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Abstract 1 

We conducted genome-wide association studies (GWAS) of dual-energy X-ray 2 

absorptiometry (DXA)-derived bone mineral density (BMD) traits at 11 skeletal 3 

sites, within over 30,000 European individuals from the UK Biobank. A total of 92 4 

unique and independent loci were identified for 11 DXA-derived BMD traits and 5 

fracture, including five novel loci (harboring genes such as ABCA1, CHSY1, 6 

CYP24A1, SWAP70, and PAX1) for six BMD traits. These loci exhibited evidence of 7 

association in both males and females, which could serve as independent replication. 8 

We demonstrated that polygenic risk scores (PRSs) were independently associated 9 

with fracture risk. Although incorporating multiple PRSs (metaPRS) with the 10 

clinical risk factors (i.e., the FRAX model) exhibited the highest predictive 11 

performance, the improvement was marginal in fracture prediction. The metaPRS 12 

were capable of stratifying individuals into different trajectories of fracture risk, but 13 

clinical risk factors played a more significant role in the stratification. Additionally, 14 

we uncovered genetic correlation and shared polygenicity between head BMD and 15 

intracranial aneurysm. Finally, by integrating gene expression and GWAS datasets, 16 

we prioritized genes (e.g. ESR1 and SREBF1) encoding druggable human proteins 17 

along with their respective inhibitors/antagonists. In conclusion, this comprehensive 18 

investigation revealed a new genetic basis for BMD and its clinical relevance on 19 

fracture prediction. More importantly, it was suggested that head BMD was 20 

genetically correlated with intracranial aneurysm. The prioritization of genetically 21 

supported targets implied the potential repurposing drugs (e.g. the n-3 PUFA 22 

supplement targeting SREBF1) for the prevention of osteoporosis. 23 

 24 

Keywords: bone mineral density, drug targets, fracture, genome-wide association 25 

study, intracranial aneurysm, omics, polygenic risk scores.  26 
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Introduction 1 

Osteoporosis, a systemic skeletal disease characterized by decreased bone mass and 2 

micro-structural damage 1,2, has a global prevalence of 18.3% [95% confidence 3 

interval (95% CI): 16.2%-20.7%] 3. Bone mass could be assessed by 2-dimensional 4 

projectional scans with dual-energy X-ray absorptiometry (DXA), or other medical 5 

imaging tools, such as quantitative computed tomography (QCT) and quantitative 6 

ultrasound (QUS) 4. Genome-wide association studies (GWASs) and meta-analyses 7 

were carried out to explore the genetic factors for bone mineral density (BMD), 8 

osteoporosis, and fracture 1,2. Early GWAS design only involved thousands of 9 

samples and only several loci were identified 5,6. The meta-analysis could enlarge 10 

the sample size and statistical power, and lead to the identification of more loci 7,8. 11 

However, the genetic summary data, instead of individual-level genotype data, from 12 

each cohort were meta-analyzed in the aforementioned studies. Recently, large-scale 13 

biobanks such as the UK biobank could enable access to the individual-level 14 

genotype data in hundreds of thousands of samples, and hundreds of genetic loci 15 

were identified for QUS-derived BMD in these efforts 9,10. 16 

 17 

Although GWASs have been successfully conducted in the past decade, the ultimate 18 

goal of genetic study is to translate the discoveries into clinical practice. Previously, 19 

we have tried to summarize the clinical use of GWAS findings in the bone field, 20 

such as disease prediction 1. Lu et al developed the genetically predicted speed of 21 

sound (SOS, a parameter measured by QUS) for individuals in UK Biobank by 22 

common genetic variants through polygenic risk score (PRS) 11. They demonstrated 23 

that this score provided modestly better fracture risk prediction than some of the 24 

clinical risk factors such as smoking and use of corticosteroids 11. In addition, they 25 

suggested that adding rare variants did not demonstrate substantially improved 26 

predictive performance in a recent study 12. The above studies took the SOS 27 

measurement in the training and testing dataset, however, the SOS measurement was 28 
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not correlated very well with BMD 13. Another clinical relevance of GWAS findings 1 

is to infer the correlation between diseases 1. Earlier efforts have uncovered 2 

numerous SNPs exhibiting pleiotropic associations with BMD and other 3 

traits/diseases, such as birth weight 14, type 2 diabetes 15, and major depressive 4 

disorder 16. Finally, incorporating genetic data in drug development is warranted to 5 

improve this process, because drugs with genetic support are more likely to succeed 6 

in clinical trials 17,18. 7 

 8 

Therefore, with the availability of DXA-derived BMD phenotypes and individual-9 

level genotype data in UK Biobank, it is an opportunity to conduct a genome-wide 10 

association study at large scale individual-level genotype data and to investigate the 11 

genetic basis of BMD at 11 sites (arm, femur total, femur neck, head, leg, pelvis, 12 

lumbar spine, rib, and spine) and fracture (Supplementary Figure 1). We then build 13 

a ‘multi-BMD PRS’ predictive model to improve genetic risk stratification for 14 

fracture. In addition, we estimated the shared genetic architecture of BMD with 15 

other common chronic diseases, including neurodegenerative, cardiovascular, and 16 

autoimmune diseases. Finally, we tried to explore the potential effective and safe 17 

therapeutic targets for osteoporosis. 18 

 19 

Results 20 

Genetic architecture of BMD at multiple skeletal sites 21 

The overview of the study design was presented in Supplementary Figure 1. 22 

Specifically, we conducted the GWAS analyses for BMD at 11 anatomic sites (i.e., 23 

arm, total femur, femoral neck, head, legs, lumbar spine, pelvis, ribs, spine, trunk, 24 

and total body) and any-type fracture (Figure 1A) in male and female separately. 25 

For each BMD trait, we then conducted meta-analyses to combine the results from 26 

both genders (for BMD traits: N≈30,000; for any-type fracture: N=35,192 for cases; 27 

N=317,599 for controls). The reported loci should exhibit evidence of association in 28 
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 7

both males and females, which could serve as independent replication (Figure 2 A-E 1 

Supplementary Table 1, and Supplementary Table 2). All intercept values from 2 

the LD score method were close to one, revealing no obvious population 3 

stratification for all GWASs (Supplementary Table 3). We observed that 4 

approximately 25.7%~41.8% of the variance in BMD and 4.8% of the variance in 5 

fracture risk could be explained by common variants across the genome (Table 1). 6 

We then conducted conditional analyses within phenotype and identified 240 unique 7 

conditional independent BMD signals (Table 1, Figure 1B, Supplementary Table 1, 8 

and Supplementary Figure 2-13). After merging the physically overlapped signals 9 

across BMD phenotypes (i.e., the distance between two conditional independent 10 

SNVs < 500kb) into one locus, a total of 91 unique and independent BMD loci were 11 

defined (Table 1, Figure 1B and Supplementary Table 1). We identified 8 loci for 12 

fracture, 7 of which overlapped with the above BMD signals, and one of which 13 

(independent SNP: rs13281992) was previously reported to be genome-wide 14 

significant associated with heel BMD 10 (Table 1, Figure 1B and Supplementary 15 

Table 1). 16 

 17 

Five loci identified for DXA-derived BMD traits 18 

Although previous GWASs have reported hundreds of loci, we still identified five 19 

loci for six BMD traits that were not reported previously (Figure 1B and Figure 2 20 

