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ABSTRACT

Background. During infectious disease outbreaks, humans often base their decision to adhere to an intervention strategy on
their personal opinion towards the intervention, perceived risk of infection and intervention effectiveness. However, due to data
limitations and inference challenges, infectious disease models usually omit variables that may impact an individual’s decision
to get vaccinated and their awareness of the intervention’s effectiveness of disease control within their social contacts as well
as the overall population.
Methods. We constructed a compartmental, deterministic Susceptible-Exposed-Infectious-Recovered (SEIR) disease model
that includes a behavioural function with parameters influencing intervention uptake. The behavioural function accounted
for an initial subpopulation opinion towards an intervention, their outbreak information sensitivity and the extent they are
swayed by the real-time intervention effectiveness information (at a subpopulation- and population-level). Applying the model to
vaccination uptake and three human pathogens - pandemic influenza, SARS-CoV-2 and Ebola virus - we explored through
model simulation how these intervention adherence decision parameters and behavioural heterogeneity in the population
impacted epidemiological outcomes.
Results. From our model simulations we found that differences in preference towards outbreak information were pathogen-
specific. Therefore, in some pathogen systems, outbreak information types at different outbreak stages may be more informative
to an information-sensitive population and lead to less severe epidemic outcomes. In both behaviourally-homogeneous and
behaviourally-heterogeneous populations, pandemic influenza showed patterns distinct from SARS-CoV-2 and Ebola for
cumulative epidemiological metrics of interest. Furthermore, there was notable sensitivity in outbreak size under different
assumptions regarding the population split in behavioural traits. Outbreak information preference was sensitive to vaccine
efficacy, which demonstrates the importance of considering human behaviour during outbreaks in the context of the perceived
effectiveness of the intervention.
Implications. Incorporating behavioural functions that modify infection control intervention adherence into epidemiological
models can aid our understanding of adherence dynamics during outbreaks. Ultimately, by parameterising models with what
we know about human behaviour towards vaccination (and other infection control interventions) adherence, such models can
help assist decision makers during outbreaks. Such progress will be particularly important for emerging infectious diseases
when there is initially little information on the disease dynamics and intervention effectiveness.

Introduction 1

Human behaviour is undoubtedly a driving force of pathogen spread during infectious disease outbreaks. Intervention adherence, 2

government policy, misinformation, travel restrictions and alterations to contact patterns can all impact how the outbreak 3

develops [1, 2, 3]. The COVID-19 pandemic provides a recent and notable example of the effects of behavioural heterogeneity. 4

Misinformation played a large role in many countries and amongst online social networks, especially in the early stages of the 5

pandemic and in individual-level decisions to vaccinate [4, 5, 6]. In an epidemiologically-ideal scenario lockdowns would have 6

perfect adherence, vaccines would be available on the first day of an emerging disease outbreak and the infections would die 7

out. However, this is not a reflection of reality. Our epidemiological reality is a reflection of the decisions and choices human 8

populations make, which may be based on a plethora of factors such as susceptibility to severe infection, vulnerable relatives 9

or close contacts, moral beliefs, intervention accessibility and cost of infection. Its complex nature often requires models of 10

infectious disease dynamics to make assumptions about behaviour that can lead to appreciable differences between epidemic 11

models and what we observe in reality [7]. 12
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Variation between individuals in their behavioural response to infections has been evident for several pathogens of human 13

health concern. For influenza, since many individuals and age-groups are not susceptible to severe infection, behaviours 14

that may be most pressing include lockdown fatigue and vaccination adherence [8, 9, 10]. In the context of Ebola outbreak 15

resurgences in the Democratic Republic of the Congo (DRC) in recent years, especially 2018, Vinck et al. 2019 identified low 16

trust in government institutions in the region and widespread belief in misinformation regarding Ebola virus [11]. Throughout 17

the COVID-19 pandemic, individuals have expressed their opinions, virtually and in-person, on intervention strategies such as 18

broad scale lockdown, mask mandates and vaccine campaigns [4, 12]. More generally, individuals can be influenced by ideas 19

such as vaccine hesitancy, the beliefs of social contacts or personal vulnerability due to existing health concerns [13, 14, 15] 20

Given that intervention adherence is desirable, efforts towards influencing collective opinions are often a goal of public 21

health officials [4, 16, 17]. However, collective opinions can also be in opposition to the intervention strategy. For instance, 22

human behaviours and thought processes may vary drastically regarding vaccination campaigns compared with social distancing 23

requirements [18]. Understanding how and when these opinions and subsequent behaviours shift is essential in developing 24

impactful public health campaigns and interventions. 25

There is therefore a myriad of information that is being encountered amongst the population. A prior review by Funk et al. 26

2010 categorised the source of information into two types: ‘local’ information and ‘global’ information [19]. Local information 27

corresponds to information originating from an individual’s social neighbourhood (sub-population). Global information 28

corresponds to publicly available information. A valuable methodological development in infectious disease modelling would 29

be reliably capturing real-time changes in opinions towards disease control strategies as well as real-time disease prevalence. It 30

is anticipated these integrated epidemiological-behavioural dynamics can help enhance the robustness of modelling findings 31

provided to decision makers in the public health sector [20, 21, 22]. 32

Nonetheless, due to data limitations and inference challenges, behavioural dynamics are often omitted or, when key aspects 33

are included, they are usually simplified [19, 23, 24, 25, 26]. One such example is intervention adherence, such as vaccine 34

uptake rate for a vaccination programme. Modellers may make the assumption of a fixed vaccine uptake rate, but omitted 35

variables that may impact an individual’s decision to get vaccinated include their initial opinion on the intervention strategy, the 36

cost to the individual to adopt the intervention and their awareness of the intervention’s effectiveness of disease control within 37

their social contacts as well as the greater population [27]. Given human decision-making in response to infectious disease 38

outbreaks can be influenced by multiple factors, there is a need to develop mathematical models of infectious disease dynamics 39

that explicitly incorporate such mechanisms. 40

In this study, we highlight three key human behaviours relevant to decisions to adhere to intervention strategies: (i) their 41

initial preference towards the intervention (and perceived risk of infection); (ii) their outbreak information sensitivity; and (iii) 42

the extent they are swayed by real-time intervention effectiveness information (from both ‘local’ and ‘global’ information 43

perspectives). We detail our construction of a compartmental, deterministic SEIR-type disease model that explicitly features the 44

three aforementioned intervention adherence decision making considerations. Applied to vaccination uptake and three human 45

pathogens - pandemic influenza, SARS-CoV-2 and Ebola virus - we explored through model simulation how these intervention 46

adherence decision parameters and behavioural heterogeneity in the population impacted epidemiological outcomes. Our 47

simulation-based study revealed how the data stream informing the real-time perception of vaccine effectiveness (either cases 48

deaths or deaths based) that would result in minimising public health burden can differ between pathogens. Furthermore, there 49

was notable sensitivity in outbreak size under different assumptions regarding the population split in behavioural traits. It is 50

therefore important that consideration is given to behavioural heterogeneity to intervention adherence in the population, and the 51

explicit factors that influence intervention adherence, to enable improved insights into potential epidemic impacts in future 52

infectious disease outbreaks. 53

Methods 54

Our methodological approach involved developing a model of infectious disease dynamics that compartmentalised the 55

population (into subpopulations) by vaccination status and behavioural traits. We investigated the implications on infection 56

dynamics of varying levels of vaccine opinion and information sensitivity, for ‘local’ (subpopulation-level) and ‘global’ 57

(population-level/public) information about vaccine effectiveness, for three pathogens of public health concern: pandemic 58

influenza, SARS-CoV-2 and Ebola. We selected these three pathogens as vaccines have been developed for each one, whilst 59

they also exhibit distinctive epidemiological traits with regards to spreading potential in an immunologically naïve population 60

(i.e. basic reproduction number) and infection fatality rate. It should be noted that we refer to pandemic influenza rather than 61

seasonal influenza given our assumption of a vaccine-naïve population. 62

By exploring underlying disease parameters representative of three different human pathogens, we sought to capture the 63

variability in epidemiological severity in different pathogen systems and behavioural structures. We felt this to be particularly 64

pertinent as studies that have previously explored human behaviour during outbreaks often focus on a single pathogen 65

system [4, 8, 28]. Our methodology comprised multiple aspects that we detail in turn: (i) the base mathematical model of 66
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Table 1. Disease parameter estimates for pandemic influenza, SARS-CoV-2 and Ebola. Parameters without references
were assumptions made for the purposes of this study. β was derived from estimates of R0 and γ .

