including LDL-C, HDL-Triglyceride, and Total 
cholesterol.  We found substantial evidence of heterogeneity, particularly for LDL-C and TC’s 
effect on CAD. Through Shapley value plots, we identified key clinical features that may 
modify the effects of cholesterol on CAD. This application underscores the utility of our 
approach and could have significant clinical implications.  

This study uncovered important insights that could help optimize the management of 
dyslipidemia and reduce CAD risk. By characterizing heterogeneous treatment effects, we 
identified patients who may experience a more pronounced adverse impact of dyslipidemia on 
CAD risk. These high-risk individuals may be prioritized for intensive lifestyle and 
pharmacological interventions aimed at lowering lipids. 

Targeting treatments to those predicted to derive the greatest risk reduction from lipid control 
could maximize the efficiency of limited healthcare resources. Moreover, our analysis revealed 
certain clinical factors associated with varied responses to lipid-modifying therapies. 
Understanding such sources of treatment heterogeneity can guide clinical decision-making and 
more personalized prescription. For instance, we have shown that patients who are obese may 
benefit less from lipid control; weight control in addition to lipid-modifying drugs may lead to 
more pronounced benefit in terms of CAD prevention.  

 

4.2 Strengths and Limitations  

Our study possesses several notable strengths. To the best of our knowledge, this is the first 
study aiming to estimate individualized causal treatment effects leveraging the principles of 
MR. Although it is possible for researchers to study ITE under an RCT setting, the inherent 
difficulties and substantial costs associated with designing and implementing an RCT often 
make such designs impractical. Our approach offers an alternative, enabling the inference of 
individualized treatment effects using genetic instruments. This method is considerably less 
susceptible to unknown confounders and reverse causality. This key advantage could further 
expedite the progress of precision medicine, as interventions on risk factors can be customized 
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for each individual based on the predicted ITE. Furthermore, our ITE estimation strategies are 
predicated on Machine Learning (ML) methods, which allow flexible modeling of complex 
relationships. In addition, the DRIV approach also allows virtually any ML model to be used, 
thereby enhancing the flexibility and applicability of our approach.  

Moreover, our simulation results demonstrate that our proposed heterogeneity testing methods 
exhibited commendable performance in the majority of scenarios. This substantiates that our 
proposed permutation-based test offers a flexible and robust mechanism for detecting the 
presence of heterogeneity. Lastly, the integration of SHAP analysis within our framework aids 
in identifying the primary variables contributing to ITEs. This not only facilitates more 
comprehensive model explanations but also potentially assists in patient sub-grouping or sub-
typing in practical applications. 

Our study does present several limitations. For instance, our simulation results show that the 
permutation variance test may not perform optimally in complex scenarios, such as those 
involving strong nonlinear treatment effects or interactions between different types of 
confounders. Additionally, our framework currently only works for a one-sample design since 
the two stage least square (2SLS) is the fundamental algorithm of our framework in estimating 
the causal effect between exposure and outcome. Our study primarily focuses on estimating 
Absolute Risk Reduction (ARR); the study of ITE in terms of Risk Ratio (RR) will be 
considered as a topic for future studies. Another limitation is the absence of an external dataset 
for validating our results. It is relatively challenging to find a large-sample, phenotype-rich 
dataset with genotype information akin to the UK Biobank. Despite these limitations, the 
estimated Individual Treatment Effects (ITEs) are reasonable, and their range aligns with 
estimates from previous Randomized Controlled Trials (RCTs) involving lipid-lowering agents. 
Lastly, our framework primarily considers a linear effect of exposure, even though nonlinear 
causal effects may be prevalent in practical scenarios 85.  

