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Abstract

The wealth of valuable real-world medical data found within Electronic Health Record (EHR) systems is
particularly significant in the field of pediatrics, where conventional clinical studies face notably high barriers.
However, constructing accurate knowledge graphs from pediatric EHR data is challenging due to its limited content
density compared to EHR data for the general population. Additionally, knowledge graphs built from EHR data
primarily covering adult patients may not suit the unique biomedical characteristics of pediatric patients. In this
research, we introduce a graph transfer learning approach aimed at constructing precise pediatric knowledge graphs.
We present MUlti-source Graph Synthesis (MUGS), an algorithm designed to create embeddings for pediatric EHR
codes by leveraging information from three distinct sources: (1) pediatric EHR data, (2) EHR data from the general
population, and (3) existing hierarchical medical ontology knowledge shared across different patient populations.
We break down these code embeddings into shared and unshared components, facilitating the adaptive and robust
capture of varying levels of heterogeneity across different medical sites through meticulous hyperparameter tuning.
We assessed the quality of these code embeddings in recognizing established relationships among pediatric codes, as
curated from credible online sources, pediatric physicians, or GPT. Furthermore, we developed a web API for
visualizing pediatric knowledge graphs generated using MUGS embeddings and devised a phenotyping algorithm to
identify patients with characteristics similar to a given profile, with a specific focus on pediatric pulmonary
hypertension (PH). The MUGS-generated embeddings demonstrated resilience against negative transfer and
exhibited superior performance across all three tasks when compared to pediatric-only approaches, multi-site
pooling, and semantic-based methods. MUGS embeddings open up new avenues for evidence-based pediatric
research utilizing EHR data.

Introduction
Clinical trials are a well-established method for generating real-world evidence for the study of disease diagnosis
and management [1]. Among observational study methods, prospective studies following cohorts and participants’
disease status over extended time periods to identify disease risk factors are the gold standard for establishing
causality [2–4]. Not only are clinical trials and prospective studies time and resource intensive, however, but
pediatric trials and studies are also particularly difficult due to factors including additional legal regulations, ethical
dilemmas, and commercial profitability concerns [1,5,6]. The proportion of clinical drug trials that are pediatric lags
significantly behind the pediatric proportion of studied disease burdens [1,5,7–9]. Moreover, many pediatric clinical
trials suffer from poor enrollment and high termination rates [6,9,10].

The difficulty and dearth of pediatric trials and studies contribute to a lack of real-world evidence for the pediatric
population. Given the persistent shortfall of pediatric research in spite of governmental incentivisation and
regulation [11], data stored in electronic health record (EHR) systems provide a valuable alternative source for
generating real-world evidence. EHR data in the form of diagnostic and procedure billing codes, laboratory test
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records, and medication prescriptions push the frontier of clinical research. For example, EHR data have been used
to evaluate treatments and patient care models as well as to develop predictive models for diagnosis, treatment, and
clinical outcomes [12–22].

The wealth of data in EHR data expands the breadth of biomedical modeling and research, but the scale of the data
also poses challenges. A critical step in studying a disease of interest using EHR data is curating a cohort from the
clinical population that satisfies specific study criteria. Computable phenotypes are a standardized, machine-readable
approach for defining and identifying cases of a disease of interest using its demographic profile, symptoms,
laboratory tests, and other clinical information. Given their broad consideration of clinical characteristics,
computable phenotypes are also particularly useful in the study and development of precision medicine. Manually
selecting or creating the relevant medical features for computable phenotypes from thousands of EHR features is
time intensive and requires extensive domain knowledge. For poorly understood diseases, feature selection is even
more difficult [23,24]. This has opened another area of EHR clinical research into medical feature extraction and
concept representations [25,26], such as knowledge graphs. Algorithmic methods for developing knowledge graphs
can efficiently synthesize patient data and existing knowledge.

Several automated and semi-automated methods for generating knowledge graphs have been developed to guide
feature selection and modeling strategies [22,27–33]. Many of these knowledge graphs, however, are trained on
general population or adult EHR data. Adult knowledge graphs are not directly relevant to or accurate for pediatric
populations. Child-specific diseases, treatments, and preventative care create fundamental vocabulary differences
between adult and pediatric EHR data [6,34]. Even for shared EHR features, knowledge from the general population
may not precisely reflect pediatric disease progression or management. Pediatric patients often require higher
standards of precision or different rounding strategies in numeric calculations that are not reflected in adult EHR
data or studies [6,34]. Metabolic pathways and rates, receptor functions, and homeostatic mechanisms change from
childhood to adulthood. In addition to physiological differences, pharmacological factors such as dosing protocols,
drug efficacy and side effects, and therapeutic windows for pediatric patients also differ from that of adult patients
[35–38]. The relative importance of features such as social history and caregiver information may also differ
between pediatric and general population patients [6,34].

