
CROSS-CENTER VALIDATION OF DEEP LEARNING MODEL FOR
MUSCULOSKELETAL FRACTURE DETECTION IN RADIOGRAPHIC

IMAGING: A FEASIBILITY STUDY

Robert Hrubý
Carebot s.r.o.

Rašínovo nábřeží 71/10
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ABSTRACT

Fractures, often resulting from trauma, overuse, or osteoporosis, pose diagnostic challenges due to
their variable clinical manifestations. To address this, we propose a deep learning-based decision
support system to enhance the efficacy of fracture detection in radiographic imaging. For the purpose
of our study, we utilized 720 annotated musculoskeletal (MSK) X-rays from the MURA dataset,
augmented by bounding box-level annotation, for training the YOLO (You Only Look Once) model.
The model’s performance was subsequently tested on two datasets, sampled FracAtlas dataset (Dataset
1, 840 images, nNORMAL = 696, nFRACTURE = 144) and own internal dataset (Dataset 2, 124 images,
nNORMAL = 50, nFRACTURE = 74), encompassing a diverse range of MSK radiographs. The results
showed a Sensitivity (Se) of 0.910 (95% CI: 0.852–0.946) and Specificity (Sp) of 0.557 (95% CI:
0.520–0.594) on the Dataset 1, and a Se of 0.622 (95% CI: 0.508–0.724) and Sp of 0.740 (95% CI:
0.604–0.841) on the Dataset 2. This study underscores the promising role of AI in medical imaging,
providing a solid foundation for future research and advancements in the field of radiographic
diagnostics.
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1 Introduction

Bone fractures, defined as disruptions in bone continuity, arise from diverse etiologies including trauma, stress injuries,
and pathological conditions such as osteoporosis [1]. These fractures, irrespective of the patient’s age, manifest a
spectrum of clinical presentations ranging from mild symptoms like pain and swelling to severe complications including
deformity and functional impairment of the impacted region [2]. Clinically, fracture diagnosis incorporates an injury
history, physical examination, and symptom evaluation, notably pain, edema, morphological alterations, abnormal
mobility, and occasionally crepitus – a palpable or audible friction in the fractured bone. However, symptomatology in
certain fracture types, such as closed or stress fractures, might be subtle or non-specific [3].

Diagnostic approaches for fracture detection and confirmation predominantly utilize X-ray imaging as the initial modal-
ity, offering detailed bone structure visualization and fracture identification [4]. Supplementary imaging techniques,
including computed tomography (CT), magnetic resonance imaging (MRI), or ultrasound, are employed for complex
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cases or specific fracture types where musculoskeletal (MSK) X-rays are inadequate. Fracture management strategies
depend on fracture characteristics like type, location, and severity, ranging from non-invasive treatments like splint
immobilization to surgical interventions using internal osteosynthesis with screws, pins, wires, or external fixation
devices [5]. Rehabilitation, encompassing physical therapy and exercises, is crucial for restoring function and strength
to the affected region.

In the realm of clinical decision-making, the integration of deep learning-based decision support software for radiograph
interpretation marks a significant advancement. Despite promising developments, existing algorithms for fracture
detection face practical limitations, including the inability to analyze all body parts simultaneously or detect multiple
fractures in a single X-ray, which are common in clinical practice [6]. Leveraging sophisticated deep learning models,
such software enhances fracture detection accuracy on radiographs, alleviates the diagnostic workload of radiologists,
and augments patient outcomes through expedited and precise diagnostic processes [7].

2 Materials and Methods

2.1 Training Data

For this feasibility study, the publicly available MURA dataset, further described in the study "MURA: Large Dataset
for Abnormality Detection in Musculoskeletal Radiographs" [8] (Figure 1) was selected to validate the design and
development of the proposed deep learning algorithm. As this dataset contains MSK X-rays annotated only at the
label-level, the images required to be annotated at the bounding box-level.

Figure 1: Examples of MSK X-rays of the upper extremity from the MURA dataset, with each study manually labeled
by radiologists as normal (absence of fracture) or abnormal (presence of fracture). These examples show a normal
study of the elbow, an abnormal study of the finger with degenerative changes, an abnormal study of the forearm
demonstrating surgical fixation with plate and screws for radius and ulna fractures, and an abnormal study of the
humerus with a fracture.

