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ABSTRACT 
 
Introduction and Objective 
We sought to replicate and discover genetic associations of kidney stone disease within a large-
scale electronic health record (EHR) system. 
 
Methods  
We performed genome-wide association studies (GWASs) for nephrolithiasis from genotyped 
samples of 5,571 cases and 83,692 controls. Among the significant risk variants, we performed 
association analyses of stone composition and first-time 24-hour urine parameters.  To assess 
disease severity, we investigated the associations of risk variants with age at first stone 
diagnosis, age at first procedure, and time from first to second procedure.   
 
Results 
The main GWAS analysis identified 10 significant loci, each located on chromosome 16 within 
coding regions of the UMOD gene, which codes for uromodulin, a urine protein with inhibitory 
activity for calcium crystallization. The strongest signal was from SNP 16:20359633-C-T (odds 
ratio [OR] 1.17, 95% CI 1.11-1.23), with the remaining significant SNPs having similar effect 
sizes.  In subgroup GWASs by stone composition, 19 significant loci were identified, of which 
two loci were located in coding regions (brushite; NXPH1,  rs79970906 and rs4725104). The 
UMOD SNP 16:20359633-C-T was associated with differences in 24-hour excretion of urinary 
calcium, uric acid, phosphorus, sulfate; and the minor allele was positively associated with 
calcium oxalate dihydrate stone composition (p<0.05). No associations were found between 
UMOD variants and disease severity.   
 
Conclusions 
We replicated germline variants associated with kidney stone disease risk at UMOD and 
reported novel variants associated with stone composition.  Genetic variants of UMOD are 
associated with differences in 24-hour urine parameters and stone composition, but not 
disease severity. 
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Introduction 
 
Multiple lines of evidence support a strong genetic contribution to kidney stone risk, including 
familial studies, twin studies, and studies on single-gene mutations.1–6 In addition, prior large-
scale genome-wide association studies (GWASs) from the UK, Japanese and Icelandic populations 
have implicated genetic variants linked to calcium and phosphate regulation, metabolic traits, 
and inflammation/oxidative stress.7–12 Overall, previous studies have reported that kidney stone 
risk is approximately 50% attributable to genetic heritability.2,3 
 
Despite such a large contribution of genetics to stone risk, clinicians uncommonly utilize genetic 
information for clinical care for several reasons. First, monogenic causes for kidney stones are 
uncommon.13 At present, genetic screening is not routinely performed except for primary 
hyperoxaluria or cystinuria, and often, these conditions can be inferred indirectly from stone 
analysis and urinary levels of cystine and oxalate. Furthermore, while many genetic studies 
have elucidated mechanisms for disease risk in population-based epidemiology studies, few 
have examined those associations with clinical phenotypes such as disease severity in patient 
clinical context– only one GWAS has identified rare variants associated with recurrent kidney 
stones.7  As such, there is an unmet need to evaluate genetic factors in real-world patient 
populations, interpret genetic factors linked to patient clinical outcomes, and assess how well 
these genetic factors may fit into existing treatment algorithms. 
 
Within this context, we investigated the translational potential of using genome-wide association 
findings for risk prediction and disease subclassification.  First, we performed a GWAS for kidney 
stone disease within an electronic health record framework (EHR). In a subgroup analysis, we 
performed separate GWASs among subgroups of individuals with kidney stones classified by 
stone composition. Then, for SNPs meeting the criteria for genome-wide significance, we 
compared differences in 24-hour urine values and stone composition by allele status, and 
evaluated associations with disease severity.  
 
  
Methods 
 
Data source and study population 
 
We investigated a de-identified version of the entire electronic health record from our single 
institution (the Synthetic Derivative, SD), which is updated bimonthly and contains longitudinal 
clinical records of 3.2 million records since 1982. The SD is linked to a biobank (BioVU)14 which 
has accrued DNA samples since 2007 from unused blood drawn for routine clinical practice 
scheduled to be discarded. Our study population included individuals within the SD with 
genotyping data from BioVU (n=90,991). Local institutional review board approval was obtained 
for this study with waiver of consent (IRB# 190480). 
 