Parameter Description Estimate

Pandemic influenza SARS-CoV-2 Ebola

R0 Basic reproduction number 1.5 [29] 3 [30] 2 [31]
β Transmission 0.3 0.43 0.29
σ Rate of progression to infectious disease 0.5 [32] 0.2 [33] 0.5 [31]
γ Recovery rate (rate of recovery or death) 0.2 [32] 0.14 [33] 0.14 [31]

m
Probability of unvaccinated death due
to infection (instead of recovery) 1x10−4 [34] 6.38x10−3 [35] 3.9x10−1 [36]

infectious disease transmission and pathogen disease history; (ii) definition of our behavioural functions that mechanistically 67

modulated the vaccine uptake rate; (iii) pathogen-specific model parameterisation; (iv) computational simulations to numerically 68

evaluate the scenarios of interest. 69

Mathematical model of pathogen disease history and transmission dynamics 70

Disease history 71

To simulate the infection dynamics and encapsulate the disease history of the three selected human pathogens (pandemic 72

influenza, SARS-CoV-2, Ebola), our model foundation was a deterministic, compartmental Susceptible-Exposed-Infectious- 73

Recovered (SEIR) model. Infected individuals had a latent period, with a duration of σ−1 days, followed by an infectious 74

period, with a duration of γ−1 days. Infectious individuals could then die or recover, which in the absence of interventions were 75

allocated by proportions m and (1−m) respectively. Each of these parameters were pathogen-specific. For the purposes of this 76

study, we did not include demographic processes (births and natural deaths) in our model as the timescales of the simulated 77

outbreaks were short (less than a decade). With the behavioural complexities being the focus of our study, to simplify the model 78

we also chose not to include age-stratification. That being said, we acknowledge the inclusion of demographic processes and 79

age-stratification as viable extensions of the model. We give further remarks on the potential implications of the inclusion of 80

these processes and attributes in the Discussion. 81

Vaccination and behaviour stratification 82

We further stratified the population by two additional attributes. The first attribute was vaccination status, with u and v subscripts 83

denoting unvaccinated and vaccinated classes, respectively. The second attribute was behavioural grouping, with i subscripts 84

indicating a subgroup with unique behaviour-associated attributes. As a modelling simplification, we assumed no movement 85

between behavioural subpopulations. We also assumed that no other control measures were used except for vaccination. These 86

model assumptions enabled us to focus on the epidemiological impacts of vaccine beliefs and sensitivity to outbreak information 87

within subgroups. We acknowledge these assumptions could be relaxed, with further remarks given in the Discussion. 88

Implementation of vaccination 89

Considering collectively disease status, vaccination status and behavioural group, within our model we defined the following 90

unvaccinated compartments (visualised in (Fig. 1)): susceptible (Su,i), exposed (Eu,i), infectious (Iu,i), recovered (Ru,i), 91

hospitalised (Hu,i) or deceased (Du,i). The vaccinated compartments were similarly defined: susceptible (Sv,i), exposed (Ev,i), 92

infectious (Iv,i), recovered (Rv,i), hospitalised (Hv,i) or deceased (Dv,i). Only unvaccinated individuals in the susceptible, exposed, 93

and recovered classes could move to the respective vaccinated classes. Note that the compartments corresponded to the absolute 94

numbers in each disease and vaccination state. 95

For intervention-adherent individuals who received the vaccination, we assumed a dual ‘leaky’ vaccination action of being 96

infection blocking and reducing severe outcomes. For the purposes of this study, we also assumed the vaccine had the same 97

efficacy, ε , for each action and that the effects were gained instantaneously once vaccinated (i.e. there was no delay in the 98

relevant level of protection being induced post the vaccine being administered). On each new day of the outbreak, the daily 99

vaccine uptake rate, νi (t), was updated according to the implementation of the behavioural function. We ceased vaccination 100

when the number of individuals eligible for vaccination was close to zero (below 10) for the purposes of reducing the time 101

duration of simulations. See Table 1 for a summary of parameter notation. 102
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Sui Eui Iui Rui

Hui Dui

Svi Evi Ivi Rvi

Hvi Dvi

λ σ (1−m)γ

mγ

tD

(1− εs)λ σ (1−m(1− εm))γ

m(1− εm)γ

tD

νi (t) νi (t) νi (t)

Unvaccinated

Vaccinated

Figure 1. Representation of the underlying disease model with vaccination and time- and behaviour-dependent vaccine
uptake, ννν iii (ttt). Solid arrows show the flow of individuals between compartments. Dashed arrows indicates the time lags from
hospitalisation to reported death, tD. Boxes contain the transition rates between compartments. The subscript i denotes the
behavioural group, which in our case is determined by vaccine opinion ρ . The subscript u denotes unvaccinated individuals and
the subscript v denotes vaccinated individuals. λ is the force of infection, σ is the rate of progression from the exposed state to
the infectious state, γ is the rate of recovery from the infectious state and m is the infection fatality probability. εs represents the
vaccine efficacy for infection blocking and εm represents the vaccine efficacy for reducing severe disease outcomes. νi (t)
represents the daily vaccine uptake rate. More information about the model equations and parameter estimates can be found in
Equation (1) and Table 1.
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Mathematical model equations 103

Under these modelling assumptions, the dynamics were governed by a system of ODE equations: 104

dSu,i

dt
= λSu,i −νi (t)Su,i

dEu,i

dt
= λSu,i −σEu,i −νi (t)Eu,i

dIu,i

dt
= σEu,i − γIu,i

dRu,i

dt
= (1−m)γIu,i −νi (t)Ru,i

dHu,i

dt
= mγIu,i

dSv,i

dt
=−(1− εs)λSv,i +νi (t)Su,i

dEv,i

dt
= (1− εs)λSv,i −σEv,i +νi (t)Eu,i

dIv,i

dt
= σEv,i − γIv,i

dRv,i

dt
= (1−m(1− εm))γIv,i +νi (t)Ru,i

dHv,i

dt
= m(1− εm)γIv,i

(1)

The force of infection, λ , was defined as: 105

λ =
β (∑n

i=1 (Iu,i + Iv,i))

∑
n
i=1 (Su,i +Eu,i + Iu,i +Ru,i +Sv,i +Ev,i + Iv,i +Rv,i)