 

4.3 Conclusions 

In conclusion, we have developed a novel Mendelian Randomization (MR) framework that is 
capable of estimating individualized causal effects within observational study settings. We 
have estimated the ITEs of lipid traits on CAD, and have unveiled important clinical features 
that contribute to effect heterogeneity through Shapley value analyses. It is our hope that our 
work will pioneer a new research direction for MR studies, providing a novel method for 
identifying ITEs. Ultimately, we anticipate that these insights will be translated into clinical 
practice, aiding in the design of more personalized treatment plans for patients. 
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Appendix: 

 

Scenario 1: 

𝑓𝑓1(𝑥𝑥) = 0 

Scenario 2: 

𝑓𝑓2(𝑥𝑥) =
5𝐼𝐼𝑥𝑥1>1 − 5

10
 

Scenario 3: 

𝑓𝑓3(𝑥𝑥) =
2𝑥𝑥1 − 4

10
 

Scenario 4: 

𝑓𝑓4(𝑥𝑥) =
𝑥𝑥2𝑥𝑥4𝑥𝑥6 + 2𝑥𝑥2𝑥𝑥4(1− 𝑥𝑥6) + 3𝑥𝑥2(1− 𝑥𝑥4)𝑥𝑥6 + 4𝑥𝑥2(1− 𝑥𝑥4)(1− 𝑥𝑥6)

10

+
5(1 − 𝑥𝑥2)𝑥𝑥4𝑥𝑥6 + 6(1 − 𝑥𝑥2)𝑥𝑥4(1− 𝑥𝑥6) + 7(1 − 𝑥𝑥2)(1− 𝑥𝑥4)𝑥𝑥6 + 8(1 − 𝑥𝑥2)(1− 𝑥𝑥4)(1− 𝑥𝑥6)

10
 

Scenario 5: 

𝑓𝑓5(𝑥𝑥) =
𝑥𝑥1 + 𝑥𝑥3 + 𝑥𝑥5 + 𝑥𝑥7 + 𝑥𝑥8 + 𝑥𝑥9 − 2

10
 

Scenario 6: 

𝑓𝑓6(𝑥𝑥) =
4𝐼𝐼𝑥𝑥1>1𝐼𝐼𝑥𝑥3>0 + 4𝐼𝐼𝑥𝑥5>1𝐼𝐼𝑥𝑥7>0 + 2𝑥𝑥8𝑥𝑥9

10
 

Scenario 7: 

𝑓𝑓7(𝑥𝑥) =
0.5 ∗ �𝑥𝑥12 + 𝑥𝑥2 + 𝑥𝑥32 + 𝑥𝑥4 + 𝑥𝑥52 + 𝑥𝑥6 + 𝑥𝑥72 + 𝑥𝑥8 + 𝑥𝑥92 − 11�

10
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Scenario 8: 

𝑓𝑓9(𝑥𝑥) =

1
√2

𝑓𝑓4(𝑥𝑥) + 𝑓𝑓5(𝑥𝑥)

10
 

 



Figure 1 Simulation results across three different methods. 

 

Results across 8 different treatment effect scenarios, 3 pleiotropy scenarios and 3 invalid SNPs 
scenarios. For details of the generating distribution and scenarios, see 2.11. The 6 estimators 
being evaluated as follows: ATE = average treatment effect; ITE = individualized treatment 
effect; MR-ATE (keep pleiotropy) = MR-based average treatment effect with the presence of 
pleiotropy; MR-ITE (keep pleiotropy) = MR-based individualized treatment effect with the 
presence of pleiotropy; MR-ATE (remove pleiotropy) = MR-based average treatment effect 
with pleiotropy removal; MR-ITE (remove pleiotropy) = MR-based individual treatment effect 
with pleiotropy removal. All results presented in figure 1 are estimated using grf package. We 
presented paired t-test results on following comparison sets (from lowest position to the highest 
position): (a) MR-ATE (keep pleiotropy) vs. MR-ITE (keep pleiotropy); (b) MR-ATE (remove 
pleiotropy) vs. MR-ITE (remove pleiotropy); (c) MR-ITE (keep pleiotropy) vs. MR-ITE 
(remove pleiotropy);   



Figure 2 Predicted Treatment Effect of LDL-C and Total Cholesterol on CAD (Model 2). 