Kidney stone cases and controls 
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We identified kidney stone cases within the SD using Current Procedural Terminology (CPT) 
codes and International Classification of Diseases, 9th/10th Revision, Clinical Modification (ICD-
9/10-CM) diagnosis codes within the SD up to May 2021. We required a single ICD or CPT code 
to be classified as a case (see Appendix 1 for relevant inclusion codes for kidney stone-related 
diagnoses).  Individuals without any of these codes were considered non-cases.  To ensure 
these codes reflected kidney stone cases, a manual review of records containing kidney stone-
related ICD codes (n=200) and CPT codes (n=200) showed PPVs of 93% and 97%, respectively.  
Then, among individuals identified with kidney stone disease, we identified comorbid 
conditions prior to the index kidney stone diagnosis based on ICD codes listed in Appendix 2. 
Controls were identified from non-cases who did not have additional diagnosis codes for 
exclusion (see Appendix 1). These exclusion codes included diagnoses of hydronephrosis and 
lower urinary tract stones. 
 
Appendix 1. ICD and CPT codes for kidney stone disease  
  

ICD 9 ICD 10  
Diagnosis 
Codes for 
inclusion 

592, 592.0, 592.1, 592.9 N20, N20.0, N20.1, 
N20.2, N20.9 

CPT Procedure 
Codes for 
inclusion 

50080, 50081, 50590, 52320, 52352, 52353, 52356 

Diagnosis 
Codes for 
exclusion 

591, 594, 594.1 594.2, 
594.8. 594.9, 788.0, 

V13.01 

N13.1, N13.2, N13.3, 
N13.30, N13.39, N21, 

N21.0, N21.8, N21.9, N22, 
N23, Z87.442 

 
Genotyping and imputation 
Genotyping of BioVU samples was performed with the Illumina Expanded Multi-Ethnic 
Genotyping Array (MEGAEX), which targets almost 2 million exome and rare single nucleotide 
polymorphisms (SNPs). The exome chip processing protocol and quality control procedures 
have been previously described.15 We performed standard quality control procedures to 
exclude low-quality variants and individuals including SNPs with missingness >2%, individuals 
with missingness >5%, SNPs with minor allele frequency (MAF) < 1% and p-value of Hardy-
Weinberg equilibrium test of < 1e-616. Then, the data were imputed to the 1000 Genomes 
Project Phase 3 reference panel17 for haplotype estimation and imputation. We converted 
dosage data to hard genotype calls and excluded variants with uncertainty > 0.1 or INFO < 0.95, 
resulting in 2,225,361 variants after post-imputation quality control. 
 
GWAS 
In the GWAS, the association of SNPs with kidney stone disease was performed using logistic 
regression with an additive genetic model and adjusting for age at diagnosis, race (White, Black, 
Other), sex, and 10 principal components to correct for population stratification (see Figure 1). 
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18,19 Additive genetic models assessed the linear increase in risk for each copy of the minor 
allele. A p-value <5x10-8 was used for genome-wide significance.  We additionally performed 
two sensitivity analyses with more stringent exclusion criteria defining cases and controls using 
additional conditions (1) at least 2 years of EHR follow-up data between the timestamp of the 
first record and last record, and 2) non-missing demographic information (sex, race, ethnicity).  
Local linkage disequilibrium (LD) and recombination patterns were accessed using LocusZoom20.  
To isolate the independent signals, we performed a conditional analysis in PLINK by adding the 
lead SNP to the covariates and rerunning the association test. We utilized ANNOVAR for SNP 
annotation to identify and elucidate the functional implications of genetic variations in the 
surrounding genome regions.21  
 
FIGURE 1. Flow chart of GWAS 

 
Subgroup GWASs by stone composition 
For genotyped individuals with kidney stone history, the first stone composition (Beck Analytical 
Services, Greenwood, Indiana) from the kidney or ureter, was identified.  Based on classifications 
described previously,22 we identified those with majority calcium oxalate (monohydrate and/or 
dihydrate), majority calcium oxalate monohydrate, majority calcium oxalate dihydrate, majority 
hydroxyapatite, any uric acid, any brushite, any carbonate apatite, and any struvite. Separate 
GWASs were performed for each of the stone composition categories, from which individuals 
were considered cases. Controls were individuals without kidney stone-related diagnoses or 
procedure codes, as in the main analysis. The GWAS analyses were then performed as described 
for the main GWAS study. 
 