(2)

where β was the transmission rate for the given pathogen. Here we assumed vaccination status did not impact the rate of 106

transmission. The denominator corresponded to the number of individuals who were alive and not hospitalised at time t in the 107

simulated outbreak. 108

From the time point of entering the hospitalised compartments, Hu,i and Hv,i , there was a time lag, tD, of seven days until 109

the individuals were considered deceased. This parameterisation was chosen as it reflected a plausible duration for all three 110

pathogens being studied given values from the scientific literature [37, 38, 39]. The total number of unvaccinated individuals in 111

each behavioural subpopulation was Nu,i = Su,i +Eu,i + Iu,i +Ru,i +Hu,i +Du,i and the total number of vaccinated individuals 112

in each behavioural subpopulation was Nv,i = Sv,i +Ev,i + Iv,i +Rv,i +Hv,i +Dv,i. The rate of vaccine uptake, νi (t), depended on 113

the behavioural function, with further details given in the following subsection. 114

Implementation of the behavioural function 115

In our model, we considered human behaviour related to vaccination by scaling a baseline daily vaccine uptake rate. We 116

assumed a baseline daily vaccine uptake of 0.005 individuals per day, which was modified according to four factors (each 117

detailed below): vaccine opinion, information sharing, outbreak information and memory window. 118

Vaccine opinion and information sharing 119

We outline here two parameters that correspond to key aspects of human behaviour that can introduce heterogeneity into vaccine 120

uptake. The first was vaccine opinion, ρ , corresponding to the initial opinion individuals had prior to the onset of the outbreak. 121

The second was information sensitivity, α , which accounted for the sensitivity individuals had to information throughout the 122

simulated outbreak. 123

We examined two population types in our study: homogeneous and heterogeneous. For scenarios where the population 124

was homogeneous, everyone in the population has the same values for vaccine opinion, ρ , and information sensitivity, α . For 125

scenarios where the population was heterogeneous, the heterogeneity was with respect to vaccine opinion, ρ . The population 126

was split into three subpopulations with different levels of ρ to represent vaccine-resistant (ρ = 0), vaccine-hesitant (ρ = 1) 127

and vaccine-accepting groups (ρ = 2). Everyone had the same information sensitivity α . 128
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Outbreak information and memory window 129

We had four forms for the dependency on outbreak information which are based on the equations for calculating the new cases 130

or new deaths for unvaccinated and vaccinated individuals (Eqs. (3) and (4)). 131

These expressions incorporated a population-level memory window, µ , which we defined as the amount of time (days) prior 132

to time t from which outbreak information, θ , was computed. On each new day of a simulation, the daily vaccine uptake rate, 133

νi (t), was updated by considering the outbreak information, θ (t), of interest. In our case, we explored the number of new 134

cases or new deaths within the memory window, time t −1−µ to time t −1. For simplicity, we refer to time t −1−µ as tµ . 135

We then calculated the outbreak information for the respective unvaccinated and vaccinated sub-populations. The equations 136

for calculating new cases for each unvaccinated and vaccinated subpopulation, i, were given by: 137

∆Cu,i
(
tµ , t −1

)
= (Nu,i (t −1)−Su,i (t −1))−

(
Nu,i

(
tµ

)
−Su,i

(
tµ

))
∆Cv,i

(
tµ , t −1

)
= (Nv,i (t −1)−Sv,i (t −1))−

(
Nv,i

(
tµ

)
−Sv,i

(
tµ

)) (3)

The equations for calculating new deaths for each unvaccinated and vaccinated subpopulation, i, were given by: 138

∆Du,i
(
tµ , t −1

)
= Du,i (t −1)−Du,i

(
tµ

)
∆Dv,i

(
tµ , t −1

)
= Dv,i (t −1)−Dv,i

(
tµ

) (4)

We defined our outbreak information equations, θLC,i and θLD,i, to correspond to local (subpopulation-level) cases or deaths 139

in unvaccinated individuals relative to cases or deaths in all individuals in the subpopulation: 140

θLC,i
(
tµ , t −1

)
=

∆Cu,i
(
tµ , t −1

)
∆Cu,i

(
tµ , t −1

)
+∆Cv,i

(
tµ , t −1

)
θLD,i

(
tµ , t −1

)
=

∆Du,i
(
tµ , t −1

)
∆Du,i

(
tµ , t −1

)
+∆Dv,i

(
tµ , t −1

) (5)

Similarly, we defined our outbreak information equations, θGC and θGD, to correspond to global (population-level) cases or 141

deaths in unvaccinated individuals relative to cases or deaths in all individuals in the population: 142

θGC
(
tµ , t −1

)
=

∑
n
i=1 ∆Cu,i

(
tµ , t −1

)
∑

n
i=1 ∆Cu,i

(
tµ , t −1

)
+∆Cu,i

(
tµ , t −1

)
θGD

(
tµ , t −1

)
=

∑
n
i=1 ∆Du,i

(
tµ , t −1

)
∑

n
i=1 ∆Du,i

(
tµ , t −1

)
+∆Dv,i

(
tµ , t −1

) (6)

By design, the outbreak information equations described above resulted in a decrease in the daily vaccine uptake rate for 143

non-fully effective vaccines. This embodies a situation where, due to vaccine effectiveness being less than 100%, breakthrough 144

infections and deaths in vaccinated individuals arise that cause a reduction in the daily vaccine uptake rate from its baseline 145

value. For a fully effective intervention (effectiveness of 100%), note that the daily vaccine uptake rate would be unchanged by 146

the outbreak information. 147

Modification of vaccine uptake rate due to behavioural attributes 148

We modified the daily vaccine uptake rate, νi (t), by the behavioural function, which accounted for vaccine opinion, ρ , 149

information sensitivity, α , outbreak information, θi
(
tµ , t −1

)
and memory window duration (Table 2): 150

νi (t) = ν0
(
ρi +αiθi

(
tµ , t −1

))
(7)

Based on the range of behavioural parameters we considered in our simulations, our behavioural function νi (t) produced 151

daily vaccine uptake rates ranging from 0 to 0.02 (Fig. 2). 152

Pathogen-specific model parameterisation 153

To disentangle how incorporating behaviour into our model might impact systems of varying transmission potential and rate of 154

infection fatality, we parameterised the model for three distinct human respiratory pathogen systems that differed in terms of 155

these attributes: pandemic influenza, SARS-CoV-2 and Ebola. We based the disease parameter values, including the basic 156

reproduction number, R0, latent and infectious periods and infection fatality risks on estimates from the existing scientific 157

literature (Table 1). Pandemic influenza has an R0 of approximately 1.5 [29], with relatively short latent and infectious periods 158

of 2 and 5 days [32] (Table 1). In contrast, the SARS-CoV-2 wild-type variant has an estimated R0 of approximately 3 [30] 159

with longer latent and infectious periods (relative to our parameter estimates for pandemic influenza) of 5 and 7 days [33] 160

(Table 1). Lastly, Ebola has an R0 around 2 with latent and infectious periods of 2 and 7 days [31]. Compared with the other 161

two pathogens, Ebola has a much larger probability of death due to infection (m) at 0.39 [36], with probability of death due to 162

infection with SARS-CoV-2 at 6.38x10−3 [35] and pandemic influenza at 1x10−4 [34]. 163
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Figure 2. Dependency of the daily vaccine uptake rate on the behavioural function ννν iii (ttt). We display three examples at
different levels of vaccine opinion, ρ , which we use to define our three behavioural groups in our heterogeneous simulations:
(A) vaccine-resistant (ρ = 0); (B) vaccine-hesitant (ρ = 1); and (C) vaccine-accepting (ρ = 2). The daily vaccine uptake rate
(colour) is shown for different values of information sensitivity, α , and outbreak information, θi

(
tµ , t −1

)
. The outbreak

information is calculated using the equations in Eqs. (5) and (6).