A total of 720 images with positive fracture findings were randomly extracted from the primary dataset of 40,561 skeletal
radiographs (14 863 studies in total). Subsequently, the selected dataset was annotated by an in-house radiologist at the
bounding-box labeling level. For training our deep learning model, we utilized 30 images of the shoulder, 249 images of
the upper arm, 123 images of the elbow, 117 images of the forearm, 68 images of the wrist, and 133 images of the hand
and fingers, containing a total of 832 bounding boxes indicating the presence of a fracture and localization (Table 1).

Anatomic Area of interest n (images) n (bounding-boxes)

Shoulder 30 31

Humerus 249 328

Elbow 123 137

Forearm 117 131

Wrist 68 71

Hand and Fingers 133 134

Total 720 832
Table 1: Number of training images and bounding boxes for the indication of fracture.
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2.2 Model Architecture

YOLO (You Only Look Once) [9] (Figure 2, Figure 3) is a single-stage regression model for object detection. This
model uniquely combines object localization and classification in a single pass through a convolutional neural network,
enabling fast, real-time detection. During analysis, the entire radiographic image is passed through the network, which
is crucial for higher detection accuracy in scenarios where contextual information about bone structure is vital.

Figure 2: Train/loss and val/loss metrics for the indication of fracture.

Developed using the Darknet framework, YOLO is optimized for both CPU and GPU computation, making it suitable
for diverse clinical settings. The model outputs bounding boxes, each representing a detected fracture site. The bounding
box is defined by:

y = (pc, bx, by, bh, bw, c) (1)

where pc is the probability of fracture presence, (bx, by) are the coordinates of the bounding box center, (bh, bw) are the
dimensions of the bounding box, and c represents the class of the object, in this case, a fracture. The deep learning
model’s output is then layered on the original musculoskeletal X-ray image, highlighting the regions of interest with
bounding boxes, thereby aiding radiologists in identification of fractures.

Figure 3: Precision-Recall Curve a F1-Confidence Curve for the indication of fracture.
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2.3 Assessment

To evaluate the ability of the deep learning algorithm to evaluate the presence or absence of fractures on MSK X-
rays, the proposed model was retrospectively validated on a multicenter dataset, including both external, publicly
available sample data, and internal testing data (Table 2). Dataset 1 contains a randomly selected sample from the
FracAtlas dataset, described in more detail in the study "FracAtlas: A Dataset for Fracture Classification, Localization,
and Segmentation of Musculoskeletal Radiographs" [10], comprising a total of 840 MSK images (nNORMAL = 696,
nFRACTURE = 144). Dataset 2 consists of internal data, annotated by our in-house radiologist, encompassing a total of
124 MSK images radiographs (nNORMAL = 50, nFRACTURE = 74). Ground truth was established on image-level.

Dataset n nNORMAL nFRACTURE

Dataset 1 840 696 144

Dataset 2 124 50 74
Table 2: Test data distribution for Dataset 1 and Dataset 2.

2.4 Statistical Analysis

The clinical performance of the proposed deep learning algorithm was validated using key statistical metrics. Sensitivity
(Se) refers to the algorithm’s ability to correctly identify cases where a fracture is present on musculoskeletal (MSK)
X-ray images. Specificity ((Sp) refers to the algorithm’s ability to correctly identify that a fracture is not present in
individuals without such a condition. The Wilson score interval was used to calculate the 95% confidence intervals
(CIs) for both Se and Sp, ensuring an accurate measure of the algorithm’s diagnostic efficacy.

To further assess the performance of the deep learning algorithm, we use the metrics of positive (PPV) and negative
predictive value (NPV), and positive (PLR) and negative likelihood ratio (NLR). PPV indicates the probability that a
patient with a positive diagnostic result actually has a fracture, while NPV indicates the probability that a patient with a
negative result does not show a fracture. These values are directly influenced by the prevalence of the positive finding in
the study population. PLR and NLR provide information on how much the probability of having a fracture increases or
decreases depending on the test result. The PLR indicates the increase in the probability of a fracture associated with a
positive result, while the NLR indicates how the probability decreases in the event of a negative result. To provide a
more accurate estimate of the reliability of these metrics, we calculated 95% CIs. For PPV and NPV, we used binomial
approximations for CIs based on the standard error for a binomial distribution. For PLR and NLR, the intervals were
calculated by log transforming the values to include potential variability in the data.

3 Results

The proposed deep learning algorithm correctly predicted 131 images (TP) containing one or more fractures out of a
total of 144 positive skeletal X-ray images for Dataset 1, while it misclassified 308 negative images (FP) out of a total
of 696 images. For Dataset 2, the algorithm correctly predicted 46 images (TP) out of a total of 74 positive examples,
while incorrectly classifying 13 (FP) images without abnormality (Figure 4).