Comparison of stone composition and 24-hour urine  
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For the significant risk alleles identified in the main GWAS, individuals were assigned to three 
groups based on allele status.  Stone composition (as described previously) and first-time 24-
hour urine samples (Litholink, Itasca, IL) were identified among those with kidney stone history.  
We included only 24-hour urine samples with creatinine/kilogram values within reference 
ranges (male 11.9-24.4 mg/kg, female 8.7-20.3 mg/kg) to ensure adequate sample collection.  
Descriptive statistics and comparisons were performed among the allele groups.  For the stone 
composition analysis, individuals were categorized into mutually exclusive groups of majority 
calcium oxalate monohydrate, majority calcium oxalate dihydrate, majority hydroxyapatite, and 
majority uric acid.  Logistic regression models were performed for each stone composition 
category under three different genetic models: dominant, recessive model, and additive 
models.  For each of the 24-hour urine parameters, univariate analysis was performed with 
ANOVA, and p-values <0.05 were considered significant.  
 
Disease severity analysis 
We assessed the effect of SNP allele status on disease severity for 3 outcomes: 1) age at first 
kidney stone diagnosis; 2) age at first surgical procedure; and 3) time to second surgery from 
first surgical procedure.  The first two outcomes were evaluated with ANOVA with p-values 
<0.05 considered significant.  To account for the cohort effect associated with the variation 
among different cohorts at the same age,23 the SNPs with significant results from the Kruskal-
Wallis test were evaluated in a linear mixed effects model with sex, race, and ethnicity as fixed 
effects, and birth cohort (every 10 years) as a random effect.  Finally, the third outcome was 
assessed using a time to event analysis with cox proportions hazards regression model 
adjusting risk factors of sex, race, and ethnicity; the log-rank test was used to compare Kaplan-
Meier survival curves and the log-rank test p-values <0.05 were considered significant. A 
Kaplan-Meier plot was generated to illustrate differences in surgical recurrence probability. 

To account for the potential lack of power for the disease severity analyses, we performed 
equivalence tests for each of the three outcomes. Individuals were split into two groups with 
one group having at least one minor risk allele and another group without any minor risk allele. 
The effect size was converted by the difference in the outcome between the two groups given 
the sample sizes and a pooled standard deviation.  

Software 
For the GWAS quality control and association analysis, PLINK 1.924 was used.  For the GWAS 
imputation procedure, IMPUTE225 and SHAPEIT26 were used. All the other statistical analysis 
was implemented in R version 4.1.0.  
 
Results 
 
Among 89,533 genotyped individuals, the analysis included 5,571 (6.2%) with kidney stone 
disease and 83,692 (93.8%) controls.  Descriptive statistics for the kidney stone cohort are 
shown in Supplementary Table 1.  The mean age at diagnosis was 52.0 years, 51.3% males, and 
comprised of 86.4% White and 10.5% Black individuals (see Table 1).  The most common 
comorbid conditions were hypertension (52.1%), obesity (24.5%), diabetes type 2 (23.4%), and 
cardiovascular disease (23.0%). 
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Supplementary Table 1: Demographic and clinical characteristics of genotyped individuals 
with kidney stone disease 
  Kidney stone diagnosis (n=5571) 

Age at diagnosis (years, mean, SD) 52.0, 18.0 
Male gender 2858 (51.3%) 
Race  
    White race 4812, (86.4%)  
    Black 585 (10.5%) 
    Other/unknown 174 (3.1%) 
Ethnicity  

Not Hispanic/Latinx 5422 97.3% 
Cardiovascular disease  1281   23.0% 
Diabetes Type 2 1305  23.4% 
Gout 325    5.8% 
Hypertension 2906   52.1% 
Inflammatory bowel disease 575    10.3% 
Obesity 1112   20.0% 
 

The GWAS results show 10 distinct association signals meeting the genome-wide significance, 
all located in the UMOD gene region between 20,344,373 bp-20,364,037 bp (GRCh37) on 
chromosome 16 (Table 1).  The Manhattan plot from the GWAS is shown in Figure 2.  SNP 
16:20359633-C-T had the strongest signal with minor allele positively associated with higher 
risk compared to those without the same allele (OR 1.17, 95% CI 1.11-1.23).  The conditional 
analysis indicated that the SNP 16:20359633-C-T represents an independent signal, with the 
associations of all other SNPs vanishing upon adjustment for this specific SNP. There were two 
additional variants, 16:20353049-G-A and 16:20359267-G-T within the region of UMOD that 
approached but did not reach the significance threshold.  As shown in the LocusZoom and QQ 
plots based on the UMOD gene region (16p12.3) depicted in Figure 3a and Figure 3b, the 
associated region and the significant SNPs are in strong LD with the index SNP (r2≥0.8).  For the 
two sensitivity analyses restricting case criteria to require 2 years of EHR follow-up data and 
with complete demographic information, the findings were unchanged.   
 