Table 2. Behavioural function ννν iii (ttt) parameter descriptions. Further information about the values used for each parameter
can be found in Table 3 and the formulations of θ (t) can be found in Equations (5) and (6).

Parameter description Range

ν (t) Daily vaccine uptake rate [0,0.02]
ν0 Baseline vaccine uptake rate 0.005
ρ Vaccine opinion [0,2]
α Information sensitivity [0,2]
θ (t) Outbreak information [0,1]
µ Memory window (days) (1, Full history]

Simulation overview 164

For all model simulations we used an overall population size of 100,000 individuals. We initialised infection with one 165

unvaccinated infectious individual on day 0. For the heterogeneous simulations described below, the one initial infection 166

was distributed according to the proportion assigned to each behavioural subpopulation. We ran the simulations until the 167

number of active infections was fewer than one. Each sub-analysis had a bespoke simulation set, summarised in Table 3 168

and with further details below. We wrote the model code in Python 3.11.7, with the model code available at https: 169

//github.com/rachelseibel/outbreak_information_model. 170

Homogeneous population scenarios 171

In these two homogeneous scenarios, within each simulation the entire population had the same behavioural parameter values. 172

We considered the sensitivity of epidemiological outcomes for 6 unique combinations of pathogen (pandemic influenza, 173

SARS-CoV-2 and Ebola) and outbreak information (global cases, global deaths) - we refer to each of these combinations as a 174

‘batch’. We expand below on the behavioural parameter values considered under each scenario. 175

Homogeneous scenario 1: Influence of vaccine opinion and information sensitivity in a homogeneous population. 176

In our initial analysis, for each of the six batches (combination of pathogen and outbreak information) we considered the 177

sensitivity of cumulative cases, cumulative deaths and epidemic duration to vaccine opinion and information sensitivity. We 178

performed 40,401 simulations per batch, one simulation for each combination of vaccine opinion, ρ , ranging from 0 to 2 (with 179

an increment of 0.01), and information sensitivity, α , ranging from 0 to 2 (with an increment of 0.01). This resulted in a total of 180

242,406 simulations. 181
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Homogeneous scenario 2: Influence of memory window and vaccine efficacy in a homogeneous population. We 182

next considered the sensitivity of cumulative cases and cumulative deaths to memory window and vaccine efficacy, across 183

different levels of pathogen, outbreak information, vaccine opinion and information sensitivity. Within each batch, we 184

had 15 combinations of vaccine opinion (ρ ∈ {0,1,2}), information sensitivity (α ∈ {0,0.5,1,1.5,2}). We selected these 185

parameter values to reasonably span the range of parameter space when considering these three parameters. Furthermore, to 186

then assess sensitivity of modelled epidemiological outcomes to memory window and vaccine efficacy, for each of these 15 187

combinations we also considered 6 combinations of memory window length (µ ∈ {1 day, full outbreak history}) and vaccine 188

efficacy (ε ∈ {25%,50%,90%}). This gave a total of 540 simulations for this scenario. 189

Heterogeneous population scenarios 190

In these two heterogeneous scenarios, within each simulation the population was split between three subpopulations that 191

each had a unique vaccine opinion to represent vaccine-resistant (ρ = 0), vaccine-hesitant (ρ = 1) and vaccine-accepting 192

(ρ = 2) subpopulations. We stratified group occupancy to a resolution of 5% - a subjective choice that ensured the total 193

required computational time for running the collection of scenarios was manageable, whilst providing a resolution that would be 194

capable of revealing trends between vaccine opinion group composition and epidemiological outcomes. Unique combinatorial 195

combinations of occupancy (population split) across the three groups that summed to unity resulted in 231 heterogeneous 196

vaccine opinion group configurations. We considered the sensitivity of epidemiological outcomes for each of 6 combinations 197

of pathogen (pandemic influenza, SARS-CoV-2 and Ebola) and outbreak information (local cases, local deaths). Overall, 198

we considered 1,386 unique combinations of pathogen, outbreak information and population split. We expand below on the 199

behavioural parameter values considered under each scenario. 200

Heterogeneous scenario 1: Influence of vaccine opinion and information sensitivity in a heterogeneous population. In 201

this scenario, we considered the effect of information sensitivity on cumulative cases and cumulative deaths across different 202

levels of pathogen, outbreak information and population split. For each of the 1,386 combinations of pathogen, outbreak 203

information and population split, we explored sensitivity of epidemiological outcomes to 3 specific information sensitivity 204

values, with α ∈ {0,1,2}. We therefore carried out a total of 4,158 simulations for this scenario. 205

Heterogeneous scenario 2: Influence of memory window and vaccine efficacy in a heterogeneous population. We 206

lastly considered how memory window and vaccine efficacy impacted cumulative cases and cumulative deaths across 120 207

different combinations of pathogen, outbreak information, population split and information sensitivity (α ∈ {0,0.5,1,1.5,2}). 208

We specifically explored four population splits or behavioural configurations of interest: (i) 50% vaccine-resistant and 209

50% vaccine-hesitant; (ii) 50% vaccine-resistant and 50% vaccine-accepting; (iii) 50% vaccine-hesitant and 50% vaccine- 210

accepting; and (iv) equal population split between vaccine-resistant, vaccine-hesitant and vaccine-accepting groups. We then 211

considered 6 combinations combinations of memory window length (µ ∈ {1 day, full outbreak history}) and vaccine efficacy 212

(ε ∈ {25%,50%,90%}). This gave a total of 720 simulations for this scenario. 213

Results 214

Homogeneous scenario 1: Preference for a cases- or deaths-driven behavioural reaction for improved 215

epidemiological outcomes are pathogen-dependent 216

We first studied the influence of vaccine opinion (ρ) and information sensitivity (α) in a homogeneous population on cumulative 217

cases, cumulative deaths and epidemic duration. These analyses were done with consideration to our three selected human 218

pathogens: pandemic influenza, SARS-CoV-2 and Ebola, and two types of global outbreak information: global cases (θGC) and 219

global deaths (θGD). 220

Across all pathogens and types of global outbreak information, cumulative cases and cumulative deaths decreased as 221

vaccine opinion and information sensitivity increased (Figures 3 and 4). In other words, cumulative epidemiological metrics 222

were worse when behavioural parameters were turned off. When outbreak information was based on global cases, cumulative 223

cases ranged from approximately 72 to 94,000 cases across all pathogens whilst cumulative deaths ranged from approximately 224

0.005 to 35,000 deaths. When outbreak information was based on global deaths, cumulative cases ranged from approximately 225

91 to 94,000 cases across all pathogens whilst cumulative deaths ranged from approximately 0.006 to 35,000 deaths. For 226

SARS-CoV-2 and Ebola, the epidemic duration in days increased as vaccine opinion and information sensitivity increased. For 227

pandemic influenza, epidemic duration did not follow a linear relationship with the behavioural variables of interest. Instead, 228

very low and high levels (0-0.1, 1.7-2) of vaccine opinion and information sensitivity led to shorter epidemic durations (less 229

than 300 days) whilst mid-range levels (0.1-1.7) of vaccine opinion and information sensitivity led to longer epidemic durations 230

(300-980 days) (Figures 3 and 4). 231

We then considered the percent difference in cumulative outbreak measures between simulations with outbreak information 232

based on global cases (θGC) when compared to simulations with outbreak information based on global deaths (θGD). For 233

cumulative cases and cumulative deaths, pandemic influenza showed patterns distinct from SARS-CoV-2 and Ebola; for 234
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Table 3. Simulation outline specifying levels of behavioural variables for four scenarios. For each scenario, we specify the
population type (homogeneous or heterogeneous), the variables of interest and the levels we simulated of these variables. Each
scenario simulation can be thought of as a unique combination of the variables of interest and their respective levels. More
information regarding the simulation parameters and variables can be found in Tables 1 and 2 and Eqs. (5) and (6).

