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ABSTRACT 

Genes influencing opioid use disorder (OUD) biology have been identified via genome-

wide association studies (GWAS), gene expression, and network analyses. These discoveries 

provide opportunities to identifying existing compounds targeting these genes for drug 

repurposing studies. However, systematically integrating discovery results and identifying 

relevant available pharmacotherapies for OUD repurposing studies is challenging. To address 

this, we’ve constructed a framework that leverages existing results and drug databases to identify 

candidate pharmacotherapies.   

For this study, two independent OUD related meta-analyses were used including a 

GWAS and a differential gene expression (DGE) study of post-mortem human brain. Protein-

Protein Interaction (PPI) sub-networks enriched for GWAS risk loci were identified via network 

analyses. Drug databases Pharos, Open Targets, Therapeutic Target Database (TTD), and 

DrugBank were queried for clinical status and target selectivity. Cross-omic and drug query 

results were then integrated to identify candidate compounds. 

GWAS and DGE analyses revealed 3 and 335 target genes (FDR q<0.05), respectively, 

while network analysis detected 70 genes in 22 enriched PPI networks. Four selection strategies 

were implemented, which yielded between 72 and 676 genes with statistically significant support 

and 110 to 683 drugs targeting these genes, respectively. After filtering out less specific 

compounds or those targeting well-established psychiatric-related receptors (OPRM1 and 

DRD2), between 2 and 329 approved drugs remained across the four strategies.  

By leveraging multiple lines of biological evidence and resources, we identified many 

FDA approved drugs that target genes associated with OUD. This approach a) allows high-

throughput querying of OUD-related genes, b) detects OUD-related genes and compounds not 



identified using a single domain or resource, and c) produces a succinct summary of FDA 

approved compounds eligible for efficient expert review. Identifying larger pools of candidate 

pharmacotherapies and summarizing the supporting evidence bridges the gap between discovery 

and drug repurposing studies. 

 

  



INTRODUCTION 

Significance: There were more than 80,000 opioid overdose deaths in the United States in 

2021 which is 10 times higher than in 1999 and largely due to synthetic opioids1–3. The societal 

and economic burden of the opioid epidemic is immense. Currently, opioid use disorder (OUD) 

has only three FDA approved drugs for medication assisted treatment (methadone, naltrexone, 

and buprenorphine4) and one additional detoxification agent, lofexidine5. The number of off-

label drugs commonly used in substance use disorder (SUD) treatment programs are also limited 

and include baclofen, clonidine, divalproex, gabapentin, ondansetron, topiramate6. In contrast, 

type 2 diabetes has at least 37 different approved pharmacotherapies representing 10 separate 

classes7. As such, there is a pressing need to identify new OUD pharmacologic targets for drug 

development and quickly translate these findings into medication-assisted therapies. However, 

psychiatric drug development overall has been slow and outpaced by other areas of medicine8. 

One strategy to address the need for additional OUD pharmacotherapies is to identify drugs 

approved for other conditions that target biological systems implicated in OUD. Approved drugs 

have known dosing and safety profiles and can be brought to the market faster and less 

expensively than novel compounds through drug repurposing studies. In this work, the terms 

compounds, drugs, and pharmacotherapies are equivalent and do not necessarily reflect 

development stage or approval status. 

Catalog of ‘failed’ compounds and in silico identification: Many compounds pass safety 

(Phase II) but not efficacy trials (Phase III). A recent study of 21,143 compounds in phase II 

trials showed success rates of 48.6% for progressing to phase III and only 21% to FDA 

approval9. This large collection of ‘failed’ compounds are likely safe and could be efficacious 

treatments for other conditions such as OUD and other SUDs for which there is a significant 



need for new treatments. Compound identification approaches that do not require new data 

generation have been labelled in silico. For this work, we limit this definition to identifying 

known compounds in data databases linked to genes by leveraging results from existing omic 

studies for repurposing studies. Empirical evidence supports using these strategies since drugs 

with targets based on genetic support succeed twice as often in clinical trials10,11, and other 

molecular data (e.g., transcriptomic and proteomic) can inform biological processes impacted by 

OUD within relevant tissue types. Fortunately, there is a growing array of resources that can be 

applied to identify these potential OUD treatments.  