Knowledge graphs specific to children are difficult to generate from pediatric EHR alone, however, due to the
relative health of children and resulting sparsity of pediatric EHR. Long before the introduction of EHR systems,
pediatric healthcare recordkeeping developed to document well-check visits while the problem-oriented evolution of
general healthcare records reflected the general medical care model [39]. Approximately half of pediatric healthcare
visits are well-check visits and many developmental screening tests and vaccinations are unique to pediatric patients
[6,34]. The preventative care model for children renders pediatric EHR uniquely sparse as compared to EHR data
for the general population. As such, existing methods for building knowledge graphs that were developed using
general EHR data are ill-equipped to handle the unique sparsity of pediatric EHR data.

To overcome the challenges in constructing pediatric knowledge graphs, we propose a method for transferring
knowledge from a general population healthcare system. We draw knowledge from structured EHR data in the form
of EHR codes for disease diagnoses, medications, laboratory measurements, and procedures. Relationships between
EHR codes, and thus knowledge graphs, can be learned using co-occurrence data of EHR codes and inferred from
trained lower dimensional representations, known as embedding vectors, for each code. In spite of the previously
outlined differences between pediatric and adult medical data, there are still many shared codes and characteristics
between health care systems serving pediatric patients and health care systems serving the general population. This
shared foundation forms the basis for synthesizing EHR data and facilitating the transfer of knowledge.

In this study, we introduce the MUlti-source Graph Synthesis (MUGS) algorithm, designed to learn accurate code
embeddings from sparse pediatric EHR data. This is achieved through leveraging two additional sources: prior
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hierarchical medical ontology knowledge and EHR data from the general population obtained from a second
information-rich system. By synthesizing these sources, we deconstruct a code embedding into three effect
components: the group effect, the overlapping code effect, and the code-site effect. The first two effect types are
shared across sites, portraying the homogeneity and similarity. More specifically, the group effect defined by the
shared hierarchical medical ontology, has the potential to enhance the transferability of knowledge from the
information-rich site. The third effect type is strategically employed to encompass the potential heterogeneity that
might exist across sites. Operating within this decomposition framework, our algorithm systematically learns
embeddings for each site-specific code via alternating penalized linear regressions. Fine-tuning the hyperparameters
in our model not only ensures adaptability to varying degrees of heterogeneity between sites but also fortifies our
approach against any adverse effects of negative transfer.

We substantiated the superior performance of MUGS-generated embeddings in comparison to pediatric-only,
multi-site pooling and semantic-based methods by their ability to identify established pediatric codes relationships
and recognize codes linked to six target diseases. These gold standard code-code pairs for evaluation were curated
from reputable online sources, endorsed through pediatric physician input garnered via a survey, or validated using
GPT. Moreover, MUGS embeddings enhance the understanding of the heterogeneity between pediatric patients and
general patients. In this study, we focused on epilepsy and pulmonary hypertension (PH). They also enable
high-quality downstream tasks including the creation of pediatric knowledge graphs, pediatric patient classification
and clustering, and more. To provide an accessible avenue for visualizing the pediatric knowledge graphs rooted in
MUGS embeddings, we've developed an intuitive Shiny App, which can assist pediatric computable phenotyping.
Additionally, we formulated a phenotyping algorithm to identify 'patient-like-me' profiles, concentrating on pediatric
PH.

Results

Data Preprocessing
We utilized EHR data from Mass General Brigham (MGB) encompassing 2.5 million patients and Boston Children’s
Hospital (BCH) encompassing 0.25 million patients in four codified domains: PheCode for diagnoses, RxNorm for
medications, Logical Observation Identifiers Names and Code (LOINC) [40] for laboratory measurements, and
Clinical Classifications Software (CCS) for procedures. After frequency control, we found that 3055 codes are
shared between the two hospital systems, while 1221 codes are unique to BCH and 2350 codes are unique to MGB.
The top-down hierarchical structure of medical ontology concepts shared across different hospital systems allows a
comprehensive aggregation of the codified data into a common ontology. After applying the hierarchical roll-up, we
obtained 337 groups for PheCodes, 304 groups for RxNorm codes, and 700 groups for LOINCs. We then generated
a summary-level co-occurrence matrix of EHR codes for each site as described in [25]. The co-occurrence matrix of
MGB data is the same as that used in [27]. To allow for further analysis of the dependency between codes, we
constructed a shifted positive pointwise mutual information (SPPMI) matrix [41] from each co-occurrence matrix.