Figure 2. Manhattan plot for the GWAS for kidney stone disease 

 
 
 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 22, 2024. ; https://doi.org/10.1101/2024.01.18.24301501doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.18.24301501


Table 1. Genetic variants of kidney stone disease meeting genome-wide significance 

 
 
Figure 3a. LocusZoom depicting GWAS association data in the context of chromosome 16 in the 
UMOD region.   

 
Figure 3b- Quantile-Quantile (QQ) plot showing a subset of variants showing association with 
kidney stone disease. 
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In the GWASs by kidney stone composition subtypes, we identified 19 loci meeting the 
threshold for genome-wide significance (see Table 2, Manhattan plots are shown in 
Supplementary Figure 1).  Of these loci, 16 SNPs in 7 genomic regions were located in intergenic 
regions associating with majority calcium oxalate dihydrate, hydroxyapatite, any uric acid, 
brushite, carbonate apatite, and struvite.  We identified a significant association for brushite 
stone composition with rs79970906 and rs4725104 in the gene region of NXPH1 from 
chromosome 7.  Additionally, for struvite stone composition, our study identified a significant 
association with SNP JHU_8.3486048 on chromosome 8 in a genomic region related to 
epigenetic function (non-coding RNA LINC01288).  Notably, this signal was near the significant 
locus rs186944649 for carbonate apatite on chromosome 8 in an intergenic position between 
DUSP26 and LINC01288. 
 
Table 2. Genetic variants meeting genome-wide significance by kidney stone composition 

 
 
Stone composition and 24-hour urine parameters were compared by allele status for SNP 
16:20359633-C-T, which had the strongest signal in the main GWAS analysis (see Table 3). 
Among 586 individuals receiving first-time 24-hour urine testing, values significantly differed for 
24-hour urine calcium, uric acid, phosphorus, sulfate (each p<0.05), but not urine 
supersaturations for calcium oxalate, calcium phosphate, or uric acid (each p>0.05).  Among 
1,743 individuals with stone composition data, there was a positive association with SNP allele 
status and majority calcium oxalate dihydrate stone type under either an additive model or 
dominant model (p<0.05). 
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Table 3. SNP 16:20359633-C-T allele status with 24-hour urine and stone composition 

24hr urine parameter, 
Mean (SD) 

No allele 
(N=376) 

1 allele 
(N=182) 

2 alleles 
(N=28) P-value 

Volume (L) 1.85 (0.88) 1.88 (0.88) 1.77 (0.77) 0.784 

Calcium (mg) 183 (122) 209 (135) 197 (157) 0.024 

Oxalate (mg) 37.8 (18.2) 38.4 (18.4) 34.1 (14.8) 0.709 
 

Citrate (mg) 522 (364) 554 (389) 435 (269) 0.345 

pH 6.15 (0.56) 6.08 (0.54) 6.24 (0.49) 0.157 

Uric Acid (g) 0.573 (0.244) 0.618 (0.253) 0.559 (0.252) 0.044 

Sodium (mEq) 166 (81) 174 (82) 155 (75) 0.258 

Potassium (mEq) 56 (26) 57 (28) 55 (29) 0.584 

Magnesium (mg) 94 (45) 98 (51) 89 (47) 0.351 

Phosphorus (g) 0.876 (0.391) 0.953 (0.401) 0.866 (0.350) 0.031 

Ammonium (mEq) 33 (18) 34 (17) 35 (27) 0.460 

Chloride (mEq) 160 (77) 165 (78) 147 (70) 0.487 

Sulfate (mEq) 34 (18) 38 (20) 34 (19) 0.023 

Creatinine/kg 
(mg/kg) 13.6 (2.8) 14.1 (2.8) 12.7 (2.8) 0.092 

SSCaOx 6.6 (3.9) 7.1 (4.01) 6.3 (3.3) 0.184 

SSCaP 1.3 (1.2) 1.3 (1.1) 1.6 (1.3) 0.607 

SSUA 0.82 (0.87) 0.96 (0.92) 0.69 (0.78) 0.085 

Stone composition, 
% 

No allele 
(N=1109) 