 

Histogram results of applying DRIV, IVCF and CF in estimating the individualized causal 
effect of LDL-C/Total Cholesterol on CAD incorporating covariate set 3. A: Estimating the 
individualized causal effect with a continuous treatment setting. B: Estimating the 
individualized causal effect with a binary treatment setting. 

  



Fig 3. Overall top 10 clinical effect modifier on CAD identified by LDL-C/TC’s causal model 
with SHAP analysis. 

 

Beeswarmplot of top 10 important covariates identified under different scenarios with SHAP 
analysis. A: LDL-C, continuous treatment scenario. B: Total Cholesterol, continuous treatment 
scenario. C: LDL-C, binary treatment scenario. D: Total Cholesterol, binary treatment scenario. 

  



Fig 4. Shapley value plot with LDL-C as risk factor on CAD in continuous treatment setting. 

 

A, E, I, M, Q, C, G, K, O, S: Scatterplots of SHAP value (y-axis) versus observed value (x-
axis) of top 10 important covariates identified under continuous treatment scenario where LDL-
C as risk factor and CAD as the outcome of interest. B, F, J, N, R, D, H, L, P, T: Boxplots of 
estimated individual treatment effects (y-axis) versus observed value (x-axis) of top 10 
important covariates identified under continuous treatment scenario where LDL-C as risk factor 
and CAD as the outcome of interest. 



Fig 5. Shapley value plot with LDL-C as risk factor on CAD in binary treatment setting. 

 

A, E, I, M, Q, C, G, K, O, S: Scatterplots of SHAP value (y-axis) versus observed value (x-
axis) of top 10 important covariates identified under binary treatment scenario where LDL-C 
as risk factor and CAD as the outcome of interest. B, F, J, N, R, D, H, L, P, T: Boxplots of 
estimated individual treatment effects (y-axis) versus observed value (x-axis) of top 10 
important covariates identified under binary treatment scenario where LDL-C as risk factor and 
CAD as the outcome of interest. 

  



Fig 6. Shapley value plot with Total Cholesterol as risk factor on CAD in continuous treatment 
setting. 

 

A, E, I, M, Q, C, G, K, O, S: Scatterplots of SHAP value (y-axis) versus observed value (x-
axis) of top 10 important covariates identified under continuous treatment scenario where Total 
Cholesterol as risk factor and CAD as the outcome of interest. B, F, J, N, R, D, H, L, P, T: 
Boxplots of estimated individual treatment effects (y-axis) versus observed value (x-axis) of 
top 10 important covariates identified under continuous treatment scenario where Total 
Cholesterol as risk factor and CAD as the outcome of interest. 

  



Fig 7. Shapley value plot with Total Cholesterol as risk factor on CAD in binary treatment 
setting. 

 

A, E, I, M, Q, C, G, K, O, S: Scatterplots of SHAP value (y-axis) versus observed value (x-
axis) of top 10 important covariates identified under binary treatment scenario where Total 
Cholesterol as risk factor and CAD as the outcome of interest. B, F, J, N, R, D, H, L, P, T: 
Boxplots of estimated individual treatment effects (y-axis) versus observed value (x-axis) of 
top 10 important covariates identified under binary treatment scenario where Total Cholesterol 
as risk factor and CAD as the outcome of interest. 

 

 



Table 1: Heterogeneity Testing Methods simulation results 

 Perm-Variance Test Perm-𝜏𝜏-risk Test 
Pleiotropy 
Scenario 1 2 3 1 2 3 

Scenario 1 0.06 0.06 0.06 0 0.06 0.06 
Scenario 2 0.62 0.72 0.82 0.86 0.92 1 
Scenario 3 0.76 0.88 0.88 0.76 0.98 1 
Scenario 4 0.2 0.3 0.56 0.86 0.94 0.96 
Scenario 5 0.82 0.86 1 1 1 1 
Scenario 6 0.32 0.34 0.54 0.88 0.86 0.92 
Scenario 7 0.1 0.04 0.14 0.52 0.52 0.7 
Scenario 8 0.5 0.46 0.76 1 1 1 

 

The table shows the simulation results of two permutation-based heterogeneity testing methods, the permutation-variance test, and the permutation-
𝜏𝜏-risk test. Scenario 1 is a scenario with homogeneous treatment effect, and the results refer to the type I error of the method. The rest of the 
scenarios show heterogeneous treatment effect, and the power will be used to denote the performance of the test in detecting heterogeneity. 