Scenario # Variables of interest Levels

Homogeneous population

Homogeneous scenario 1:
Information sensitivity
and vaccine opinion

Pathogen {Pandemic influenza, SARS-CoV-2, Ebola}
Outbreak information, θ {θGC,θGD}
Information sensitivity, α {0.00,0.01,0.02, . . . ,1.98,1.99,2.00}
Vaccine opinion, ρ {0.00,0.01,0.02, . . . ,1.98,1.99,2.00}

Homogeneous scenario 2:
Memory window
and vaccine efficacy

Pathogen {Pandemic influenza, SARS-CoV-2, Ebola}
Outbreak information, θ {θGC,θGD}
Information sensitivity, α {0.0,0.5,1.0,1.5,2.0}
Vaccine opinion, ρ {0,1,2}
Memory window (days), µ {1,Full history}
Vaccine efficacy (%) ,ε {25,50,90}

Heterogeneous population: three subpopulations each with a unique vaccine opinion, ρ ∈ {0,1,2}

Heterogeneous scenario 1:
Information sensitivity
and vaccine opinion

Pathogen {Pandemic influenza, SARS-CoV-2, Ebola}
Outbreak information, θ {θLC,i,θLD,i}
Information sensitivity, α {0.1,1,2}

Heterogeneous scenario 2:
Memory window
and vaccine efficacy

Pathogen {Pandemic influenza, SARS-CoV-2, Ebola}
Outbreak information, θ {θLC,i,θLD,i}
Information sensitivity, α {0.0,0.5,1.0,1.5,2.0}
Memory window (days), µ {1,Full history}
Vaccine efficacy (%) ,ε {25,50,90}
Population split {50% vaccine-resistant and 50% vaccine-hesitant;

50% vaccine-resistant and 50% vaccine-accepting;
50% vaccine-accepting and 50% vaccine-hesitant;
Equal population split between behavioural groups.}

pandemic influenza the percent difference in cumulative cases and cumulative deaths was negative across all levels of vaccine 235

opinion and information sensitivity, which showed a benefit of outbreak information based on global cases (θGC) (Figure 4A,B). 236

For SARS-CoV-2 and Ebola, the percent difference in cumulative cases and cumulative deaths was negative for low levels of 237

vaccine opinion and information sensitivity (0-1.5) and positive for high levels of vaccine opinion and information sensitivity 238

(1.6-2). Therefore, for low levels of vaccine opinion and information sensitivity, we observed a benefit of outbreak information 239

based on global cases (θGC). Similarly, for high levels of vaccine opinion and information sensitivity, we observed a benefit 240

of outbreak information based on global deaths (θGD) (Figure 4A,B). For all pathogens, the percent differences in epidemic 241

duration were positive (i.e. a benefit of outbreak information based on global cases (θGC)) for low levels of vaccine opinion and 242

information sensitivity (0-1.5) and negative (i.e. a benefit of outbreak information based on global deaths (θGD)) for high levels 243

of vaccine opinion and information sensitivity (1.5-2) (Figure 4C). 244

Given that the cumulative outbreak measures differed in pattern by pathogen, we examined temporal dynamics showing 245

the cumulative cases, cumulative deaths and cumulative vaccinations across time in days for a vaccine opinion (ρ) of 2 and 246

information sensitivity (α) of 2 (Figure 5). These behavioural parameters were highlighted since the greatest differences between 247

outbreak information types fell in this parameter combination. For pandemic influenza, cumulative cases and cumulative 248

deaths were consistently lower when outbreak information was based on global cases (θGC) compared with global deaths (θGD) 249

(Figure 5A,B). This contrasted with SARS-CoV-2 and Ebola, where cumulative cases and cumulative deaths were instead 250

lower for global cases (θGC) at earlier time points, but higher at later time points compared with global deaths (θGD). Across 251

all pathogens, due to reported deaths being a lagged measure compared with reported cases, having outbreak information 252

based on global deaths resulted in cumulative vaccinations also being lagged at the start of the outbreak relative to cumulative 253
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Figure 3. Homogeneous scenario 1. Summary epidemiological metrics by pathogen when outbreak information was
based on global cases (θθθ GGGCCC). Each panel shows a given epidemiological statistic across different levels of information
sensitivity (α) (x-axis, ranging from 0 to 2) and different levels of vaccine opinion (ρ) (y-axis, ranging from 0 to 2). Each
column corresponds to a different pathogen: pandemic influenza (column one), SARS-CoV-2 (column two) and Ebola (column
three). Each row displays one of the three summary epidemiological measures with a shared colour bar on a log scale: (A)
cumulative cases; (B) cumulative deaths; (C) epidemic duration (days). Darker shading corresponds to higher values for each
epidemiological metric. The cumulative outcomes vary between pathogen systems, with pandemic influenza being particularly
distinct from the other two pathogens.

vaccinations under outbreak information based on global cases (Figure 5C). 254
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Figure 4. Homogeneous scenario 1. Percent difference in summary epidemiological metrics between simulations with
outbreak information based on global cases (θθθ GGGCCC) and global deaths (θθθ GGGDDD). Each panel shows a given epidemiological
statistic across different levels of information sensitivity (α) (x-axis, ranging from 0 to 2) and vaccine opinion (ρ) (y-axis,
ranging from 0 to 2). Each column corresponds to a different pathogen: pandemic influenza (column one), SARS-CoV-2
(column two) and Ebola (column three). Each row shows the percent difference between simulations where the global cases
(θGC) and global deaths (θGD) behavioural functions were used: (A) cumulative cases; (B) cumulative deaths; (C) epidemic
duration (days). Red shading corresponds to scenarios where outbreak information based on global cases led to lower values in
the corresponding epidemiological metric compared with global cases. In other words, red shading corresponds to a benefit of
global cases and blue shading corresponds to a benefit of global deaths as outbreak information (θ ). The striations at certain
values of ρ are a numerical artefact, arising due to the behavioural function structure (Equation (7)) causing slight shifts in
behaviour at early outbreak stages.
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Figure 5. Homogeneous scenario 1. Temporal outbreak measures between simulations with outbreak information based
on global cases (θθθ GGGCCC) and global deaths (θθθ GGGDDD). For a vaccine opinion (ρ) of 2 and information sensitivity (α) of 2, we
display our epidemiological metrics across time (x-axis): (A) cumulative cases, (B) cumulative deaths and (C) cumulative
vaccinations. Each line indicates a different level of outbreak information (θ ): global cases (pink dashed line) and global deaths
(purple solid line). Note the differences in cumulative metrics through time by the underlying outbreak information considered.
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Homogeneous scenario 2: Preference for a cases- or deaths-driven behavioural reaction for improved 255

epidemiological outcomes are vaccine efficacy-dependent 256

We next considered the sensitivity of cumulative cases and cumulative deaths to memory window and vaccine efficacy in 257

a behaviourally homogeneous population. The important takeaway from these simulations was that outbreak information 258

preference was sensitive to vaccine efficacy alongside the underlying pathogen-specific parameters identified in the homogeneous 259

scenario 1 simulations. 260

For all pathogens at a full history memory window (µ), we found that cumulative cases decreased as vaccine efficacy (ε) 261

increased (Figure 6A). At a vaccine efficacy of 25%, the percent difference in cumulative cases between global cases and global 262

deaths was small (0-2%) across all pathogens (Figure 6B). For pandemic influenza, the percent difference in cumulative cases 263

between global cases and global deaths was negative (benefit of global cases) for a vaccine efficacy of 50% (ranging from 0% 264

to -26%) and 90% (ranging from 0% to -61%). For SARS-CoV-2 and Ebola at a vaccine efficacy of 50%, the percent difference 265

in cumulative cases was negative («-1%) when vaccine opinion was 0 and information sensitivity was 1 (benefit of global cases) 266

and zero or positive (0-8%) for all other combinations of vaccine opinion and information sensitivity. Across all pathogens at a 267

vaccine efficacy of 90%, the percent difference in cumulative cases was zero or negative: 0 to -61% for pandemic influenza, 268