A-E). Among these loci, the most pleiotropic locus resided between ABCA1 and 21 

SLC44A1 genes on chromosome 9 (Figure 1B, Figure 2A, and Supplementary 22 

Table 4). SNPs (rs1039406 and rs746100) around this locus were genome-wide 23 

significantly associated with five BMD sites, including the lumbar spine, femur neck, 24 

femur total, pelvis, and trunk (Figure 1B, Figure 2A, and Supplementary Table 1). 25 

The eQTL data from whole blood tissue revealed that SNP rs746100 was also 26 

associated with the gene expression of ABCA1 (P=2.68×10-5) in artery tibial tissue, 27 

based on the GTEx consortium (Supplementary Table 5 and Supplementary 28 
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Figure 14), and the genetically predicted higher ABCA1 gene expression in whole 1 

blood tissue was associated with higher BMD (Figure 2A). The second promising 2 

locus resided between SWAP70 and WEE1 genes on chromosome 11 with leading 3 

SNP rs10840273, showing a genome-wide significant association for leg BMD (P-4 

value=4.52×10-9) (Figure 2B, Supplementary Table 1 and Supplementary Table 5 

4). Whole blood eQTL data from eQTLGen identified that rs10840273 was 6 

associated with the SWAP70 gene expression (P=2.42×10-39) (Supplementary 7 

Table 5 and Supplementary Figure 15). Mesenchymal stem cell Hi-C data also 8 

detected a direct interaction of the associated region with the SWAP70 gene (FDR-9 

corrected P-valueinteraction=2.74×10-109) (Supplementary Table 6). Furthermore, this 10 

lead SNP showed a genome-wide significant association with circulating SWAP70 11 

(P-value=6.94×10-81). The MR results revealed that genetically predicted higher 12 

SWAP70 gene expression and higher circulating SWAP70 protein in whole blood 13 

were significantly associated with increased leg BMD (Figure 2B). 14 

 15 

Another locus surrounding rs12916774 on chromosome 15 was associated with 16 

femur neck and femur total BMD (Figure 2C and Supplementary Figure 16). Both 17 

eQTL data and Mesenchymal stem cell Hi-C data consistently supported the CHSY1 18 

as a plausible candidate gene (P=2.15×10-53 for CHSY1 eQTL in whole blood tissue 19 

from eQTLGen; FDR-corrected Pinteraction=1.72×10-49 for Hi-C data) 20 

(Supplementary Table 5 and Supplementary Table 6). The fourth locus (lead 21 

SNP: rs6013897) was an intergenic region of CYP24A1 and BCAS1 (Figure 2D, 22 

Supplementary Table 4 and Supplementary Figure 17). The Mesenchymal stem 23 

cell Hi-C data detected a direct interaction of the associated region with the 24 

CYP24A1 gene (FDR-corrected Pinteraction=8.04×10-78) (Supplementary Table 6). 25 

We further prioritized PAX1 as a potential candidate gene for rs927059, which is a 26 

lead SNP for femur neck BMD (P-value=1.87×10-8) (Figure 2E,  Supplementary 27 

Table 4 and Supplementary Figure 18). The positional and eQTL annotation 28 
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results consistently supported the PAX1 as a candidate gene for rs927059 (P-1 

value=4.40×10-6 for PAX1 eQTL in muscle skeletal tissue from GTEx) 2 

(Supplementary Table 4 and Supplementary Table 5). In summary, using multi-3 

omics datasets, we prioritized 5 potential candidate genes (i.e., ABCA1, CHSY1, 4 

CYP24A1, SWAP70, and PAX1) to 5 novel loci (Figure 1B, Figure 2 A-E, and 5 

Supplementary Table 4-6). The annotation results for other known loci have also 6 

been shown in Supplementary Table 4-7. 7 

 8 

Polygenic risk score demonstrated marginal improvement in 9 

fracture prediction 10 

Based on effect size derived from GWASs 11 DXA-BMD traits, heel BMD, and 11 

fracture in training datasets, we selected SNPs that could achieve the best predictive 12 

PRSs for fracture in the validation dataset (Figure 3A), resulting in 29 (for rib 13 

BMD)-79292 (for head BMD) selected SNPs for different trait (Supplementary 14 

Table 8). After obtaining SNPs and the effect size for each trait, we calculated the 15 

corresponding PRS for each participant in the test dataset (Figure 3A). The 16 

metaPRS was generated by integrating these 13 individual PRSs using stepwise Cox 17 

regression in the validation cohort dataset (Figure 3A), with estimates for each 18 

single PRS contained in the best-performing model (Supplementary Table 9). The 19 

association of metaPRS with fracture incidence was largely independent of the 20 

traditional risk factors (Supplementary Table 10). As illustrated in Figure 3B, 21 

most individual PRSs showed significant associations with fracture risk in the test 22 

cohort dataset (P�< 0.05) after adjusting for age, sex, obesity, smoking, alcohol, 23 

glucocorticoid medicine use, BMD, and population stratification. However, these 24 

PRSs exhibited similar effect estimates for fracture risk, with the metaPRS 25 

displaying the most prominent association  [HR: 1.134, 95% confidence interval (CI) 26 

1.098-1.172, P�=�4.15×10-14] (Figure 3B). Furthermore, we observed a more 27 

marked gradient of fracture risk across quintiles of metaPRS (HR=1.364, 95% 28 
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CI=1.243-1.498)  than fracture PRS (HR=1.177, 95% CI=1.077-1.287) in the top 1 

quartile vs. the bottom quartile (Supplementary Table 11). 2 

 3 

By including only clinical factors such as age, sex, BMI, smoking, alcohol use, and 4 

glucocorticoid use (the FRAX model), we observed limited predictive performance 5 

of this model (C-statistic=0.608, sd=0.005) (Figure 3C and Supplementary Table 6 

12). We found that adding BMD to the FRAX model increased the C-statistic from 7 

0.608 to 0.637 (difference, 4.77%, P=3.77×10-21) (Figure 3C and Supplementary 8 

Table 12). However, the addition of various PRS to the FRAX-BMD model did not 9 

substantially improve the C-statistic (Figure 3C and Supplementary Table 12). 10 

Incorporating metaPRS into the FRAX-BMD model resulted in the highest C-11 

statistic (C-statistics = 0.641), with a C-statistic change of  0.63% (P=0.003), 12 

compared with the FRAX-BMD model (Figure 3C and Supplementary Table 12). 13 

By utilizing the optimal cutoff point from the FRAX-BMD metaPRS model as the 14 

threshold, the combination of metaPRS and FRAX-BMD model yielded a moderate 15 

improvement in net reclassification improvement (NRI=1.66%, 95% CI 0.7%-2.62%; 16 

the continuous NRI: 9.15%, 95% CI 6.39%-11.91%) (Supplementary Table 13).  17 

 18 

We further assessed how the interplay of the metaPRS and clinical risk factors 19 

impact the fracture risk. Firstly, we found that the cumulative incidence for fracture 20 

events was 4.63% for individuals with low polygenic risk (bottom quintiles of the 21 

metaPRS) and 7.58% among those with high polygenic risk (top quintiles of the 22 

metaPRS), suggesting that metaPRS could stratify individuals into different 23 

trajectories of fracture risk (Supplementary Figure 19). Similar results were 24 

observed in both sexes, with women having higher HR (Supplementary Table 11) 25 

and higher cumulative risk (Supplementary Figure 20 and Supplementary Figure 26 

21). Although we observed significant gradients in the 10-year probability of 27 

fracture occurrence across metaPRS categories within each clinical risk strata 28 
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(Figure 3D), the clinical risk factors played more important role in the stratification. 1 