 

 

 

 

  



Table 2: Covariates included in the model 2 analysis. 

Traits Shared Discrete Variables Shared Continuous Variables Lipid-related variables 

LDL-C 

Gender,  
Non-alcohol drinker,  
Previous alcohol drinker,  
Current alcohol drinker,  
Non-smoker,  
Previous smoker,  
Current smoker,  
Blood pressure medication history,  
Cholesterol lowering medication, 
Hypertension history, 
Type 2 diabetes history, 
Heart failure history, 
Hemorrhage Stroke history, 
Ischemic Stroke history 

Principal Component 1-10,  
Townsend Deprivation Index,  
diastolic blood pressure,  
systolic blood pressure,  
BMI, Weight, Body-fat-percentage, Age,  
Creatinine,  
C-reactive protein,  
Cystatin C,  
Gamma glutamyl transferase, 
Aspartate aminotransferase,  
Glucose, HbA1c, Calcium 
Direct bilirubin, Urea, IGF-1, Phosphate, 
SHBG, Testosterone, Urate, Vitamin D, 
Total bilirubin, Total protein 

HDL-C,  
Apolipoprotein A,  
Triglycerides 

HDL-C 

LDL-C,  
Apolipoprotein B,  
Lipoprotein A, 
Triglycerides,  

Total Cholesterol 

Triglycerides 

Triglyceride 

NA 
 

 

The table summarizes the covariates used in different traits models. We cluster the covariates into three groups, discrete variables, continuous 
variables and lipid-related variables. To avoid potential pleiotropy via confounder issue, we specify lipid-related covariates for each traits 
separately, where the corresponding lipoprotein will be excluded. 



Table 3: Partial F-test and Wu-Hausman Test to Assess Instrument Strength and the difference between MR and observational Estimates 

  Weak Instrument Test Wu-Hausman Test 
  Statistics P-value Statistics P-value 
Model 1 LDL-C 10302.84 < 2e-16 32.66 1.1e-08 
 HDL-C 3969.22 < 2e-16 0.11 0.741 
 Total Cholesterol  7480.83 < 2e-16 26.44 2.72e-07 
 Triglyceride 6346.991 < 2e-16 4.676 0.0306 
Model 2 LDL-C 17326.107 < 2e-16 6.746 0.0094 
 HDL-C 3331.451 < 2e-16 0.049 0.824 
 Total Cholesterol  10818.20 < 2e-16 7.09 0.00775 
 Triglyceride 1747.035 < 2e-16 1.199 0.273 

 

The table shows the partial F-test results for assessing instrument strength and Wu-Hausman test for assessing whether the effect estimates from 
the instrumented approach (MR) are significantly different from those under an observational approach. We assess the strength of instrument in 
multiple lipid-traits to disease setting. 



Table 4: Permutation-based test to assess the presence of heterogeneity.  

 

 

The table summarizes two permutation-based test results for assessing the presence of heterogeneity in different lipid-trait to disease setting. 

 

 

 

 

 

 

 

  Coronary Artery Disease  
  Perm-Var test Perm-Risk test 

Continuous Trait 
LDL-C 0.01 0.01 

Total Cholesterol 0.01 0 

Binary Trait 
LDL-C 0.02 0 

Total Cholesterol 0 0.01 



Table 5: Model 2 Tau Summary (Continuous Trait) 

 

The table summarizes the estimated individualized treatment effects for different lipid-trait to disease models under continuous treatment setting. Tau indicates 
the increase in probability of outcome for every one-unit (10mg/dL) increase of the lipid level.  