0 to -39% for SARS-CoV-2 and 0 to -65% for Ebola. The trends in epidemiological metrics were similar when considering 269

cumulative deaths (Figures S2 and S4). 270

We then considered a memory window (µ) of 1 day and found that the benefits of outbreak information types remained the 271

same across different levels of vaccine opinion and information sensitivity. However, the magnitude of the percent differences 272

in cumulative epidemiological metrics differed. For pandemic influenza at a vaccine efficacy of 90%, the percent difference in 273

cumulative cases between global cases and global deaths ranged from 0 to -89% compared with 0 to -61% at a full history 274

memory window (Figure 7B). Despite this variation, the cumulative case numbers are below 500 for both memory windows 275

and therefore the percent differences in cumulative cases are not greatly meaningful. However, for Ebola at a vaccine efficacy 276

of 50% and global cases as outbreak information, a 1-day memory window (23,000 cases) led to approximately 3,000 more 277

cases compared with a full-history memory window (26,000 cases) (Figures 6 and 7). The percent difference in cumulative 278

cases between global cases and global deaths increased from 8 to 11% for Ebola with the 1-day memory window compared 279

with the full-history memory window (Figure 7). 280

Inspecting the sensitivity of cumulative cases to vaccine efficacy (ε) in a behaviourally homogeneous population, with global 281

cases as outbreak information, for all pathogens we found that cumulative cases decreased as vaccine efficacy (ε) increased 282

(Figure 8). With respect to increasing vaccine efficacy (ε), cumulative cases decreased more rapidly for pandemic influenza and 283

decreased slowest for SARS-CoV-2. The trends in epidemiological metrics were similar when outbreak information was based 284

on global deaths (θGD) (Figure 8). 285
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Figure 6. Homogeneous scenario 2. Sensitivity of cumulative cases to vaccine efficacy across pathogens and type of
outbreak information for a full history memory window. For each panel, cumulative cases are presented across the three
pathogens of interest (pandemic influenza, SARS-CoV-2, Ebola) alongside three vaccine efficacies (ε ∈ 25%,50%,90%) of
interest. Panel (A) shows simulations where the outbreak information was global cases as well as the corresponding cumulative
cases in thousands for each unique combination of pathogen, vaccine efficacy (ε), vaccine opinion (ρ) and information
sensitivity (α). Dark purple hues correspond to more cumulative cases whilst light orange hues correspond to fewer cumulative
cases. Panel (B) shows the percent difference in cumulative cases between simulations where the outbreak information was
global cases (θGC) and global deaths (θGD) for each unique combination of pathogen, vaccine efficacy (ε), vaccine opinion (ρ)
and information sensitivity (α). Blue hues correspond to positive percent differences in cumulative cases (representing a
benefit of global deaths) whilst red hues correspond to negative percent differences in cumulative cases (representing a benefit
of global cases).
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Figure 7. Homogeneous scenario 2. Sensitivity of vaccine efficacy across pathogens and type of outbreak information for
a 1-day memory window. For each panel, cumulative cases are presented across the three pathogens of interest (pandemic
influenza, SARS-CoV-2, Ebola) alongside three vaccine efficacies (ε ∈ 25%,50%,90%) of interest. Panel (A) shows
simulations where the outbreak information was global cases as well as the corresponding cumulative cases in thousands for
each unique combination of pathogen, vaccine efficacy (ε), vaccine opinion (ρ) and information sensitivity (α). Dark purple
hues correspond to more cumulative cases whilst light orange hues correspond to fewer cumulative cases. Panel (B) shows the
percent difference in cumulative cases between simulations where the outbreak information was global cases (θGC) and global
deaths (θGD) for each unique combination of pathogen, vaccine efficacy (ε), vaccine opinion (ρ) and information sensitivity
(α). Blue hues correspond to positive percent differences in cumulative cases (representing a benefit of global deaths) whilst
red hues correspond to negative percent differences in cumulative cases (representing a benefit of global cases).
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Figure 8. Homogeneous scenario 2. Cumulative cases across pathogen systems and vaccine efficacy for homogeneous
behavioural configurations and outbreak information based on global cases. Each row shows cumulative cases for a given
pathogen system: (A) pandemic influenza, (B) SARS-CoV-2 and (C) Ebola. Each column shows a different vaccine efficacy (ε):
25% (first column), 50% (second column) and 90% (third column). Different line types, colours and markers indicate different
homogeneous behavioural configurations: vaccine-resistant (ρ = 0,purple solid line with circle markers), vaccine-hesitant
(ρ = 1,pink dashed line with square markers) and vaccine-accepting (ρ = 2,orange dotted line with triangle markers). The
memory window (µ) was fixed at a full history and outbreak information was based on global cases (θGC).
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Heterogeneous scenario 1: Preference for a cases- or deaths-driven behavioural reaction for improved 286

epidemiological outcomes are pathogen-dependent 287

To relax our previous assumption of the population being homogeneous with respect to both behavioural-associated parameters 288

α and ρ , we studied the impact of population splits with multiple levels of vaccine opinion (ρ). Similar to the homogeneous 289

scenario 1 outcomes, we found that pandemic influenza exhibited patterns distinct from SARS-CoV-2 and Ebola. We also 290

found that behavioural configuration was important in explaining variations in outbreak severity. For all pathogens, cumulative 291

cases decreased as vaccine opinion and information sensitivity increased (Figure 9). 292

Figure 9. Heterogeneous scenario 1. Cumulative cases across pathogen systems and information sensitivity, with
outbreak information based on local cases and vaccine efficacy of 50%. For each panel, the ternary plot axes show the
percentage of the population assigned to each of three behavioural groups: vaccine-resistant (ρ = 0), vaccine-hesitant (ρ = 1)
and vaccine-accepting (ρ = 2). Each row shows cumulative cases for a given pathogen: (A) pandemic influenza, (B)
SARS-CoV-2, (C) Ebola. Each column corresponds to a different level of information sensitivity: α = 0.1 (first column),
α = 1 (second column), α = 2 (third column). Darker colour hues indicate more severe outcomes in terms of cumulative cases.
SARS-CoV-2 shows less variable outcomes across information sensitivity compared with the other two pathogens.