Leveraging discovery biology to accelerate treatment: While various lifestyle factors and 

environmental exposures contribute to risk, OUD also has a genetic component with heritability 

estimates of 54–60%12,13 and some genetic risk is shared with other SUDs and psychiatric 

disorders12,14–17. Recently, specific genetic variation influencing the risk of developing OUD 

have been identified18–23. While genetics offers critical insight into the factors that predispose 

individuals to OUD, other approaches can inform the biological processes occurring across the 

course of the disorder. Gene expression studies of postmortem human brains represent an 

opportunity to get closer to the disease state and elucidate the etiology of OUD and comorbid 

conditions in ways not possible using genetics alone. There is strong evidence for acute and 

persistent changes in central nervous system gene expression resulting from exposure to 

substances of abuse24,25, stress26, and their associated disorders including OUD27, alcohol use 

disorder (AUD)28,29, and post-traumatic stress disorder (PTSD)30,31. 

Integrating genetic and expression studies can improve identification of relevant 

genes32,33. Both human and animal model gene co-expression networks can be further validated 

for a role in SUDs through co-analysis34–36. Furthermore, statistical approaches have been 



developed for integrated analysis of gene expression data and GWAS results32, and applied to 

SUD-related data33, to identify targets for future therapeutic development37. 

Network analysis for target identification offers opportunities beyond single target 

identification. Compounds that lead to efficacious treatment do not necessarily need to directly 

impact genes associated with liability and/or consequences of the disorder and may act elsewhere 

in the network. Indeed, most psychiatric risk loci identified to date are not direct targets of 

effective pharmacotherapies. While molecular networks such as gene co-expression and Protein-

Protein Interaction (PPI) networks offer additional insight beyond genetic risk, integrated 

analyses are still uncommon. Single or integrated multi-domain investigations rarely focus on 

producing prioritized targets for subsequent translational studies such as drug repurposing trials.  

Drug Development and Repurposing Databases: In parallel to the growing catalog of 

biological evidence, there are an expanding set of resources that consolidate and summarize 

disparate information related to pharmacotherapies and their known or potential gene targets. 

These resources include tools for investigators to readily query genes or compounds of interest. 

However, the multiple competing resources have overlapping and unique information and 

learning the strengths of each resource requires an investment of time. While powerful, 

systematically querying these resources in an agnostic and reproducible way for many genes 

with robust evidence can be challenging. Looking up a moderate number of genes across 

resources is feasible but is time consuming and likely not to be reproducible across investigators.  

As omic investigations of OUD and other complex psychiatric disorders increase in size and 

power, so do the number of robustly significant associated genes and the challenge to follow 

them up in translational studies. 



Summary: To address this challenge, we constructed a framework to identify biological 

targets and candidate pharmacotherapies for preclinical and clinical OUD repurposing studies. 

Candidate identification is accomplished by 1) leveraging extant results, 2) performing cross-

omic network-based analysis, 3) creating an integrated catalogue of results and biological targets, 

and 4) generating a prioritized list of existing compounds for future repurposing studies.  

 

METHODS 

Biological data processing and integration: Multiple OUD studies using different 

biological measures were combined to explore evidence of OUD associations with multi-omic 

support in humans, including 1) gene-level summary statistics generated from meta-analysis of 

genome-wide association studies (GWAS) of OUD related phenotypes, 2) differential gene 

expression (DGE) meta-analysis of opioid overdose death (OOD) in human prefrontal cortex 

(PFC), and 3)  Protein-Protein Interaction (PPI) network analyses.  