For example, among participants with low clinical risk, the 10-year probability of 2 

fracture occurrence for those with high genetic risk (2.40% sd=0.59%) was yet 3 

lower than the participants with median clinical risk but low genetic risk (3.26%, 4 

sd=0.69%) (Figure 3D). And the 10-year probability of fracture of the participants 5 

at high clinical risk with low genetic risk (5.81%, sd=1.27%) had already exceeded 6 

the 10-year probability in fracture cases only (5.35%, sd=2.63%) (Figure 3D). The 7 

lifetime risk of incident fracture was higher in each stratum than the 10-year 8 

probability (Figure 3D). Participants at high clinical risk with median/high genetic 9 

risk demonstrated lifetime probabilities of 10.18% and 12.08%, surpassing the 10 

intervention treatment threshold of 10% for a major fracture at age 55 years when 11 

treatment should be recommended 19(Figure 3D). 12 

 13 

The shared genetic architecture of head BMD and intracranial 14 

aneurysm 15 

We further estimated the shared genetic architecture of DXA-BMD at 11 sites with 16 

other 13 common chronic diseases, including neurodegenerative diseases, 17 

cardiovascular diseases and autoimmune diseases (Supplementary Table 14). First 18 

of all, we tested the pair-wise correlation between the BMD traits. It is suggested 19 

that there were the weakest correlations for head BMD with other BMD traits in 20 

both phenotypic and genetic correlation analyses, although all pairs exhibited 21 

statistically significant phenotypic correlation (Figure 4A). In the 143 BMD-disease 22 

pairs (11 BMD traits × 13 diseases), we only observed a statistically significant 23 

inverse genetic correlation of head BMD with intracranial aneurysm (IA) (rg=-0.188, 24 

se=0.055, FDR-corrected P=0.0096), while the genetic correlations with other 12 25 

common chronic diseases were not significant (FDR-corrected P>0.05) (Figure 4B 26 

and Supplementary Table 14). Furthermore, no significant genetic correlation was 27 

observed for the remaining 10 DXA-BMD traits with IA (FDR-corrected P>0.05) 28 
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(Figure 4B and Supplementary Table 14). Compared to the specificity of observed 1 

genetic correlation, there was a similar MiXeR estimated polygenic overlap between 2 

head BMD and IA. 29.36% (N=114, SD=15) of the 390 head-BMD influencing 3 

variants were also predicted to influence IA (Figure 4C and Supplementary Table 4 

15). By employing the conjFDR method, we identified four genomic loci jointly 5 

associated with head BMD and IA (Figure 4D, Figure 4E, and Supplementary 6 

Table 16). Intriguingly, 3 of the 4 lead SNPs (rs72560793, rs10958404, rs11187838) 7 

had the opposite effect direction, consistent with the moderate inverse genetic 8 

correlation between head BMD and IA (Figure 4E, and Supplementary Table 16). 9 

Notably, two of the four loci demonstrated strong evidence of colocalization 10 

(H4>0.5), suggesting the presence of shared causal variants between head BMD and 11 

IA (H4: 0.809 for rs10832558 within SOX6; H4: 0.581 for rs11187838 within 12 

PLCE1) (Supplementary Table 17). Genes mapped to these shared loci were 13 

enriched for biological processes and cellular components related to the skeletal 14 

systems (e.g., positive regulation of chondrocyte differentiation) and vascular 15 

smooth muscle (i.e., regulation of Ras protein signal transduction) (Supplementary 16 

Table 18). 17 

 18 

Prioritization of drug targets 19 

Subsequently, by integrating the druggable genome, gene expression, and GWAS 20 

datasets, we aimed to identify the genetically supported potential therapeutic targets 21 

for osteoporosis, emulating exposure to corresponding medications. Utilizing drug 22 

target information from the ChEMBL database (release 29), we included a total of 23 

3,329 druggable genes for subsequent analyses. Next, we employed eQTL data from 24 

muscle (including 791 druggable genes), artery tibial  (917 druggable genes), and 25 

whole-blood tissue (845 druggable genes from GTEx; 2104 druggable genes from 26 

eQTLGen) to test the association with BMD through mendelian randomization 27 

approach. We observed statistically significant associations between genetically 28 
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predicted expression of 15 genes and DXA-BMD (FDR-corrected P < 0.05) 1 

(Supplementary Table 19). Among these, genetically predicted expressions of 4 2 

genes (CCR1, ESR1, NCOR1 and SREBF1) were associated with at least two DXA-3 

BMD traits with consistent direction, providing robust MR evidence for the genes 4 

(Figure 5A, 5B and Supplementary Table 19). For these four genes, genetically 5 

predicted ESR1 gene expression showed negative associations with 9 DXA-BMD 6 

traits (Figure 5A and 5B). There were positive associations of genetically predicted 7 

NCOR1 gene expression with head BMD and total BMD, while negative 8 

associations were found for SREBF1 and CCR1 gene expressions (Figure 5A and 9 

5B). To assess whether the genetic association between these gene expressions and 10 

phenotypes shared the same causal variant, we conducted colocalization analyses of 11 

the genes with DXA-BMD traits. We discovered that eQTLs in whole blood tissue 12 

for 3 genes (i.e., SREBF1, NCOR1 and CCR1) colocalized with DXA-BMD loci 13 

(H4>0.5), reinforcing the evidence for these genes as drug targets for DXA-BMD 14 

(Figure 5C and Supplementary Table 20). Considering the observed negative 15 

association between SEEBF1 and CCR1 gene expression and BMD 16 

(Supplementary Table 19), there were relevant inhibitors/antagonists that have 17 

been approved or under investigation that present possible repurposing opportunities 18 

for osteoporosis treatment. Specifically, SEBF1 could be targeted using Doconexent 19 

(inhibitor) and Omega-3 fatty acids (inhibitor), while CCR1 could be targeted using 20 

CCX354-C (antagonist) (Figure 5D). 21 

 22 

Discussion 23 

In this study, we first conducted the large-scale GWASs of DXA-BMD at 11 24 

skeletal sites, and identified 91 unique and independent loci associated with at least 25 

one phenotype, including five previously unreported BMD loci for six BMD traits 26 

(i.e., ABCA1, CHSY1, CYP24A1, SWAP70 and PAX1). These novel loci exhibited 27 

evidence of association in both male and female, which could serve as indepdent 28 
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replication. Additionally, the incorporation of multiple PRSs (metaPRS) with the 1 

clinical risk factors (i.e., the FRAX model) exhibited the highest predictive 2 

performance, however, the improvement was marginal in fracture prediction. 3 

Although the metaPRS could stratify individuals into different trajectories of 4 

fracture risk, the clinical risk factors played a more important role in the 5 

stratification. We further estimated the shared genetic architecture of DXA-BMD at 6 