We then considered the percent difference in cumulative cases between simulations with outbreak information based on local 293

cases (θLC) when compared with simulations with outbreak information based on local deaths (θLD). For pandemic influenza, 294

the percent difference in cumulative cases was negative across all levels of information sensitivity and behavioural configuration 295

(ranging from -0.5% to -37.0%), which showed a benefit of outbreak information based on local cases (θLC) (Figure 10A). For 296
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SARS-CoV-2 and Ebola, the percent difference in cumulative cases was negative for mostly resistant populations and positive 297

for mostly accepting populations (SARS-CoV-2: ranging from -0.3% to 1.0%; Ebola: ranging from -0.3% to 9.3%). This 298

indicated a benefit of outbreak information based on local cases (θLC) for mostly resistant populations and a benefit of outbreak 299

information based on local deaths (θLD) for mostly accepting populations (Figure 10B,C). 300

Figure 10. Heterogeneous scenario 1. Percent difference in cumulative cases between local cases and local deaths across
pathogen systems and information sensitivity with a vaccine efficacy of 50%. For each panel, the ternary plot axes show the
percentage of the population assigned to each of three behavioural groups: vaccine-resistant (ρ = 0), vaccine-hesitant (ρ = 1)
and vaccine-accepting (ρ = 2). Each row shows percent difference in cumulative cases between outbreak information
scenarios based on local cases and local deaths for a given pathogen: (A) pandemic influenza, (B) SARS-CoV-2, (C) Ebola.
Each column corresponds to a different level of information sensitivity: α = 0.1 (first column), α = 1 (second column), α = 2
(third column). Darker colour hues indicate more severe outcomes in terms of percent difference in cumulative cases.
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Heterogeneous scenario 2: Preference for a cases- or deaths-driven behavioural reaction for improved 301

epidemiological outcomes are vaccine efficacy-dependent 302

Our last scenario considered the sensitivity of cumulative cases to memory window (µ) and vaccine efficacy (ε) in a be- 303

haviourally heterogeneous population with respect to vaccine opinion (ρ), across different pathogens, outbreak information 304

types (θ ) and information sensitivities (α). 305

For all pathogens, we found that cumulative cases decreased as vaccine efficacy (ε) and information sensitivity (α) increased 306

in behaviourally heterogeneous populations (Figure 11). Cumulative cases for pandemic influenza decreased most rapidly as 307

vaccine efficacy (ε) increased compared with SARS-CoV-2 and Ebola. Cumulative cases for SARS-CoV-2 decreased most 308

slowly as vaccine efficacy (ε) increased. Across all pathogens, the resistant/hesitant configuration led to the most cumulative 309

cases, followed by the resistant/accepting configuration, the accepting/hesitant configuration and lastly by the equally-split 310

configuration (Figure 11). Overall, SARS-CoV-2 scenarios had the highest cumulative cases (approximately 95,000 cases), 311

followed by Ebola (approximately 85,000 cases) and then pandemic influenza (approximately 50,000 cases). The trends in 312

epidemiological metrics were similar when outbreak information was based on local deaths (θLD) (Figure S38) as well as when 313

considering cumulative deaths (Figures S36 and S39). 314

In terms of epidemic duration, across all pathogens and outbreak information types for a vaccine efficacy of 50% and full- 315

history memory window, the accepting/hesitant configurations led to the longest epidemic durations (> 600 days for pandemic 316

influenza), followed by the equal split configuration, then the resistant/accepting configuration and lastly the resistant/hesitant 317

configuration (approximately 225 days for SARS-CoV-2) (Figure 11). As vaccine efficacy increased, some behavioural 318

configurations resulted in longer epidemics for mid-range levels of information sensitivity (0.5-1.5). Taking SARS-CoV-2 319

for instance, with the equal split configuration and a 50% vaccine efficacy, epidemic duration was longest at an information 320

sensitivity of 1 (approximately 320 days) and shortest at an information sensitivity of 2 (approximately 260 days) (Figure S37B). 321

We then considered the temporal dynamics of cases for different levels of vaccine efficacy (ε), pathogen system and four 322

behavioural configurations of interest: 50% resistant (ρ = 0) and 50% accepting (ρ = 2); 50% resistant (ρ = 0) and 50% 323

hesitant (ρ = 1); 50% accepting (ρ = 2) and 50% hesitant (ρ = 1); and equal split in vaccine opinion (ρ ∈ 0,1,2). 324

For pandemic influenza and across all 50% split configurations, we found that the least accepting subpopulation con- 325

tributed to more cumulative cases as the outbreak progressed (Figure 12A). For SARS-CoV-2 and Ebola, the least accepting 326

subpopulation contributed to more cumulative cases between 30 and 150-200 days into the outbreak (54% of cumulative 327

cases), but this contribution decreased at later outbreak stages (52% of cumulative cases) (Figure 12B,C). Overall, behavioural 328

configuration had little impact on the percent contribution of each subpopulation to cumulative cases for pandemic influenza 329

and SARS-CoV-2. For Ebola, the 50% accepting, 50% hesitant configuration led to the most even contribution of each 330

subpopulation to cumulative cases by the end of the outbreak (Figure 12C). For the equal split configurations, there was very 331

little variation in the vaccine-hesitant subpopulation contribution to cumulative cases through time, while the magnitudes of 332

contribution to cases in the vaccine-resistant and vaccine-accepting subpopulations were similar to those in the 50% split 333

configurations (Figure 12D). 334

Discussion 335

Mathematical models of infectious disease dynamics can contribute to public health response efforts against infectious disease 336

outbreaks. Nonetheless, heterogeneity in human behaviour has typically not been considered in such models. Despite the 337

numerous studies that explore human behaviour during outbreaks in sociological and psychological contexts, there are few 338

which examine how human behaviour affects disease dynamics [19]. By improving existing disease models by considering 339

heterogeneity in human behaviour, modellers can therefore help better inform public health officials and policymakers [19, 20, 340

40]. 341

To contribute to this existing literature, we have presented a SEIR-type disease model that incorporates a subpopulation-level 342

intervention adherence behavioural function modifier. The behavioural modifier considered an initial intervention opinion, 343

real-time response to local and global outbreak information - in our case capturing a reduction in vaccine uptake as a result of 344

imperfect protection resulting in breakthrough infections and deaths in vaccinated individuals - and sensitivity to such outbreak 345

information. Using vaccination as an example intervention application and three different pathogens of public health concern 346

(pandemic influenza, SARS-CoV-2 and Ebola), through computational simulation we have shown how subpopulation-level 347

behavioural heterogeneity can result in disparate epidemic impacts on public health. 348

We found that differences in preference towards outbreak information were pathogen-specific. Consequently, in some 349

pathogen systems, outbreak information types at different outbreak stages may be more informative to an information-sensitive 350

population and lead to less severe epidemic outcomes. It has been found that local spread of disease awareness during an 351

outbreak can stop a disease from spreading [41]. Similarly, we found that sensitivity to local outbreak information can lead to 352

mild outbreaks, however, this less-severe outcome is dependent on the pathogen system and the behavioural configuration of 353

the population. As emphasised by Funk et al. 2010, information individuals use in decision-making during outbreaks may be 354
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Figure 11. Heterogeneous scenario 2. Cumulative cases across pathogen systems, vaccine efficacy for heterogeneous
behavioural configurations with local cases as outbreak information. Each row shows cumulative cases for a given
pathogen system: (A) pandemic influenza, (B) SARS-CoV-2 and (C) Ebola. Each column shows a different vaccine efficacy
(ε): 25% (first column), 50% (second column) and 90% (third column). Different line types, colours and markers indicate
different mixed behavioural configurations: 50% resistant (ρ = 0) and 50% hesitant (ρ = 1) (solid purple line with circle
markers); 50% resistant (ρ = 0) and 50% accepting (ρ = 2) (dashed pink line with square markers); 50% accepting (ρ = 2)
and 50% hesitant (ρ = 1) (orange dotted line with triangle markers); and equal split in vaccine opinion (ρ ∈ 0,1,2, grey
dashed-dotted line with x markers). The memory window (µ) was fixed at the full history.

based on disease prevalence or information independent of prevalence, such as prior beliefs about vaccination [19]. We have 355

aimed to capture these two types of information in this study by considering subpopulation-level vaccine opinion, information 356

sensitivity and type of outbreak information (i.e. local cases, local deaths). 357