Gene-level summary statistics: For genetic risk loci,  we began with GWAS summary 

statistics from the largest Genomic Structural Equation Modeling (gSEM)38 based OUD meta-

analysis to date. The Genetics of Opioid Addiction Consortium (GENOA) gSEM based meta-

analysis of an OUD common factor model (gSEM) model included 23,367 cases, 384,629 

controls, and an effective sample size of 88,114 (due to non-independence) using four primary 

GWAS20. These include the a) non-gSEM component of GENOA20, which is a meta-analysis 

across 15 European ancestry cohorts, b) a previous OUD meta-analysis of Million Veterans 

Program (MVP), the Study of Addiction: Genetics and 80 Environment (SAGE), and Yale-Penn 

(YP) (MVP-SAGE-YP)23, c) the Psychiatric Genetics Consortium Substance Use Disorder 

Group (PGG-SUD)22, and the Partners Health Group18. Gene-level summary statistics were 



calculated from GWAS summary statistics using MAGMA v1.0839 with a 10 kilobase (kb) 

window and 1000 Genomes Project EUR reference. 

Differential gene expression: We also utilized the largest meta-analysis of human post-

mortem prefrontal cortex (PFC) differential gene expression (DGE) to date which combined four 

published RNAseq studies of opioid overdose death (OOD)40–43. The DGE meta-analysis 

included 285 independent decedents, evaluated 20,098 genes, and yielded 335 genes with 

significant DGE (FDR q<0.05)44. Briefly, each RNAseq expression dataset was separately 

analyzed using a common QC pipeline followed by DGE analysis via the limma-voom 

regression framework45–47 prior to meta-analysis using weighted Fisher’s method to account for 

variability in sample sizes across studies. 

For this current study, a novel cross omic meta-analysis was conducted by combining the 

DGE and gene-based GWAS p-values using Fisher’s method implemented in R package 

metapro48. This DGE-GWAS meta-analyses was performed to detect loci that may not be 

robustly significant in a single domain (DGE or GWAS) but where the combined evidence from 

independent analyses is robust. False Discovery Rate (FDR) based thresholds were used instead 

of family-wise error rate adjustments methods such as Bonferroni corrections due to the non-

independence of statistical tests in genome-wide analyses. Additionally, FDR thresholds are 

empirically derived from each set of test statistics. FDR based q-values49 for each gene were 

determined using the R package qvalue [10.18129/B9.bioc.qvalue].  

Protein-Protein Interaction: Finally, PPI network analyses were performed using dense 

module GWAS (dmGWAS v3.0)32,50 with the MAGMA based GWAS gene-level summary 

statistics and a PPI network from the Integrated Interactions Database for all human tissues51. 

dmGWAS searches across an entire PPI network to identify localized subsets of interactions with 



GWAS results that are unlikely due to chance. By dmGWAS nomenclature, these sub-networks 

are called modules and deemed dense if they demonstrate enrichment of statistical signals, hence 

dense module. Due to dmGWAS exploring a large space of potential modules, two independent 

meta-analysis GWAS (non gSEM GENOA and MVP12) were analyzed separately. The non-

gSEM component of GENOA [PMID: 36207451] is a meta-analysis across 15 European 

ancestry cohorts (N=304,507, Case N=7,109). MVP1223 is a GWAS meta-analysis of parts 1 and 

2 of the Million Veteran Program (N=79,719, Case N=8,529). Having two independent 

dmGWAS results allowed bidirectional discovery and validation analysis using the dmGWAS 

dualEval function. Significant modules that were replicated in the independent validation dataset 

via dualEval were collapsed into summary PPI modules. Graphing and visualization of summary 

modules was performed using the R package cytoscape v3.9.152. 

Gene Selection Strategies: To develop a strategy to select and rank genes across domains, 

we sought to balance the relative contribution of each source with the downstream goal of 

identifying approved compounds targeting priority genes with robust evidence in both single and 

across domains. Four strategies were used to assess the impact of varying levels of evidence for 

association with OUD on the number of genes brought forward for target compound 

identification (Table 1). Genes were selected based on evidence from four domains including 1) 

gene-level summary statistics generated from meta-analysis of GWAS of OUD related 

phenotypes, 2) DGE meta-analysis of OOD in human PFC, 3) a cross DGE-GWAS meta-

analysis, and 4) PPI networks enriched for GWAS loci. Within-domain FDR q-values were 

calculated and were the basis for the four strategies which are detailed in Table 1. FDR q-values 

are more appropriate than Bonferroni correction for multiple testing in large-scale omic studies 

where there is extensive non-independence of statistical tests.  