  

  Positive 
Tau 

Significant 
Tau  

(P-value < 
0.1) 

Min 5% 10% 25% Median 75% 90% 95% Max 

50% 
Coverage 

(25% - 
75%) 

80% 
Coverage 

(10% - 
90%) 

90% 
Coverage 

(5% - 95%) 
Mean 

LDL-C CF 100.00% 100.00% 1.190E-03 1.454E-03 1.497E-03 1.586E-03 1.737E-03 1.909E-03 2.024E-03 2.081E-03 2.419E-03 3.226E-04 5.267E-04 6.275E-04 1.750E-03 

 DRIV 100.00% 55.94% 3.867E-04 2.241E-03 2.515E-03 2.977E-03 3.483E-03 3.990E-03 4.458E-03 4.728E-03 6.622E-03 1.013E-03 1.943E-03 2.486E-03 3.484E-03 

 IVCF 100.00% 94.86% 1.118E-03 2.255E-03 2.424E-03 2.715E-03 3.047E-03 3.378E-03 3.672E-03 3.845E-03 5.060E-03 6.634E-04 1.248E-03 1.590E-03 3.047E-03 

HDL-C CF 100.00% 99.98% -4.262E-03 -3.471E-03 -3.316E-03 -3.017E-03 -2.628E-03 -2.189E-03 -1.818E-03 -1.646E-03 -9.956E-04 8.277E-04 1.498E-03 1.825E-03 -2.598E-03 

 DRIV 99.96% 14.03% -7.429E-03 -4.795E-03 -4.367E-03 -3.617E-03 -2.803E-03 -2.078E-03 -1.515E-03 -1.217E-03 6.381E-04 1.539E-03 2.852E-03 3.579E-03 -2.881E-03 

 IVCF 97.34% 3.69% -1.227E-02 -6.854E-03 -6.125E-03 -4.938E-03 -3.643E-03 -2.368E-03 -1.226E-03 -5.452E-04 5.590E-03 2.570E-03 4.899E-03 6.309E-03 -3.661E-03 

Total 
Cholesterol CF 100.00% 99.11% 3.167E-04 5.698E-04 6.060E-04 6.681E-04 7.415E-04 8.233E-04 9.032E-04 9.508E-04 1.280E-03 1.552E-04 2.973E-04 3.810E-04 7.486E-04 

 DRIV 100.00% 69.62% -2.107E-05 1.210E-03 1.403E-03 1.717E-03 2.045E-03 2.338E-03 2.572E-03 2.697E-03 3.456E-03 6.207E-04 1.168E-03 1.487E-03 2.012E-03 

 IVCF 100.00% 89.78% 8.537E-04 1.735E-03 1.872E-03 2.104E-03 2.363E-03 2.621E-03 2.845E-03 2.974E-03 3.863E-03 5.168E-04 9.728E-04 1.239E-03 2.360E-03 

Triglycerid
e CF 100.00% 80.98% 5.382E-05 1.734E-04 1.897E-04 2.193E-04 2.553E-04 2.915E-04 3.226E-04 3.407E-04 4.666E-04 7.224E-05 1.329E-04 1.672E-04 2.558E-04 

 DRIV 75.86% 0.00% -1.593E-03 -3.960E-04 -2.401E-04 1.117E-05 2.826E-04 5.489E-04 7.895E-04 9.342E-04 2.224E-03 5.377E-04 1.030E-03 1.330E-03 2.775E-04 

 IVCF 21.99% 0.58% -1.590E-03 -7.762E-04 -6.616E-04 -4.677E-04 -2.502E-04 -3.096E-05 1.658E-04 2.835E-04 1.097E-03 4.367E-04 8.274E-04 1.060E-03 -2.490E-04 



Table 6: Model 2 Tau Summary (Binary Trait) 

 

The table summarizes the estimated individualized treatment effects for different lipid-trait to disease models under binary treatment setting. Tau indicates the 
increase in probability of outcome for controlling the lipid level under the optimal threshold, in other words, we compare a favourable lipid profile (coded as 1) 
vs an unfavorable lipid profile (coded as 0), analogous to having received a treatment to improve dyslipidaemia. Therefore, the direction of tau is reversed 
compared to the continuous treatment setting. 