1 allele 
(N=551) 

2 alleles 
(N=83) 

P-
value* 

Majority CaOxM 31.9 32.3 34.9 0.262 

Majority CaOxD 5.8 8.0 8.4 0.034 

Majority CaPhos 13.0 12.3 10.8 0.836 

Majority Uric Acid 3.5 2.7 2.4 0.422 
 
 
For the disease severity analysis, we considered SNP 16:20359633-C-T as the representative 
SNP. The median age at first kidney stone diagnosis was higher among the homozygous major 
allele (54.2 years) compared to the heterozygous group (53.1 years, p=0.005) and homozygous 
minor allele group (51.5 years, p=0.03) (see Supplementary Figure 1).   However ,our analysis 
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for the age at first kidney stone analysis showed no significant association with SNP 
16:20359633-C-T (p=0.35) (Supplementary Figure 2).  Equivalence testing showed sufficient 
power to detect a minimum difference of 1 month.   

Among those receiving any kidney stone surgery (n=1,106), no differences were observed 
comparing the age at first surgery, or time to 2nd surgery by 5 years of follow-up 
(Supplementary Figure 3-5).  Equivalence testing showed sufficient power to defect a minimum 
of 1 month for the age at first surgical procedure outcome, and a minimum of 2 months for the 
first to second surgery outcome. 

Supplementary Figure 1. Age at first diagnosis based on SNP 16:20359633-C-T allele status. 

 
 
 
Supplementary Table 2 – Linear mixed effects model for age at first kidney stone diagnosis for 
SNP 16:20359633-C-T with sex, race, and ethnicity as fixed effects, and birth cohort (every 10 
years) as a random effect.  
 

 Estimate Std. Error df t value Pr(>|t|) 
(Intercept) 37.96 9.22 11.57 4.12 0.00 
snp16_20359633 -0.29 0.32 973.02 -0.90 0.37 
SexM -0.42 0.38 973.11 -1.09 0.28 
RaceB 1.99 1.87 972.98 1.07 0.29 
RaceW 2.05 1.76 972.98 1.17 0.24 
EthnicityHL 1.00 3.25 972.98 0.31 0.76 
EthnicityNH 1.46 3.07 972.98 0.48 0.63 
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Supplementary Figure 3. Age at first stone-related surgery based on SNP 16:20359633-C-T 
allele status. 
 
 

 
 
Supplementary Figure 4. Kaplan-Meier curve showing freedom from second stone-related 
surgery after first surgery by SNP 16:20359633-C-T allele status.  CC and TT are homozygous 
major and minor, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Figure 5. Cox proportions hazards regression model for up to 60 months for the 
hazard of 2nd stone-related surgery after the 1st stone-related surgery including the SNP 
16:20359633-C-T allele status. 
 coef exp.coef. se.coef. z Pr…z.. 
snp16_20359633 0.03 1.03 0.14 0.24 0.81 
SexM -0.37 0.69 0.17 -2.17 0.03 
RaceB -1.43 0.24 1.07 -1.33 0.18 
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 coef exp.coef. se.coef. z Pr…z.. 
RaceI -15.28 0.00 3011.35 -0.01 1.00 
RaceU -0.72 0.49 1.44 -0.50 0.62 
RaceW -1.09 0.34 1.01 -1.08 0.28 
EthnicityHL 14.03 1236891.96 1630.49 0.01 0.99 
EthnicityNH 14.07 1293246.17 1630.49 0.01 0.99 
 
Discussion 
We identified several important key findings.  First, our results provide an independent 
replication of multiple risk loci within UMOD (16p12.3) in high linkage disequilibrium 
associating with kidney stone disease risk.  UMOD encodes uromodulin – also known as Tamm-
Horsfall protein, which is the most abundant protein in normal urine and an inhibitor of calcium 
crystallization27,28.  In subgroup analysis, we implicate several genes meeting GWAS level of 
significance associating with stone composition.  We additionally demonstrate differences in 
stone composition and 24-hour urine parameters consistent with uromodulin function as an 
inhibitor for calcium-based stone types.  Furthermore, no relationships with kidney stone 
severity were identified with UMOD risk alleles despite adequate statistical power for the three 
severity measures evaluated.  
 