The first strategy (Strict, no network) required robust significant evidence (q<0.01) in at 

least one domain and did not include the network-based genes. The second strategy (Strict plus 

network) added genes found in enriched PPI network modules by dmGWAS to the first strategy. 

To balance the contribution of genes from DGE and GWAS, a third strategy (Hybrid) selected 

genes a) with robust DGE or DGE-GWAS meta-analysis evidence (q<0.01), or b) suggestive 

GWAS evidence (q<0.16), or c) were in enriched PPI networks. The suggestive threshold of 0.16 

is the p-value threshold corresponding to Akaike Information Criterion(AIC)53 and has previous 

been used as suggestive threshold in other gene-wise analyses54. For the last strategy (Broad), 

genes were included if they were a) genome-wide significant (GWS) based on an FDR q-value 

threshold of 0.05 for any domain (DGE, gene-level GWAS, and DGE-GWAS meta-analysis) or 

b) were in enriched PPI networks. For each strategy, genes were ranked based on the minimum 

p-value across the 3 non-network domains.  

Drug Repurposing Databases and Compound Identification: To comprehensively 

summarize existing pharmacotherapies targeting known genes irrespective of relationship to 

OUD, four large drug related resources were queried independently including Pharos a web 

interface to browse the Target Central Resource Database (TCRD, 

http://juniper.health.unm.edu/tcrd/)55,56, Open Targets57, Therapeutic Target Database (TTD)58, 

and DrugBank59 to generate comprehensive cross-resource drug summaries including clinical 

status (approved), target selectivity (total number of targets), and other existing metrics 

(approved uses, safety). For Pharos and Open Targets, custom queries leveraging existing 

database specific APIs were written to extract this information, while for TTD and DrugBank 

downloads were queried. CHEMBL identifiers were used to link information across drug 



databases. Cross-resource summaries were generated for every protein coding gene (n=22,842) 

based on GENCODE60 V41 with an available Ensembl ID61.  

Identification of approved drugs targeting biologically supported genes: Integrated 

biological evidence and drug database query summaries were merged via Ensembl ID (version 

107). For each strategy, genes were considered passing and taken forward if they met at least one 

OUD related inclusion threshold in a strategy. These passing gene sets were used as the input set 

to determine drugs which targeted them.  

Since a drug can target more than one gene, we sought to assess how specific a drug was 

to these OUD related genes. If a drug targeted at least one passing gene, the relative specificity 

of the drug to OUD related genes was defined and calculated as the number of passing 

genes/total number genes targeted by the drug. Drugs with a relative specificity less than 0.10 

were considered non-specific since more than 90% of the gene targets were not considered OUD 

related as defined by the inclusion strategy. 

 

RESULTS 

Summary drug database compounds and gene targets: As a first step in identifying 

candidate pharmacotherapies for OUD repurposing trials, a systematic search across four major 

drug databases was conducted to extract all known approved drugs and investigational 

compounds, their development stage, and potential gene targets. The results of searching 

Pharos55,56, Open Targets57, TTD58, and DrugBank59 in June 2022 yielded 38,882 non-unique 

compound entries across development stages including Approved, Investigative (clinical trial), 

Experimental (preclinical drugs), and Withdrawn (Table 2). Post-query processing and 

harmonization resulted in 7,014 compounds with unique CHEMBL identifiers and targets a 



protein coding gene with an Ensembl ID. As shown in Table 2, no single database contained all 

or most available compounds and drugs. Drug Bank and Open Targets had the most compounds 

with 3,940 (56.2%) and 4,015 (57.2%), respectively. However, only 691 compounds were found 

across all four resources as shown in Figure 1. 