In this study, outbreak information preference was sensitive to vaccine efficacy, demonstrating the importance of considering 358

human behaviour during outbreaks in the context of the perceived effectiveness of the intervention. In situations where 359

individuals may perceive low infection risk, their perceived risk of adhering to the intervention may play a more significant 360

role in decision making [42]. During an emerging infectious disease outbreak, it is important to consider how real-time 361

outbreak information is disseminated to the public and the heterogeneity that may exist in data reporting by various sources 362

(e.g. government websites, social media, news media) [21, 43, 44]. 363

We also found that behavioural configuration was important in explaining variations in outbreak severity, drawing attention 364

to the relevance of behavioural heterogeneity when planning in the public health sector. Whilst our study was an exploratory 365

modelling investigation into how epidemiological impacts depended on vaccine beliefs and sensitivity to outbreak information 366

amongst the population, prospectively the behavioural elements of the model can be parameterised from behavioural data. 367

Information can be garnered from historical outbreaks, such as the 2018-2019 Ebola outbreak in DR Congo where the spread of 368

misinformation has been studied [11]. Unifying the novel components of our model structure with this model of misinformation 369

spread would be an interesting direction to explore, for instance. We also recommend reflecting on the plausibility of applying 370

such models as part of real-time response efforts, which will require timely availability of relevant data on behavioural 371

characteristics. There may be groups of people underrepresented in a given data set given limitations in sampling and data 372

privacy regulations, requiring further validation [16]. We therefore encourage reflection on the forms of data collected during 373
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the COVID-19 pandemic and development of appropriate data management procedures to assist data availability. 374

In addition, although we aimed to capture many aspects of disease spread and behaviour, the following points are limitations 375

of the model framework and addressing these are future avenues of research: (i) we considered one form of behavioural 376

function and outbreak information input; (ii) subpopulation-level behavioural traits were representative of social groups and 377

subpopulation sizes were fixed during the simulated outbreak; (iii) we did not include spatial heterogeneity, demographic 378

processes or age-structure; and (iv) vaccination had no capacity constraints and was a standalone intervention. 379

First, we recommend expanding upon the behavioural function, νi (t), by incorporating additional variables or different 380

function types. Additional variables could include differentiating between individual cost of infection and cost of adherence. 381

The outbreak information can also be generalised to account for different epidemiological metrics, such as a dependency 382

on disease incidence and/or prevalence. It is also the case that opinions of individuals on interventions can change over 383

the course of infectious disease outbreaks due to new scientific findings, government regulations or changes in perceived 384

risk [45]. One possibility for incorporating such temporal dependencies is the use of objective and cost functions to demonstrate 385

individual-based or government-based choices over time (a commonly used strategy in opinion dynamics) [20, 46]. 386

Second, we assumed that subpopulation sizes were fixed during the simulated outbreaks, as opposed to allowing movement 387

between subpopulations during the outbreak, and that the three vaccine opinion groups (resistant, hesitant, accepting) were 388

representative of social groups. Allowing for individuals to change their preexisting beliefs on the intervention strategy based 389

on dynamics such as conformity and new information presented in the media would be a reasonable direction to explore. When 390

considering local outbreak information, the vaccine uptake rate for a given subpopulation accounted for outbreak information 391

within the subpopulation alone. By incorporating local and global information concurrently, we anticipate more variable 392

outcomes in outbreak severity. 393

Thirdly, the model did not account for spatial heterogeneity, demographic processes or age-structure. Vaccine-related 394

behaviour, and infection intervention-related behaviour mode generally, can be highly correlated with spatial location, especially 395

in social networks with few close contacts or in areas with a high representation of susceptible groups. Spatial variations in 396

behavioural traits would be important when considering long-distance dispersal of pathogens [47, 48] and for disease outbreaks 397

occurring in active conflict zones that impact the ability to enact infection control strategies [31]. We chose not to include 398

demographic processes given the relatively short time scales (a few years) of the simulated outbreaks. If considering the 399

possibility of multiple variants of a pathogen and waning immunity, then due consideration should be given to population-level 400

processes that can alter the immunity structure. With regard to age-structure, the pathogens that we considered tend to have 401

disproportionate susceptibility to severe infection in young children, the elderly and individuals with preexisting medical 402

conditions. Given the similarity across the three pathogens of interest, we anticipate the inclusion of age-structure would not 403

qualitatively alter our findings. 404

Lastly, we assumed that vaccination had no capacity constraints and was a standalone intervention. We made the simplifying 405

assumption that resources were always available regardless of vaccine uptake, but could consider intervention availability 406

to demonstrate situations with limited public health and hospital resources [49]. Exploring human behaviour in the context 407

of varied resources available during outbreaks would be essential to investigate likely differences in disease and behaviour 408

dynamics in resource-limited scenarios. Vaccination also served as a sole intervention, in order to focus on the epidemiological 409

impacts of vaccine beliefs and sensitivity to outbreak information within subgroups. For the purposes of this work, we 410

considered vaccination as the intervention strategy used to combat disease spread. However, it is important to recognise that 411

other intervention strategies are often used in conjunction such as social distancing and mask-usage in various geographic 412

and social contexts [21, 50]. For instance, antivirals have been used to combat pandemic influenza [51]. For SARS-CoV-2, 413

non-pharmaceutical interventions such as self-quarantining or disinfecting frequently-used surfaces were used [4]. Ebola is 414

transmitted differently than the previous two pathogens, which have made safe burials, contact tracing and case management 415

reasonable measures to combat disease [31]. The inclusion of such intervention strategies in conjunction with vaccination 416

would provide further insights into pathogen-specific preferences towards outbreak information in resource-limited scenarios. 417

In conclusion, this work contributes to the existing literature by encapsulating awareness of population and subpopulation- 418

level intervention effectiveness in real-time within a human infectious disease model. We demonstrated the need for exploring 419

different behavioural functions, with variability exhibited in epidemic impacts given different behavioural assumptions. We 420

encourage researchers to continue enhancing the body of work in the behavioural epidemiology field, which will be integral in 421

combating future infectious disease outbreaks. 422
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Figure 12. Heterogeneous scenario 2. Subpopulation-level percent contribution to cumulative cases over time across
pathogen systems and vaccine efficacy for heterogeneous behavioural configurations and outbreak information based on
local cases. Each row shows percent contribution for each subpopulation towards cumulative cases across time in days for a
unique behavioural configuration: (A) 50% resistant (ρ = 0) and 50% hesitant (ρ = 1); (B) 50% resistant (ρ = 0) and 50%
accepting (ρ = 2); (C) 50% hesitant (ρ = 1) and 50% accepting (ρ = 2); and (D) equal split in vaccine opinion (ρ ∈ 0,1,2).
Each column represents a different pathogen system: pandemic influenza (first column), SARS-CoV-2 (second column) and
Ebola (third column). For each behavioural configuration, heatmaps are shown for each behavioural subpopulation present:
vaccine-resistant (ρ = 0), vaccine-hesitant (ρ = 1) and/or vaccine-accepting (ρ = 2). The colour bars are the same across the
rows. Red hues represent a contribution to cumulative cases which is greater than 50% (for two subpopulations) or 33.3% (for
three subpopulations) of the given population at time (t) whilst blue hues represent a contribution which is less than 50% (for
two subpopulations) or 33.3% (for three subpopulations). Information sensitivity (α) was fixed at 2, memory window (µ) was
fixed at the full history and vaccine efficacy (ε) was fixed at 50%.
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