11 sites with other common chronic diseases, including neurodegenerative diseases, 7 

cardiovascular diseases and autoimmune diseases, and we only uncovered genetic 8 

correlation and shared polygenicity between head BMD and intracranial aneurysm. 9 

And the gene PLCE1 might play important roles in the shared polygenicity. Finally, 10 

by integrating the gene expression and GWAS datasets, we prioritized drug targets 11 

(e.g. ESR1, SREBF1, CCR1 and NCOR1) within the druggable genomic genes along 12 

with their respective inhibitors/antagonists. 13 

 14 

Although previous GWAS have identified hundreds of association signals 1,2, we 15 

considered reporting five loci in this study when the associated SNPs improved at 16 

least two orders of magnitude of significance compared to the most significant SNPs 17 

within the region (position-of-reported-SNP±250 kb) in any of the previous BMD 18 

GWASs. For example, in our study, the locus (rs746100) near ABCA1 was 19 

associated with five BMD traits, including the lumbar spine, femur neck, total femur, 20 

pelvis, and trunk with the smallest P-value at 1.64×10-9. By looking back at the 21 

meta-analysis of GWAS in a relatively large sample size (N=~30,000), the SNP 22 

rs1831554 within this locus had a marginal significance for femur neck (P=9.94×10-
23 

5) and lumbar spine (P=1.41×10-4)  BMD 8. The pair-wise LD of the two lead SNPs 24 

was 0.0005. In our study, we used the individual-level genotype data within ~30,000 25 

samples, the sample size was as large as the GWAS meta-anlaysis of summary 26 

statistic data 8, but the association significance improved greatly. It is suggested that 27 

the association analysis performed in individual-level genotype data could enable a 28 
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more comprehensive power to control various factors, such as population structure, 1 

covariates, and phenotype definitions 20. Another example was the locus near the 2 

CHSY1 gene, this locus showed marginal significance (P-value=2.30×10-5 for 3 

rs3784491) in the largest-scale GWAS to date for QUS-derived heel BMD 10, the 4 

sample size was more than ten times compared to our study, however, the SNP 5 

rs12916774, with very low LD with rs3784491 (LD r2=0.005), was found to be 6 

genome-wide significantly associated with femur neck BMD in our study 7 

(P=2.14×10-9). It should be noted that QUS-derived BMD primarily reflected the 8 

bone mass at the heel calcaneus and exhibited limited correlation (0.5~0.65) with 9 

DXA-derived BMD at the spine and hip 21. Additionally, we confirmed the 10 

ZIC1/ZIC4 locus for head BMD (P=2.19×10-8) which was reported in a very recent 11 

GWAS meta-analysis 22. 12 

 13 

One of the potential applications of genetic data is disease prediction 1. Lu et al 14 

calculated the genetically predicted speed of sound (SOS, measured by quantitative 15 

ultrasound at the heel) for individuals in the UK Biobank and assessed the predictive 16 

performance of this score 11. In this study, we used three independent datasets and 17 

generated PRSs for the DXA-derived BMD at multiple skeleton sites. Our results 18 

indicated that PRSs had robust associations with incident fracture, even after 19 

adjusting for the related clinical risk factors such as age, sex, obesity, smoking, 20 

alcohol, glucocorticoid use and BMD, suggesting the independent contribution to 21 

the susceptibility of fracture. We further built metaPRS by combining multiple PRSs 22 

for DXA-BMD, heel BMD, and fracture to evaluate the potential of PRSs on 23 

fracture prediction. As expected, the metaPRS showed a larger effect size on 24 

fracture risk than fracture PRS. This improvement could be attributed to that the 25 

genetic component of this metaPRS captured the majority of the genetic basis of 26 

fracture. At baseline, we included the FRAX factors 23 in the prediction model, and 27 

only limited predictive performance was observed just as before 24. We observed an 28 
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increased C-statistic when incorporating BMD into the FRAX model. However, the 1 

addition of various PRS to the FRAX-BMD model did not substantially improve the 2 

C-statistic, suggesting that the predictive performance of PRS did not perform as 3 

well as BMD measurement itself. Additionally, the probability of fracture 4 

occurrence for those with low clinical risk and high genetic risk was yet lower than 5 

the participants with median clinical risk but low genetic risk, suggesting that the 6 

clinical risk factors played a more important role in the stratification. Lu et al 7 

suggested that the predictive performance of genetically determind SOS surpassed 8 

single clinical risk factor such as smoking, corticosteroids use and falls etc 11, but 9 

they did not test the combination of the these risk factors. Consistently, the 10 

predictive performance of PRS would not outperform BMD 11. 11 

 12 

Clinically, intracranial aneurysm (IA) is characterized by a bulge or distention of an 13 

artery in the brain due to weakness and inelasticity of the vessel wall 25. The 14 

disruption of the extracellular matrix (ECM) has been proposed as a contributing 15 

factor in the pathophysiology of IA 26. The ECM is a also salient feature of bone 16 

tissue. Bone ECM, containing minerals deposited on highly crosslinked collagen 17 

fibrils, dynamically interacts with osteoblasts and osteoclasts to regulate the process 18 

of bone regeneration 27. Given the shared histological basis of bone and vessel, the 19 

genetic correlation analysis in this study suggested that higher head BMD would 20 

associated with a lower risk of IA. This genetic association was supported by an 21 

epidemiological study that the IA risk was increased in patients with BMD in middle 22 

and lower tertiles compared with patients with BMD in higher tertile 28. Further, 23 

with conditional false discovery rate approach 29, we identified four shared signals, 24 

emphasizing the pleiotropic effect underlying BMD and IA. Two of them 25 

demonstrated evidence of colocalization (rs10832558 near SOX6 and rs11187838 26 

near PLCE1). The SNP rs10832558 was at the same effect direction for head BMD 27 

and IA, which was not consistent with the inverse genetic correlation. Here, we 28 
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highlighted the variant rs11187838 shared by BMD and IA with opposite effect 1 

direction, which had not been detected by both previous single-trait analyses. This 2 

SNP was mapped to the PLCE1 gene, encoding the enzyme phospholipase C 3 

epsilon-1. This enzyme could stimulate the Ras and mitogen-activated protein 4 

kinase (MAPK) signaling pathway through the regulation of heterotrimeric G 5 

protein Galpha 30. Ras signaling stimulated the proliferation of immature 6 

osteoprogenitor cells to increase the number of osteoblastic descendants in a cell-7 

autonomous fashion 31. Additionally, the activation of Ras/MAPK signals could 8 

stimulate the migration and proliferation of vascular smooth muscle cells through 9 

fibronectin 32. These synthetic vascular smooth muscle cells could secrete large 10 

amounts of ECM components, including collagen, elastin, and matrix 11 

metalloproteinase, causing vascular ECM remodeling 33. All these results suggested 12 

that PLCE1 might play important roles in the shared polygenicity between BMD and 13 