Summary of compiled OUD genomic data: We collected two large systematic 

investigations of OUD biology in humans including GWAS and post-mortem brain (dorsolateral 

prefrontal cortex) DGE meta-analyses. These results were used to perform network analyses, 

cross-domain DGE-GWAS meta-analyses, and gene selection by single and multi-domain 

support. To ensure consistency, we used the MAGMA gene-wise results produced by Gaddis and 

colleagues as previously reported20. False Discovery Rate analysis of these 15,977 gene-wise p-

values yielded 3 and 115 genes at strict (q<0.05) and liberal (q<0.16) thresholds, respectively 

(Table 3). Previous studies have demonstrated that genes passing a strict threshold generally 

explain a fraction of the expected heritability. Using a liberal FDR threshold of 0.16 will on yield 

approximately 97 true positives at the expenses of including 18 false positives on average. 

DGE meta-analysis: As described elsewhere44, the meta-analyses of post-mortem human 

PFC gene expression differences between opioid overdose death (OOD) cases and controls 

showed 335 genes with robust differences (q <0.05). When the results were limited to 15,377 

canonical protein coding genes, the set was reduced to 286 with ~13% (38/286) being associated 

with least one approved compound.  

Protein-Protein Interaction (PPI) networks enriched for OUD liability loci: To broaden 

the set of target genes and drugs, we searched for physically interacting gene clusters harboring 

genetic variants influencing risk to OUD liability via PPI network analyses. Dense module 

searching via dmGWAS and two independent subsets of the OUD GWAS meta-analysis 



described earlier identified 22 candidate PPI modules through bi-directional replication. Six 

discovery modules from GENOA replicated in MVP12 while 16 modules replicated when 

reversed. When combined, these enriched subnetworks contained 70 unique genes with 30, 37, 

and 3 from GENOA, MVP12, or both, respectively. The modules, genes, and gene-specific 

statistical evidence is in Supplemental Table S1. While the genes within a replicated module may 

not have robust association evidence individually, the collection of gene-wise p-values is 

significant.  

Gene selection by FDR threshold and by evidence domain: The number of genes with 

statistical support varied greatly by FDR threshold and dataset. As detailed in Table 3, strict 

filtering (q<0.01) yielded few genes in GWAS (n=3) while a defensible but less conservative 

threshold (q<0.16) yielded ~19% (2945/15,377) of protein coding genes for the DGE-GWAS 

meta-analysis. These results informed the statistical significance inclusion thresholds used in the 

four different cross-domain gene selection strategies shown in Table 4. The most restrictive and 

inclusive strategies produced between 72 and 676 genes for compound searching, respectively. 

The proportion of statistically supported genes with at least one approved drug varied between 

15.6 to 20.5% across selection strategies (Table 4) and were spread across the genome (Figure 

2).  

Approved compounds with biological support: Ultimately, the four strategies yielded 

between 110 and 683 compounds targeting empirically supported genes. However, the number of 

compounds was reduced when excluding non-specific compounds for which empirically 

supported genes represented <10% of their targets. The full set of identified compounds across 

strategies with targeted genes and specificity is available in Supplemental Tables S2-6. 

Inspection of the identified compounds showed that many target OPRM1 and/or DRD2. These 



genes are the target of extensive drug development and detecting them is evidence that the 

approach is valid since they may be considered positive controls. To assess if novel or promising 

repurposing candidates were identified, drugs targeting OPRM1 and DRD2 were filtered out, as 

summarized in Table 4. 

There were thirty-one drugs identified in the “Strict plus network” strategy which did not 

primarily target OPRM1 or DRD2 and were specific to the selected genes. These drugs were 

inspected and evaluated for plausibility as repurposing candidates for OUD. Most (24 of 31) 

drugs identified targeted only three genes, SLCO1B1, GUCY1B1, and ERBB3, which each had 

11, 10, and 3 approved drugs, respectively.  The remaining seven compounds neratinib, 

bleomycin, cysteamine, tirabrutinib, creatine, esketamine, and entrectinib each targeted a single 

gene which are ERBB3/MAP4K5, LIG1, SST, TEC, CKMT2, BDNF, and LTK, respectively. 