Consistent with other GWASs in British, Icelandic and Japanese populations10–12, our finding of a 
positive association between the UMOD minor allele variant and kidney stone risk in this U.S. 
based cohort has a similar mild effect size.  In addition to their role in urinary stone risk, UMOD 
variants have been implicated in urinary acidification, renal function, and the development of 
CKD.29   Additionally, common variants in the UMOD promoter region influence urinary 
uromodulin levels,30 suggesting that these SNPs may be potentially causal.  The finding of 
association with calcium oxalate dihydrate stones, which have been linked to urinary calcium 
excretion,31 provides additional supportive evidence.  However, our finding of the lack of 
association between UMOD risk alleles and kidney stone severity suggests that while 
uromodulin influences kidney stone risk, it may not influence subsequent meaningful clinical 
outcomes.  Interestingly, a prior study recurrent kidney stone formers in Iceland, rare missense 
variants in the sodium-phosphate co-transporter SLC34A1 and the calcium channel TRPV5 
associated with recurrence risk.7  In the current analysis, we tested different measures of 
disease severity, and work is ongoing to identify and validate stone recurrence episodes within 
the EHR.   
  
From the 19 novel genome-wide significant loci for kidney stone composition subtypes, we 
observed that 16 of the loci were located in intergenic regions and one loci (JHU_8.3486048) 
was located in a non-coding RNA region.  While these loci suggest a potential role of regulatory 
function of the DNA sequence and epigenetics, implicating disease pathways from these SNPs is 
a challenge.  The remaining two loci rs79970906 and rs4725104 show a very strong signal 
between brushite stone disease and the coding region of NXPH1. NXPH1 codes for 
Neurexophilin 1, a secreted protein implicated in irritable bowel syndrome32 and several 
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neurologic conditions including Alzheimer’s Disease.33  Notably, NXPH1 mediates 
hematopoiesis, immune responses, and osteoblast activity in the bone marrow,34 which could 
be a plausible pathway to explain the common finding of hypercalciuria in this population.35   
 
There are several limitations to this study. EHR-based datasets are susceptible to omitted 
variable bias and misclassification bias. To validate our method for identifying cases, we 
performed a manual review of a subset of ICD and CPT codes and demonstrated high PPV for 
kidney stone diagnoses. As this was an EHR-wide study from a single health care network, we 
do not capture care sought outside of our health system and would not have identified, for 
example, surgical procedures at another facility.  In addition, these data from the Southeastern 
U.S. may not be generalizable to other populations.   
 
Notwithstanding these limitations, our study has important clinical implications.  Our findings 
suggest a role for the EHR to enable a precision-medicine approach for the treatment of 
recurrent kidney stone disease. A major strength of the EHR is the longitudinal data available 
across a large population with granular phenotyping data, such as stone composition and 24-
hour urine data.  The replication of UMOD from previous GWAS findings validates the EHR as a 
research data source and a clinical environment for utility testing.  We additionally demonstrate 
that use of UMOD as a biomarker needs further evidence to support its clinical utility within the 
context of disease severity.  Put differently, we show that while genetics may influence risk, 
that risk may not translate to measurable disease severity.  Furthermore, we identify 19 novel 
risk loci for subgroups of by kidney stone composition, and the biological pathways associated 
with these variations need to be evaluated by functional genomics studies. 
 
 
Conclusions 
 
In this EHR-based GWAS we replicate UMOD variants associating with kidney stone disease risk, 
but not disease severity.  Stone composition and 24-hour urine studies comparing UMOD 
variants provide evidence supporting its role in urinary calcium crystallization. We identify 
novel genetic variants associated with specific subgroups of individuals with kidney stones as 
classified by stone composition, however the biologic pathways relating to risk need further 
elucidation.  These findings suggest there may be a role for genetic testing linked to EHRs to 
facilitate precision-medicine approaches for the treatment of kidney stone disease. 
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