Abstract
Oncology therapeutic development continues to be plagued by high failure rates leading to substantial costs with only incremental improvements in overall benefit and survival. Advances in technology including the molecular characterisation of cancer and computational power provide the opportunity to better model therapeutic response and resistance. Here we use a novel approach which utilises Bayesian statistical principles used by astrophysicists to measure the mass of dark matter to predict therapeutic response. We construct “Digital Twins” of individual cancer patients and predict response for cancer treatments. We validate the approach by predicting the results of clinical trials. Better prediction of therapeutic response would improve current clinical decision-making and oncology therapeutic development.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This work was supported by Innovate UK [grant number 50074].
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The human data used in this study is in whole or part based upon public data generated by the TCGA Research Network.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Data Availability
All data produced in the present study are available upon reasonable request to the authors