 

DISCUSSION 

To facilitate efficient and reproducible searching for candidate OUD pharmacotherapies 

with biological support from human omic studies for repurposing trials, we implemented a 

framework for data integration, gene filtering, and systematic searching of four major drug 

databases. The approach considers evidence from all genes in the human genome and all 

approved compounds across different resources. This framework is meant to be complementary 

to the deep information contained within each of the drug databases and may be considered as a 

generalized framework, capable of investigation of other indications.  

Summary of identified compounds classes: Using this framework, we evaluated four 

statistically supported strategies, all of which identified compounds with support from at least 

one biological domain. Broadly, these gene to compound target-pairs can be classified into four 



categories: Known, Probable, Novel/unexpected, and Non-specific. We define Known as where 

there is a large robust collection of supporting evidence and the compound is specifically used 

for OUD treatment. Probable targets-pairs are those where the existing evidence outside that 

used in this study readily supports the biological plausibility. Novel/unexpected target-pairs are 

those without such obvious support. Finally, the Non-specific category may include gene-

compound pairs where the specificity for OUD-associated genes is low. There may be other 

gene-compound pairings that don’t fit into these categories including weak evidence linking a 

gene and drug pair, database error due to non-unique gene symbols used in scientific literature, 

non-specificity, or specific evidence showing lack of efficacy. While this is a non-exhaustive list 

of reasons and subjective, it is useful to evaluate the relative success and usefulness of the 

approach. 

Known compounds: We note that the primary identification framework was designed and 

implemented without regard for the Known category of pharmacotherapies. Still, both OPRM1 

and DRD2 were identified as having converging evidence. OPRM1 is both a primary target of 

opioids and a target for first line treatments for OUD. While there are many pharmacotherapies 

approved for treating psychiatric disorders that target DRD2, they are not considered first-line 

treatments for OUD. However, there is a known and complex relationship between dopaminergic 

and opioid neurocircuitry62 including dopaminergic D2 receptors being involved in the 

rewarding properties of opioids63 and dopamine receptor antagonists reducing stress induced 

opiate relapse in rodents64. More recently, atypical antipsychotics which are partial agonists of 

DRD2 such as brexpiprazole have shown potential as OUD treatments including showing 

evidence of modulating dopamine-dependent behaviors during opioid use in mice65. 



Probable/Expected: In addition to DRD2 and OPRM1, at least one other promising target 

with an approved compound was revealed.  BDNF showed robust differential gene expression 

and remained highly ranked after DGE-GWAS meta-analysis. While Pharos, TTD, and Open 

Targets did not reveal any approved compounds targeting BDNF directly, DrugBank listed 

esketamine as targeting BDNF. Although esketamine, which is the S form of ketamine, primarily 

blocks NMDA receptors, this action secondarily modulates BDNF through a downstream 

signaling cascade66. Although not listed as target in Drug Bank or Open Targets, both chiral 

forms of ketamine bind to mu, delta, and kappa opioid receptors67. Additionally, giving 

naltrexone, an opioid antagonist, before giving ketamine will block ketamine’s ability to rapidly 

reverse depression68. Esketamine is being investigated to treat a wide range of psychiatric 

disorders including major depression, PTSD, SUDs, and opioid withdrawal69. The example of 

BDNF and esketamine shows the need to both search multiple drug resources and follow up 

large scale automated candidate compound identification to understand why candidate 

compounds were found.  