  

 
 
 

 Negative 
Tau 

Significant 
Tau  

(P-value < 
0.1) 

Min 5% 10% 25% Median 75% 90% 95% Max 

50% 
Coverage 

(25% - 
75%) 

80% 
Coverage 

(10% - 
90%) 

90% 
Coverage 

(5% - 95%) 
Mean 

LDL-C CF 100.00% 100.00% -1.076E-02 -9.056E-03 -8.748E-03 -8.156E-03 -7.464E-03 -6.879E-03 -6.430E-03 -6.173E-03 -3.996E-03 1.277E-03 2.318E-03 2.882E-03 -7.529E-03 

 DRIV 100.00% 73.81% -4.568E-02 -3.304E-02 -3.126E-02 -2.829E-02 -2.508E-02 -2.192E-02 -1.910E-02 -1.743E-02 -4.850E-03 6.372E-03 1.215E-02 1.561E-02 -2.513E-02 

 IVCF 100.00% 96.63% -4.283E-02 -3.265E-02 -3.124E-02 -2.891E-02 -2.627E-02 -2.358E-02 -2.117E-02 -1.979E-02 -1.082E-02 5.334E-03 1.007E-02 1.285E-02 -2.625E-02 

HDL-C CF 0.00% 100.00% 5.405E-03 6.774E-03 7.040E-03 7.568E-03 8.186E-03 8.759E-03 9.232E-03 9.495E-03 1.120E-02 1.191E-03 2.191E-03 2.721E-03 8.162E-03 

 DRIV 13.16% 0.88% -1.595E-02 -2.571E-03 -8.170E-04 2.292E-03 6.029E-03 1.000E-02 1.363E-02 1.572E-02 2.929E-02 7.709E-03 1.444E-02 1.829E-02 6.226E-03 

 IVCF 10.19% 0.86% -2.978E-02 -3.843E-03 -1.080E-04 6.368E-03 1.400E-02 2.228E-02 3.018E-02 3.512E-02 7.274E-02 1.591E-02 3.029E-02 3.897E-02 1.462E-02 

Total 
Cholesterol CF 100.00% 97.14% -8.263E-03 -6.291E-03 -5.992E-03 -5.439E-03 -4.809E-03 -4.259E-03 -3.849E-03 -3.628E-03 -2.170E-03 1.180E-03 2.142E-03 2.664E-03 -4.869E-03 

 DRIV 100.00% 68.25% -3.338E-02 -2.473E-02 -2.339E-02 -2.091E-02 -1.783E-02 -1.455E-02 -1.167E-02 -1.003E-02 -1.001E-04 6.366E-03 1.172E-02 1.470E-02 -1.766E-02 

 IVCF 100.00% 82.87% -4.498E-02 -3.111E-02 -2.968E-02 -2.726E-02 -2.453E-02 -2.177E-02 -1.931E-02 -1.783E-02 -8.020E-03 5.489E-03 1.037E-02 1.328E-02 -2.451E-02 

Triglycerid
e CF 100.00% 70.43% -6.121E-03 -4.517E-03 -4.279E-03 -3.865E-03 -3.386E-03 -2.883E-03 -2.421E-03 -2.148E-03 -2.828E-04 9.828E-04 1.858E-03 2.369E-03 -3.365E-03 

 DRIV 40.30% 0.87% -2.541E-02 -8.080E-03 -5.941E-03 -2.438E-03 1.408E-03 5.478E-03 9.837E-03 1.298E-02 3.648E-02 7.916E-03 1.578E-02 2.106E-02 1.750E-03 

 IVCF 11.76% 0.38% -1.815E-02 -2.860E-03 -5.994E-04 3.219E-03 7.529E-03 1.183E-02 1.562E-02 1.780E-02 3.223E-02 8.609E-03 1.622E-02 2.066E-02 7.513E-03 
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