IA. Finally, we did not observe genetic correlations between BMD and other 14 

diseases in our study. As the global genetic correlation represented the average of 15 

genome-wide shared association, the nonsignificant global correlation might be due 16 

to opposing directions at different genomic regions34. 17 

 18 

Several pharmacological agents were available to osteoporosis patients, either by 19 

reducing bone resorption such as bisphosphonate and denosumab, or by stimulating 20 

bone formation such as teriparatide and abaloparatide 35. The fruitful GWAS 21 

discoveries in the bone field have proven useful in identifying compounds suitable 22 

for drug repurposing 36. One possible approach is to use genetic variants associated 23 

with the expression level of a gene encoding druggable human protein to proxy the 24 

lifelong exposure to a medication targeting corresponding gene production 37,38. This 25 

Mendelian randomization (MR) approach could mimic a randomized controlled trial 26 

to cost-effectively predict the treatment response of a drug 37,38. In this study, by 27 

using GWAS data and eQTL data, we prioritized several drug targets for 28 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 22, 2024. ; https://doi.org/10.1101/2024.01.18.24301465doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.18.24301465


 18

osteoporosis such as ESR1 and SREBF1, etc. The estrogen hormone therapy, 1 

targeting ESR1 protein, was an old-fashioned treatment for osteoporosis and was 2 

rarely used nowadays because of the adverse side effects such as cardiovascular 3 

conditions and cancer 39. The SREBF1 we would highlight here was the target of 4 

Doconexent (a high-docosahexaenoic acid supplement) and Omega-3 fatty acids. 5 

Daily marine omega�3 supplementation had been widely recommended in the 6 

prevention of adverse coronary events 40,41. However, the effect of this kind of fatty 7 

acid on bone health is controversial. For example, a meta-analysis of 23 randomized 8 

controlled trials did not show any significant effect of n-3 PUFA supplementation on 9 

BMD at any body’s part 42. Nevertheless, when subgroup analyses were performed, 10 

it was observed that the impact of n-3 PUFA supplementation on BMD varied 11 

across different regions 42. Specifically, individuals from Eastern countries exhibited 12 

higher BMD at the lumbar spine and femoral neck following n-3 PUFA 13 

supplementation, in comparison to individuals from Western countries 42. However, 14 

another systematic review and meta-analysis of randomized controlled trials 15 

suggested that n-3 PUFAs might have a beneficial effect on bone health, especially 16 

for postmenopausal women 43. In our study, we revealed a negative association 17 

between SREBF1 gene expression and BMD. Previous studies suggested that the 18 

supplement of omega-3 polyunsaturated fatty acid negatively regulated SREBF1 19 

44,45. And decreased expression of the SREBF1 gene could inhibit osteoclast 20 

formation and bone resorption activity by decreasing NF-κB signaling 46. Therefore, 21 

we hypothesized that the n-3 PUFA supplementation might be effective for the 22 

prevention of osteoporosis. For CCR1 antagonist, BMS-817399 failed in Phase 2, 23 

double-blind, placebo-controlled clinical trial 47, while another CCR1 antagonist 24 

(CCX354-C) has shown a good safety and tolerability profile and evidence of 25 

clinical activity in rheumatoid arthritis in Phase II trials (NCT01242917) 48. Previous 26 

animal study have shown that the activation of CCR1 leads to the formation of 27 

osteolytic lesions through the regulation of CCL3 49. 28 
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 1 

In conclusion, we conducted large-scale GWASs of DXA-derived BMD traits and 2 

identified novel signals that will likely provide new insights into the biological 3 

mechanism of osteoporosis. We demonstrated that although PRSs were 4 

independently associated with fracture risk, the predictive performance improved 5 

marginally compared to the clinical risk factors. Additionally, we uncovered a 6 

genetic correlation between head BMD and IA, and the joint associated genes such 7 

as PLCE1 might play important roles in the shared genetic basis. Finally, the 8 

prioritization of genetically-supported targets implied the potential repurposing 9 

drugs (for example the n-3 PUFA supplements targeting SREBF1) for the 10 

prevention of osteoporosis. 11 

  12 
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Materials and methods 1 

Source of the phenotypes and quality control of the genotype 2 

As we used before 50-52, the individual-level data from the UK biobank (Application 3 

41376) was used for discovery analyses. The UK Biobank is a cohort of roughly 4 

~500,000 participants aged 40-69 years, of which, 487,409 participants were 5 

genotyped with the UK Biobank Axiom or UK UKBiLEVE Array, and then 6 

imputed by the 1000 Genomes Project (Phase 3) reference panel 53,54. Ethics 7 

approval for the UK Biobank research was obtained from the North West 8 

Multicentre Research Ethical Committee, and all participants provided informed 9 

consent (original ethics committee approval number: 21/NW/0157). In this study, 10 

we extracted BMD traits measured by dual-energy X-ray (DXA) from 11 anatomical 11 

sites (i.e., arm, total femur, femoral neck, head, legs, lumbar spine, pelvis, ribs, spine, 12 

trunk, and total body) and fracture as phenotypes (Figure 1A and Supplementary 13 

Table 21). The fracture cases were defined as participants with the diagnosis of any 14 

site of fracture (except fractures with known primary diseases and those with 15 

diseases that might affect bone health) (Supplementary Table 21). To minimize the 16 

population stratification bias, we further excluded participants who were not of 17 

European ancestry (Supplementary Table 21), and those who had a kinship with 18 

any participants. For quality control of genotype data, the variants were excluded if 19 

the minor allele frequency (MAF) < 0.01, imputation info score < 0.3, missing 20 

genotype rates > 0.05, and P-value for Hardy–Weinberg equilibrium test < 1 × 10-6. 21 

After the quality control, a total of 5,996,792 imputed variants and around ~30,000 22 

participations (Figure 1A and Table 1) remained for BMD GWAS analysis, as well 23 

as 352,791 participants (N=35,192 for cases; N=317,599 for controls) for fracture 24 

GWAS (Figure 1A and Table 1). 25 

 26 
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Genetic association analysis of BMD and fracture 1 

To identify the genetic variants associated with BMD at a genome-wide significant 2 

level (P ≤ 5×10-8), we conducted the GWAS analyses on BMD traits at 11 skeletal 3 

sites. For BMD at each site, the values (g/cm2) were stratified by sex, and then 4 

adjusted for age, age2, weight, menopause status (only for females), and first 5 5 

principal components using linear regression. The standardized residuals (mean=0 6 

and sd=1) in males and females (i.e., standardized BMD) were used in the GWAS 7 

analyses. The associations between genetic variants with phenotypes (i.e., 8 

standardized-BMD at 11 skeletal sites) were analyzed using the PLINK software 9 

(http://www.cog-genomics.org/plink2/). We then combined the summary statistics 10 

of the two sexes by an inverse variance weighted fixed effects meta-analysis, using 11 

the METAL software 55. We also analyzed the association between genetic variants 12 

and fracture risk, adjusting for sex, age, weight, and the first 5 principal components 13 

using the PLINK software. The lead SNP of novel loci with P-value from sex-14 

stratified GWASs less than 0.05 were considered to be replicated. 15 

 16 

Identification of statistical independence and novel loci 17 

The conditional independent signals for each BMD trait (between-sex meta-analysis) 18 

were defined using the conditional and joint (COJO; gcta --cojo-slct) analysis56. 19 