Novel/Unexpected: We also identified gene targets and associated compounds that we 

classify as novel or unexpected. A few examples include neratinib, bleomycin, cysteamine, 

tirabrutinib, creatine, entrectinib, and the 24 compounds targeting genes SLCO1B1, GUCY1B1, 

and ERBB3. Neratinib, bleomycin, and entrectinib are all anti-cancer medications. Neratinib 

primary targets are MAP4K5 and ERBB3 as well as 12 non-supported genes (specificity 14.3%) 

while bleomycin is a cytotoxic chemotherapy targeting DNA ligase I (LIG1). Tirabrutinib is a 

Bruton's tyrosine kinase (BTK) inhibitor approved to treat autoimmune disorders and 

hematological malignancies70 and also targets TEC (tec protein tyrosine kinase), which has 

support from DGE (q=0.077), DGE-GWAS meta-analysis (q=0.043), and network analyses. 



Entrectinib targets 10 genes including leukocyte tyrosine kinase (LTK) which is implicated 

primarily by network analysis with support from DGE-GWAS meta-analysis (q=0.08). Literature 

searching did not reveal an existing relationship between the neratinib, bleomycin, tirabrutinib, 

or entrectinib and opioid receptors or psychiatric outcomes more broadly. However, there is an 

existing literature exploring the relationship between the mu opioid receptors and cancer71. 

For SLCO1B1, GUCY1B1, and ERBB3, post-hoc inspection revealed supporting evidence 

coming primarily from the network analysis. SLCO1B1 is primary expressed in liver according 

to GTEx72 and was not tested in the DGE likely due to low expression in brain. Given the lack of 

expression in brain and other supporting evidence, compounds targeting SLCO1B1 are probably 

not good candidates for repurposing studies. In contrast, GUCY1B1 encodes guanylate cyclase 1 

soluble subunit beta 1 has widespread expression including brain and is involved with nitric 

oxide signaling which modulates the actions of opioid related analgesics73. According to the 

Protein Atlas74 (proteinatlas.org) expression clustering, GUCY1B1 is highly correlated with 

psychiatric genes of interest including GABRB1 and HTR2A. Since the supporting evidence is 

limited to the human network results, additional evidence from model organisms or other omics 

would increase confidence that GUCY1B1 targeting compounds are good candidates from 

repurposing trials. 

 ERBB3 encodes the Erb-b2 receptor tyrosine kinase 3, which is expressed across many 

tissues including brain, and binds neuregulin 1 (NRG1). While NRG1 has been the subject of 

many psychiatric genetic investigations and variants in ERBB3 are associated with smoking 

initiation75, there is no obvious evidence linking ERRB3 to OUD.  

Nonspecific: While compounds that target many gene products, directly or indirectly, 

may indeed be good pharmacotherapies, evaluating these is challenging. Given the large catalog 



of other potential compounds for OUD repurposing trials, we subjectively conclude these are 

lower priority to investigate. We highlight fostamatinib as one example which targets six 

supported genes including DCLK1, DYRK1A, LTK, MAP4K5, TAOK2, and TEC. Individually 

only MAP4K5 was robustly significant when considering DGE (p=1.92E-05, q=0.0099) or 

GWAS alone. The other 5 genes were implicated via network analysis and cross DGE-GWAS 

meta-analysis. While this demonstrates the need to search for converging evidence, fostamatinib 

was considered a non-specific compound since the cross-database search showed it targeted 299 

genes, yielding a specificity of 2%.  

Strength and limitations: To identify established and novel therapeutic targets for OUD, 

the current study first identified genes with evidence across three domains, which is a strength of 

this study. The inclusion of a broader array of evidence such as epigenetics, more tissues, and 

model organisms would likely increase the number of genes targets and thereby the number of 

candidate drugs for OUD repurposing studies. The strategy implemented chose a focused set of 

data with the goal of balancing robustness and interpretability. One goal was to allow subject 

domain experts to evaluate the supporting evidence. 

The study also used gene-wise p-values which aggregates evidence for many SNPs across 

a gene into a single statistic. This is necessary to integrate results at the gene level to allow 

dataset harmonization. While MAGMA accounts for non-independence of individual SNPs, 

associated SNPs and the aggregate statistic may not represent a true association between the trait 

and the gene which may be nearby.   