This corresponds to a sensitivity (Se) of 0.910 (95% CI: 0.852-0.946) and specificity (Sp) of 0.557 (95% CI: 0.520-0.594)
on Dataset 1, and Se of 0.622 (95% CI: 0.508-0.724) and Sp of 0.740 (95% CI: 0.604-0.841) on Dataset 2 (Table 3).

Dataset Se LSe USe Sp LSp USp

Dataset 1 0.910 0.852 0.946 0.557 0.520 0.594

Dataset 2 0.622 0.508 0.724 0.740 0.604 0.841
Table 3: Pooled sensitivity (Se) and specificity (Sp) results for the proposed deep learning algorithm, including the
corresponding 95% Confidence Interval (CI) estimates.

The algorithm’s performance was further assessed using Positive Predictive Value (PPV) and Negative Predictive Value
(NPV), which respectively indicate the probability that patients with positive and negative test results truly have and
do not have the condition. For Dataset 1, the PPV was 0.298 (95% CI: 0.256-0.341) and NPV was 0.968 (95% CI:
0.950-0.985). For Dataset 2, the PPV was 0.780 (95% CI: 0.674-0.885) and NPV was 0.569 (95% CI: 0.449-0.690).
Likelihood Ratios (LRs), which combine sensitivity and specificity, were also calculated. The Positive Likelihood Ratio
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Figure 4: Confusion matrix illustrating the performance of the proposed deep learning algorithm.

(PLR) quantifies how much the odds of the disease increase when a test is positive, while the Negative Likelihood
Ratio (NLR) indicates how much the odds of the disease decrease when a test is negative. For Dataset 1, the PLR was
2.056 (95% CI: 2.008-2.968) and NLR was 0.162 (95% CI: 0.140-0.187). For Dataset 2, the PLR was 2.391 (95% CI:
1.926-2.968) and NLR was 0.511 (95% CI: 0.447-0.585) (Table 4.

Dataset PPV LPPV UPPV NPV LNPV UNPV

Dataset 1 0.298 0.256 0.341 0.968 0.950 0.985

Dataset 2 0.780 0.674 0.885 0.569 0.449 0.690

Dataset PLR LPLR UPLR NLR LNLR UNLR

Dataset 1 2.056 2.008 2.968 0.162 0.140 0.187

Dataset 2 2.391 1.926 2.968 0.511 0.447 0.585
Table 4: Pooled positive (PPV) and negative predictive value (NPV), and positive (PLR) and negative likelihood ratio
(NLR) for the proposed deep learning algorithm, including the corresponding 95% Confidence Interval (CI) estimates.

These values suggest that while the algorithm is highly effective in correctly ruling out fractures (high NPV), its ability
to confirm the presence of fractures (PPV) varies significantly between datasets. The LRs indicate a moderate increase
in the probability of a fracture being present with a positive test result, and a moderate to significant decrease in
probability with a negative test result.
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Figure 5: Example predictions of the proposed deep learning algorithm trained to identify skeletal fractures in X-ray
images. The examples show the true positive (TP) predictions of the algorithm on the input images from Dataset 1: (a)
frontal image of the hand and wrist, (b) lateral image of the forearm, (c) frontal image of the hip and pelvis, (d) lateral
image of the elbow.
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Figure 6: Example predictions of the proposed deep learning algorithm trained to identify skeletal fractures in X-ray
images. The examples show the true positive (TP) predictions of the algorithm on the input images from Dataset 2: (a)
frontal image of the hip, (b) frontal image of the knee, (c) frontal image of the wrist, (d) frontal image of the shoulder.

4 Discussion

The study’s findings highlight the deep learning algorithm’s proficiency in detecting musculoskeletal (MSK) fractures
in X-ray images. The algorithm exhibited high sensitivity (Se) in Dataset 1, indicating its strong capability in correctly
identifying fractures. However, the lower Se observed in Dataset 2 suggests potential limitations in diverse clinical
scenarios or variations in fracture types and imaging qualities. Specificity (Sp) varied significantly between the two
datasets, with a notably lower Sp in Dataset 1 compared to Dataset 2. This variation may reflect differences in the
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datasets’ characteristics, such as the distribution of fractures or differences in X-ray interpretation. These findings
underscore the importance of considering dataset diversity when assessing algorithm performance in a clinical context.