10,000 randomly selected unrelated white British individuals from the UK Biobank 20 

were used as linkage disequilibrium (LD) references. The conditional independent 21 

SNV for each signal was defined as the SNV with both P-value for original GWAS 
22 

and P-value for COJO joint analyses less than 5 ×10-8. Among these independent 23 

signals, the association was classified into the “novel” signal if all SNPs within one 24 

signal (conditional independent SNV ± 250 kb) have not been reported to be 25 

significantly associated with BMD (P<1×10-6) in previous BMD GWASs 8,10,57. 26 

Across 11 BMD traits, the identified conditional independent significant SNVs were 27 

merged into one locus if they were closely located to each other (<500 kb), leaving 28 
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the SNP with the smallest P-value as the lead SNP. The pleiotropic genomic locus 1 

was defined as a genomic locus containing multiple conditional independent signals 2 

for different BMD traits. 3 

 4 

Variant annotation 5 

We then used the ANNOVAR software 58, and Functional Mapping and Annotation 6 

of Genome-wide Association Studies (FUMA, https://fuma.ctglab.nl/)59, as well as 7 

Online Mendelian Inheritance in Man database (OMIM, http://omim.org/) 60, to 8 

obtain functional annotation for conditional independent significant SNVs. 9 

Specifically, these SNVs were first physically annotated using ANNOVAR software. 10 

Based on the FUMA website, we further obtained the eQTL and chromatin 11 

interaction annotation results. We selected eQTL datasets from eQTLGen 12 

Consortium and five tissue types (i.e., artery tibial, whole blood, and muscle-skeletal) 13 

based on the Genotype-Tissue Expression project (GTEx v8), and long-range 14 

interactions (Hi-C) dataset from GSE87112 (Mesenchymal stem cell). Additionally, 15 

we performed the gene map search in OMIM dataset using ‘(OSTEOPOROSIS OR 16 

“bone fragility” OR “fragile bones” OR “bone mineral density”)’ to obtain gene list 17 

for BMD phenotype. For each physical annotated genes, we collected corresponding 18 

evidence codes from the above datasets (p for physical annotation; e for eQTL 19 

annotation; h for HiC annotation; o for OMIM results). 20 

 21 

Integrating polygenic risk score with clinical risk score for risk stratification of 22 

fracture 23 

Training, validation, and test datasets 24 

We evaluated the potential clinical utility of polygenic risk scores (PRSs) for 25 

fracture incidence combined with traditional clinical risk factors. Here, two training 26 

datasets were set in the analyses for DXA-derived BMD (training dataset 1) and heel 27 

BMD/fracture (training dataset 2), respectively (Figure 3A). The training dataset 1 28 
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was derived from the aforementioned DXA-derived BMD GWAS. Additionally, all 1 

fracture cases (N=35,192) and controls (N=317,599) from the UK biobank were 2 

randomly divided into three distinct datasets: training dataset 2 (N=171,459 for 3 

controls, N=19,363 for cases), validation (N=73,070 for controls, N=7914 for cases), 4 

and test (N=73,070 for controls, N=7915 for cases). These divisions were conducted 5 

according to a ratio of 2:1:1. Following this, both heel BMD GWAS and fracture 6 

GWAS analyses were performed utilizing the aforementioned GWAS pipeline in 7 

training dataset 2 (Figure 3A). 8 

 9 

Generation of polygenic risk scores (PRSs) 10 

Based on GWAS summary statistics from 13 traits (i.e., 11 DXA-derived BMD 11 

traits, heel BMD and fracture) in training datasets, we then used the PRSice 2 12 

software 61 to implement the clumping and threshold approach for developing PRSs 13 

for fracture in the validation dataset (Figure 3A). The best predictive PRSs were 14 

assessed for transferability and predictivity through the P-values and Nagelkerke R2 15 

in logistic model implemented in PRSice 2 software 61, which corrected for age, sex, 16 

weight and population stratification (first five principal components). After 17 

obtaining the P-values threshold for the best predictive PRS from the validation 18 

dataset, we calculated the corresponding PRS for each participant in the test dataset 19 

(Figure 3A). 20 

 21 

Generation of metaPRS 22 

To generate a combined PRS (i.e., metaPRS), we first removed the 4,248 23 

participants with fracture history at the baseline to generate a validation cohort 24 

dataset (N=72,648 controls; N=4,088 cases) (Figure 3A). Based on this validation 25 

cohort dataset, we included all 13 PRSs and conducted stepwise Cox regression in 26 

the validation cohort dataset, which could automatically select a reduced number of 27 

predictor variables for building the best-performing Cox regression model. 28 
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Accordingly, we computed the metaPRS by summation of single PRS (which were 1 

contained in the best-performing model), weighted by beta value from stepwise Cox 2 

regression. 3 

 4 

Prediction fracture risk 5 

In this analysis, based on test datasets, we further removed the participants with 6 

fracture history at the baseline, leaving 76,613 participants as the test cohort datasets 7 

for fracture (N=72,629 controls; N=3,984 cases) (Figure 3A). We first generated a 8 

basic FRAX-BMD model including clinical risk factors from FRAX tools [i.e., sex 9 

(categorical: male and female), age (continuous: years), obesity (categorical: 1st, 10 

BMI ≤20; 2nd, 20<BMI≤25; 3rd, 25<BMI≤30; 4th, 30<BMI≤35; 5th, 35<BMI≤40;6th, 11 

40<BMI≤45; 7th, BMI>45), current smoking (categorical: yes and no), current 12 

alcohol consumption (categorical: yes and no), and glucocorticoids medicine use 13 

(categorical: yes and no)] and heel BMD (Supplementary Table 21). Using Cox 14 

regression for fracture, we obtained the predicted values based on the basic FRAX-15 

BMD model in the test dataset. We then employed C-statistic as a quantitative 16 

measure to evaluate the accuracy of the basic FRAX-BMD model using these 17 

predicted values in the same dataset. Additionally, we quantify the variations in 18 

discriminative power when integrating various PRSs into the basic FRAX-heel 19 

BMD model (FRAX-heel BMD PRS model). Specifically, for each type of PRS (i.e., 20 

heel BMD, 11 DXA-BMD, fracture and metaPRS), we performed a multiple Cox 21 

regression for fracture adjusting for age, sex, obesity, smoking, alcohol, 22 

glucocorticoids medicine use, heel BMD, and population stratification (the first five 23 

principal components). Based on these predicted values, C-statistics and net 24 

reclassification improvement (NRI) were used to estimate the improvement in 25 

discrimination and reclassification after adding the various PRSs to the basic FRAX-26 