Another limitation is the imbalance in evidence across biological domains and the 

challenge in balancing the contribution of each source. Postmortem gene expression included 

hundreds of statistically significant loci while GWAS for liability risk loci showed a limited 



number of genome-wide significant loci. However, there is compelling evidence from 

heritability and enrichment analyses that the available GWAS results are a mixture distribution 

of real and null effects. As such we employed a statistically sound FDR based strategy and 

performed a cross DGE and GWAS meta-analysis. Limiting GWAS evidence to only genome-

wide significant loci creates different limitations, and the multidomain strategy used here is 

unlikely to bring forward loci with suggestive evidence in only a single domain. Importantly, the 

approach allows prioritization of genes with robust evidence from DGE which represent a 

complex mix of liability, exposure, neuronal remodeling, severity, and disorder progression. 

Conclusions: Selecting gene targets with the goal of identify promising 

pharmacotherapies likely benefits from a multi-faceted approach that integrates varied domains 

of biological evidence and is more fruitful than targeting compounds identified from a single 

domain. In addition to leveraging multiple biological domains, we demonstrate that querying 

multiple drug databases provides greater coverage of available candidate pharmacotherapies. 

This framework of integrating supporting biological evidence and readily summarizing available 

approved compounds helps to bridge the gap between discovery and translational 

studies. Ultimately, this addresses the pressing need to identify new targets for OUD drug 

development and repurposing studies. 
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Table 1: Gene selection strategies and FDR thresholds. GWAS is gene-based MAGMA results. 

 

 

 

 

 

 

  

  Inclusion summary 

  

FDR threshold by 

domain 

Strategy DGE GWAS 

DGE-

GWAS 

meta 

PPI GWAS 

network 

included? 

Strict, no network 0.01 0.01 0.01 No 

Strict plus network 0.01 0.01 0.01 Yes 

Hybrid  0.01 0.16 0.01 Yes 

Significant 0.05 0.05 0.05 Yes 



Table 2: Summary of compounds by database by development stage.  

Source  Approved Investigational Experimental Withdrawn  Total 

Unique 

CHEMBL 

IDs 

Has 

CHEMBL & 

ENSEMBL ID 

PHAROS 1,737  - -  -  1,737 1705 1704 

Open Targets 1,926 1,999 8 87 4,020 4020 4015 

TTD 1,645 21,228 4,500   27,373 1384 1384 

Drug Bank 1,960 861 2,916 15 5,752 3946 3940 

Total* 7,268 24,088 7,424 102 38,882 7026 7014 

*Total is sum across sources and does not represent unique compounds.



Table 3: Gene counts by FDR thresholds across evidence sources. 

  FDR q-value threshold 

Results Description 

Suggestive 

q<0.16 

Significant 

q<0.05 

Strict 

q<0.01 

Differential Gene Expression 1571 335 39 

GWAS gene-level 115 3 3 

DGE-GWAS meta-analysis 2945 503 55 

 



Table 4: Gene and drug counts by selection strategies. 

  Gene counts   Approved Compound Counts 

Strategy 

Passes 

strategy 

filter 

In drug 

databases 

Has 

approved 

drug(s) 

% Genes 

with 

approved All 

Not 

OPRM1 

or 

DRD2 

Specificity 

>=0.10 

Not 

OPRM1 

or DRD2 

& 

Specificity 

>=0.10 

Strict, no network 72 64 10 0.156 110 2 88 2 

Strict plus network 137 127 26 0.205 313 31 210 31 

Hybrid  223 210 35 0.167 396 71 250 71 

Significant 676 623 102 0.164 683 329 510 329 

 



 

Figure 1: Overlap across drug databases including Pharos (blue n=1,705), Open Targets (green, n=4,020), TTD (yellow, n=1,384) and

DrugBank (red, n=3,946).  

nd 



 

Figure 2: Manhattan plot of gene-level significance. Size of the dot represents the number of drugs that target the gene as listed in the 

Open Targets drug repurposing database. Red lines are FDR at 5% (solid), 10% (dashed), 20% (dotted) and 40% (dot-dash). 
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