4.1 Limitations

The high negative predicitive value (NPV) across both datasets reinforces the algorithm’s effectiveness in ruling out
fractures, which is critical in clinical decision-making. However, the variability in positive predictive value (PPV)
points to the need for cautious interpretation of positive results and suggests that the algorithm’s role should initially be
as a supportive tool rather than a definitive diagnostic solution.

5 Conclusion

In conclusion, this study validates the potential of the YOLO-based deep learning algorithm for fracture detection in
MSK radiography. Its high sensitivity in some cases and consistently high negative predicitive value are promising, but
the variability in specificity and positive predictive value indicates the need for further optimization and broad-scale
validation. These findings advocate for the integration of such AI tools in radiographic analysis, complementing the
expertise of radiologists to enhance diagnostic accuracy and improve patient care outcomes. Future work should
focus on collecting extensive training dataset with including ground truth, refining the algorithm, and validating its
performance in diverse, real-world clinical settings.

Data Availability Statement

This study uses MURA dataset, presented in "MURA: Large Dataset for Abnormality Detection in Musculoskeletal
Radiographs", FracAtlas dataset, presented in "FracAtlas: A Dataset for Fracture Classification, Localization and
Segmentation of Musculoskeletal Radiographs", and internal dataset from Carebot s.r.o., which is available upon written
request. This study was enabled by contract for the transfer of X-ray images for medical research purposes (Smlouva
o předání skiagrafických snímků pro účely medicínského výzkumu) between Nemocnice Šumperk, a.s. and Carebot
s.r.o., signed on 14 December 2023 in Prague, Czech Republic. The Ethics Committee of Nemocnice Šumperk, a.s
approved the transfer of patient studies for the research project. Patient consent was waived due to Regulation 2016/679
of the European Parliament and of the Council of 27 April 2016 on the protection of natural persons with regard to the
processing of personal data and on the free movement of such data, and the repealing of Directive 95/46/EC (General
Data Protection Regulation); i.e., the images were stripped of all direct or indirect identifiers without the possibility of
retrospective patient identification.

References

[1] Timothy O White, Samuel P Mackenzie, and Alasdair J Gray. McRae’s orthopaedic trauma and emergency
fracture management. Elsevier Health Sciences, 2015.

[2] Ronald McRae and Max Esser. Practical fracture treatment. Elsevier Health Sciences, 2008.

[3] Barry P Boden and Daryl C Osbahr. High-risk stress fractures: evaluation and treatment. JAAOS-Journal of the
American Academy of Orthopaedic Surgeons, 8(6):344–353, 2000.

[4] Donald L Resnick and Mark J Kransdorf. Bone and joint imaging. Elsevier Health Sciences, 2004.

[5] NL Fazzalari. Bone fracture and bone fracture repair. Osteoporosis international, 22:2003–2006, 2011.

[6] Pishtiwan HS Kalmet, Sebastian Sanduleanu, Sergey Primakov, Guangyao Wu, Arthur Jochems, Turkey Refaee,
Abdalla Ibrahim, Luca v Hulst, Philippe Lambin, and Martijn Poeze. Deep learning in fracture detection: a
narrative review. Acta orthopaedica, 91(2):215–220, 2020.

[7] Zhihao Su, Afzan Adam, Mohammad Faidzul Nasrudin, Masri Ayob, and Gauthamen Punganan. Skeletal fracture
detection with deep learning: A comprehensive review. Diagnostics, 13(20):3245, 2023.

[8] Pranav Rajpurkar, Jeremy Irvin, Aarti Bagul, Daisy Ding, Tony Duan, Hershel Mehta, Brandon Yang, Kaylie Zhu,
Dillon Laird, Robyn L Ball, et al. Mura: Large dataset for abnormality detection in musculoskeletal radiographs.
arXiv preprint arXiv:1712.06957, 2017.

[9] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified, real-time object
detection. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 779–788,
2016.

8



A PREPRINT - JANUARY 17, 2024

[10] Iftekharul Abedeen, Md Ashiqur Rahman, Fatema Zohra Prottyasha, Tasnim Ahmed, Tareque Mohmud Chowd-
hury, and Swakkhar Shatabda. Fracatlas: A dataset for fracture classification, localization and segmentation of
musculoskeletal radiographs. Scientific Data, 10(1):521, 2023.

9


	Introduction
	Materials and Methods
	Training Data
	Model Architecture
	Assessment
	Statistical Analysis

	Results
	Discussion
	Limitations

	Conclusion