BMD model. The C-statistics change was calculated by (C-statisticsFRAX-heel BMD PRS 27 

model- C-statisticsFRAX-heel BMD model)/(C-statisticsFRAX-heel BMD model-0.5)*100%. The 28 
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difference of C-statistics from various FRAX-heel BMD PRS models were 1 

estimated based on student t-test using cindex.comp function from “survomp” R 2 

package. The optimal cutoff point, which was obtained from the FRAX-BMD 3 

metaPRS model, was utilized to calculate NRI. 4 

 5 

Additionally, to visualize the cumulative incidence of incident fractures across 6 

polygenic risk categories (i.e., low (bottom quartile), intermediate (the second to the 7 

third quartile), and high (top quartile) polygenic risk categories according to the 8 

quintiles of the metaPRS), we employed the “survminer” R package in the test 9 

cohorts consisting of time-to-fracture information and corresponding fracture events 10 

as well as polygenic risk categories. We also utilized the ‘cuminc’ function to 11 

calculate the cumulative incidence curves. Based on the survfit function from 12 

“survomp” R, we estimated the 10-year absolute fracture risk, and then assessed the 13 

interplay of metaPRS and the clinical risk score (from the basic FRAX-heel BMD 14 

model) in impacting the risk of fracture. 15 

 16 

Shared genetic basis of BMD and common chronic diseases 17 

Genetic correlation and polygenic overlap 18 

In this study, we first estimated the phenotypic correlation between 11 DXA-derived 19 

BMD traits (i.e., arms, femur neck, total femur, head, leg, lumbar spine, pelvis, rib, 20 

spine, total body and trunk BMD) using spearman correlation. We then supplied the 21 

genetic correlation among them using GCTA software, considering the sample 22 

overlap. Additionally, we performed linkage disequilibrium score regression 23 

(LDSC) analyses 62, based on 1000 Genomes Project European panel, to assess the 24 

genome-wide genetic correlation (rg) between DXA-BMD and 13 selected common 25 

chronic diseases, including neurodegenerative diseases (Alzheimer's disease, 26 

Parkinson's disease, amyotrophic lateral sclerosis and multiple sclerosis) 63-66, 27 

cardiovascular diseases (stroke, intracranial aneurysm, atrial fibrillation, coronary 28 
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artery disease and heart failure) 67-71 and autoimmune diseases (rheumatoid arthritis, 1 

systemic lupus erythematosus and inflammatory bowel diseases) 72-74. For BMD 2 

phenotypes with statistically significant genetic correlation, we supplied the 3 

bivariate causal mixture model (MiXeR) to quantify the polygenic overlap between 4 

BMD and selected chronic diseases beyond genetic correlations 29. For a pair of 5 

phenotypes, MiXeR estimated the number of trait-influencing SNPs (i.e., SNPs with 6 

effects on the disease not inducted by LD) for each trait and the number of shared 7 

trait-influencing SNPs based on a bivariate Gaussian mixture model 29. 8 

 9 

Discovery of the shared risk loci 10 

To discover the pleiotropic genetic variants, we performed conditional/conjunctional 11 

false discovery rate (condFDR/conjFDR) analysis using genetic summary statistics. 12 

We limited our analysis to BMD phenotypes that have evidence to support the 13 

shared genetic architecture with common chronic diseases. Based on an empirical 14 

Bayesian statistical framework, in the condFDR method, the association between 15 

variant and secondary phenotype was used to re-ranks the test statistics and re-16 

calculate the association of this variant with primary phenotype 75,76. The conjFDR 17 

is determined as the maximum of two condFDR values, which provides a 18 

conservative estimate of the posterior probability that a genetic variant showed 19 

association with either trait 75,77. In this study, the shared genetic variants were 20 

defined as variants with conjFDR <0.05. For these identified risk loci with shared 21 

effects, we further used the “coloc” R package to determine whether the association 22 

signals for DXA-derived BMD and common chronic diseases would co-localize at 23 

the shared loci. After extracting genetic association estimates for variants within 24 

250kb of the lead SNP, the probability of H4 that the two traits share one causal 25 

variant were calculated. The loci with a probability of H4>0.5 were considered to 26 

colocalize 78. 27 

 28 
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Genetic-driven prioritization of drug targets 1 

The therapeutic target lists were obtained from the ChEMBL database (release 29), 2 

which curates the drug information from multiple sources (e.g., United States 3 

Adopted Name applications, ClinicalTrials.gov, and FDA Orange Book database) 79. 4 

Specifically, based on the targets search results, the proteins with values of activity 5 

term ≤ 100 and organisms from homo sapiens remained. Accordingly, a total of 6 

3,329 unique druggable genes that encode human target proteins with ENSG ID for 7 

approved drugs or clinical candidates were retained in the following analyses 8 

(Supplementary Table 22). 9 

 10 

We then conducted a series of bioinformatic analyses [i.e., summary-based 11 

Mendelian randomization (SMR) and colocalization] to identify prioritized putative 12 

druggable genes for BMD treatment. First, we assessed whether the potential 13 

genetically regulated expression level of druggable genes were associated with 14 

DXA-BMD using SMR 80. In SMR analyses, the genetic variants were used as 15 

instrumental variables to link the outcome (i.e., DXA-BMD) via the exposure of 16 

interest (i.e., the expression level of candidate gene). And the instrumental variables 17 

were extracted from the cis-eQTLs in three tissues (i.e., muscle, artery tibial, and 18 

whole-blood tissues) from GTEx version 8 projects 81 and from eQTLGen 19 

consortium (whole blood) 82. Linkage clumping was conducted based on default 20 

protocols. For each DXA-dervied BMD phenotype, the SMR results of the 21 

druggable genes were retained with false discovery rate (FDR)-corrected 22 

significance (FDR-corrected PSMR<0.05 and PHEIDI>0.05) . Among genes with SMR 23 

evidence, we further assessed whether the eQTL and DXA-dervied BMD 24 

association signals would co-localize at shared loci (i.e., the probability of H4). 25 

Specifically, after extracting genetic association estimates of eQTL and DXA-26 

dervied BMD traits with variants within 250kb of the lead SNP, colocalization 27 

analyses were performed. The genes with a probability of H4>0.5 were considered 28 
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to colocalize 78. The drug information of genes with SMR evidence was obtained 1 

from the GeneCards website (https://www.genecards.org), which collected 2 

information from DrugBank, ApexBio, DGIdb, ClinicalTrials.gov, and/or 3 

PharmGKB. 4 
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Figure legends 1 

 2 

Figure 1 Genetic architecture of DXA-BMD at multiple skeletal sites. (A) the 3 

skeletal sites of 11 DXA-derived BMD traits and the GWAS study design; (B) the 4 

associated genetic loci for DXA-derived BMD and fracture;  5 

Abbreviations: DXA, dual-energy X-ray absorptiometry; BMD, bone mineral 6 

density; GWAS, genome-wide association study. 7 

 8 

Figure 2 Forest plot of the genetic association estimates of lead SNPs (A: rs746100; 9 

B: rs10840273; C: rs12916774; D: rs6013897; E: rs927059) of novel loci with 10 

corresponding BMD traits in female GWASs and male GWASs as well as GWAS 11 

meta-analyses of both sexes, along with the result from Mendelian randomization 12 

analyses. 13 

Abbreviations: BMD, bone mineral density; eQTL, expression quantitative trait 14 

locus; IVW, inverse variance weighted; GWAS, genome-wide association study; 15 

pQTL, genotype–protein association; SMR, summary-based Mendelian 16 

randomization. 17 

 18 

Figure 3 PRS demonstrated marginal improvement in fracture prediction. (A) study 19 

design; (B) Forest plot of the association of each PRS with fracture risk, adjusting 20 

for age, sex, obesity, smoking, alcohol, glucocorticoids medicine use, heel BMD, 21 

and population stratification (the first five principal components); (C) The fracture 22 

predictive results of three models. The FRAX model included clinical risk factors 23 

from FRAX tools [i.e., sex, age, obesity, current smoking, current alcohol 24 

consumption, and glucocorticoids medicine use]. For the FRAX-heel BMD model, 25 

heel BMD was integrated with on the FRAX model. For the FRAX-heel BMD 26 

metaPRA model, metaPRS was integrated into the FRAX-heel BMD model; (D) 27 

The lifetime and 10-year probability of fracture occurrence across metaPRS 28 

categories within each clinical risk strata. 29 

Abbreviations: PRS, polygenic risk score 30 

 31 

Figure 4 The shared genetic architecture of head BMD and intracranial aneurysm. 32 

(A) heatmap of genetic and phenotypic correlation between 11 DXA-derived BMD; 33 

(B) the genetic correlations of head BMD with 13 common chronic diseases; (C) 34 

Venn diagrams of shared variants between head BMD and intracranial aneurysm, 35 

and unique variants per trait; (D) Shared loci between head BMD and intracranial 36 

aneurysm. Common genetic variants jointly associated with head BMD and 37 

intracranial aneurysm at conjFDR < 0.05 were highlighted in red. (E) Forest plot of 38 

the genetic association estimates of four joint-associated variants with head BMD 39 

and intracranial aneurysm. 40 

Abbreviations: BMD, bone mineral density. 41 
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Figure 5 Prioritization of drug targets. (A) the result of four genes with mendelian 1 

randomization evidence. The red downward triangle indicates that genetically 2 

predicted expression level of this gene is negatively correlated with BMD, while the 3 

blue upward triangle indicates a positive association for BMD; (B) Forest plot of the 4 

association of genetically predicted SREBF1, CCR1, NCOR1 and ESR1 gene 5 

expression with BMD, based on summary-based mendelian randomization analyses; 6 

(C) colocalization results of GWAS and eQTL within SREBF1, CCR1, NCOR1 and 7 

ESR1 gene regions; (D) the drug development status of SREBF1, CCR1, NCOR1 8 

and ESR1 genes. 9 

Abbreviations: BMD, bone mineral density; eQTL, expression quantitative trait 10 

locus; GWAS, genome-wide association study. 11 
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Table 1 the detailed information on genome-wide association studies of 11 bone mineral density sites. 

Phenotype Sample size 
Conditional independent signals 

Heritability 
Known  Novel Total 

Single BMD phenotype 
     

Head BMD 31986 69 0 69 0.418 (0.045) 
Arm BMD 31873 34 0 34 0.321 (0.039) 
Femoral neck BMD 32017 36 4 40 0.257 (0.029) 
Femur total BMD 31873 41 3 44 0.319 (0.030) 
Leg BMD 31873 43 1 44 0.320 (0.034) 
Lumbar spine BMD 30449 40 1 41 0.363 (0.034) 
Pelvis BMD 31873 48 1 49 0.351 (0.036) 
Rib BMD 31873 22 0 22 0.298 (0.030) 
Spine BMD 31986 37 0 37 0.353 (0.034) 
Total BMD 31986 61 0 61 0.379 (0.039) 
Trunk BMD 31873 45 1 46 0.360 (0.036) 

All BMD-related phenotypes \ 476 (232 unique) 11 (8 unique) 487 (240 unique) \ 
Fracture 352,791 8 0 8 0.048 (0.007) 

(N=35,192 for cases; 
N=317,599 for controls) 

Acorss phenotypes \ 87 5 92 \ 

 1 
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Femur total BMD
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Total BMD

Trunk BMD
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Spine BMD

Pelvis BMD

ABCA1
       (pe)

SWAP70 
(peh)

CHSY1 
(peh)

PAX1 
   (pe)

CYP24A1 
(ph)

Fracture

Head BMD
Rib BMD
Arm BMD

Lumbar spine BMD

Spine BMD

Femur neck BMD
Femur total BMD

Trunk BMD
Total BMD

Pelvis BMD

Leg BMD

Other sites:

GWAS on 11 DXA-BMD (N≈30,000) 
and fracture (N=35,192 for cases; N=317,599 for controls)

Conditional analyses (--cojo-slct)

91 unique and independent BMD-related loci, 
including 5 novel signals

8 fracture signals

Variant annotation using Mult-omics datasets
Physical annotation (ANNOVAR software); 

eQTL annotation (FUMA website); 
Hi-C annotation (FUMA website); 

OMIM results

The association of gene expression with traits
Mendelian randomization

Summary-based Mendelian randomization

Five potential candidate genes (i.e., ABCA1, CHSY1, CYP24A1, SWAP70, and PAX1) to five novel loci

Two sex-specific loci
(female-specific BMD-related loci: rs45446698, CYP3A7;
male-specific BMD-related loci: rs24140698, CYP19A1)

Heterogeneity test for variant-trait associations across males 

A
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Exposure Outcome
Conditional independent SNP: rs1039406 (9:107748958) for allele T

Method beta (se) P-value

Conditional independent SNP: rs746100 (9:107749051) for allele C

ABCA1 gene expression in whole blood tissue from eQTLGen

Conditional independent SNP: rs10840273 (11:9642451) for allele T

SWAP70 gene expression in whole blood tissue from eQTLGen
Circulating SWAP70
Circulating SWAP70

Conditional independent SNP: rs12916774 (15:101710165) for allele A

Conditional independent SNP: rs11630618 (15:101710434) for allele T

Conditional independent SNP: rs927059 (20:21914194) for allele T

PAX1 gene expression in whole blood tissue from eQTLGen

Conditional independent SNP: rs35194449 (20:52742047) for allele C

Conditional independent SNP: rs6013897 (20:52742479) for allele T
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A  Lead SNP for loci across 11 BMD trait signals: rs746100, Canddidate gene: ABCA1

-0.1 0 0.1 0.2 0.3

Exposure Outcome Method beta (se) P-value

B  Lead SNP for loci across 11 BMD trait signals: rs10840273, Canddidate gene: SWAP70

Exposure Outcome Method beta (se) P-value

C  Lead SNP for loci across 11 BMD trait signals: rs12916774, Canddidate gene: CHSY1
-0.1 0 0.1 0.2 0.3

-0.1 0 0.1 0.2 0.3

Exposure Outcome Method beta (se) P-value

E  Lead SNP for loci across 11 BMD trait signals: rs927059, Canddidate gene: PAX1

-0.1 0 0.1 0.2 0.3

Exposure Outcome Method beta (se) P-value

D  Lead SNP for loci across 11 BMD trait signals: rs6013897, Canddidate gene: CYP24A1
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PRSice2 software
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Polygenic risk score demonstrated marginal improvement in fracture prediction
Cumulative incidence of incident fractures across 

polygenic risk categories
Survminer R package
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across polygenic and clinical risk categories

Survomp R package
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Providing the data for the analyses results
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combination

Providing the 13 polygenic risk score for fracture
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Test cohort dataset
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(N=4088 for cases;

 N=72,648 for controls)

Training dataset 2
Fracture GWAS; Heel BMD GWAS
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