Model Overview: Knowledge Transfer via MUGS
MUGS co-trains embeddings for medical codes using SPPMI matrices from MGB and BCH. Due to the imbalance
of EHR data in MGB and BCH, it transfers useful knowledge from the information-rich site MGB to enhance the
quality of embeddings in the information-sparse site BCH. Each embedding is decomposed into three components:
the group effect, the code effect, and the code-site effect. The group effect incorporates prior knowledge from the
hierarchical medical ontology, which is shared across sites and within groups. The code effect represents site
nonspecific knowledge shared for a code across sites. The code-site effect depicts site-specific knowledge, crucial
for capturing the potential heterogeneity across sites.

To regularize the model, we employ two penalties for the code effect and code-site effect, respectively. When the
penalty for code-site effect approaches infinity, it reflects thorough homogeneity between the sites, that is, any
overlapping code has the same embedding across sites. When both penalties approach infinity, codes in the same
ontology-defined group share one embedding across sites. Conversely, when both penalties are zeros, MUGS
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degenerates to direct singular value decomposition (SVD) of the SPPMI matrix within each site. Consequently,
MUGS is robust against negative transfer and is guaranteed to be no worse than the single-site Skip-Gram method,
which is equivalent to conducting SVD of a SPPMI matrix [41]. MUGS can adaptively identify homogeneous codes
and heterogeneous codes via a tuning procedure. Details are available in the Supplement. Specifically, as depicted in
Figure 1, Panel (B), MUGS assigns the same embedding to codes with similar meanings for general and pediatric
patients, such as bacterial enteritis, while assigning different embeddings for codes that perform differently for these
patient groups, such as epilepsy.

MUGS has mian four steps: (1) conducting SVD of SPPMI matrix within each site, (2) performing orthogonal
transformation to align multiple sets of embeddings, (3) training initial estimators for group effects, code effects, and
code-site effects by pooling aligned embeddings across sites, (4) updating the group effects, code effects, and
code-site effects through alternating and iterative solutions of penalized linear regressions until convergence. Figure
1, Panel (A) outlines the procedures with MGB and BCH data, and a more detailed and comprehensive explanation
is available in Knowledge Transfer via MUGS of Methods Section. As depicted in Figure 1, Panel (C), using
MUGS embeddings as input, we can perform a wide range of downstream tasks, such as creating pediatric
knowledge graphs, learning pediatric patient embeddings for patient classification and monitoring, and more.

Figure 1. (A) Schematic of the overall MUGS algorithm, (B) illustration of a heterogeneous code, PheCode:345.1
(Epilepsy), and a homogeneous code, PheCode:008.5 (Bacterial Enteritis), between MGB and BCH, and (C)
potential pediatric downstreams using MUGS embeddings as input.
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Accuracy, Adaptivity, and Robustness of MUGS Compared with Benchmark Methods
We compared our MUGS method with four benchmark methods. CODER [42] and SapBert [43] are two pre-trained
large language models that solely utilize the descriptions of each medical code from BCH without considering EHR
data. Skip-Gram is a single-site word embedding method, which conducts SVD on the SPPMI matrix from BCH
[41]. PreTraining aggregates co-occurrence information from MGB and BCH as one cooccurrence matrix by adding
up the counts of medical codes and then applies SVD to get embedding of each code. With this method, codes that
exist in both systems are assigned the same embedding. The dimension of embedding for Code and SapBert was
768 as used in [42][43][42]. The dimension of embeddings for other methods was set for 500. A detailed discussion
on how to select the dimension of embedding is available in the Discussion Section.

As illustrated in Figure 2, we validated and evaluated the pediatric embeddings trained using different methods
through three primary references: pediatric labels curated from literature, manual curation by pediatric physicians,
and curation by GPT-3.5 and GPT-4. Detailed curation procedures are available in Gold Label Curation of Methods
Section.

Figure 2. Three primary references on pediatric gold labels for validation and evaluation of pediatric embeddings:
semi-automatic positive label curation from literature (BCH website, Cincinnati Children's Hospital (CCH) website,
and UpToDate), manual label curation with three levels by pediatric physicians via a survey on six target diseases,
and automatic relatedness score curation by GPT-3.5 and GPT-4 on the six target diseases.

We first assessed the quality of the pediatric embeddings by measuring the accuracy of cosine similarity between
two embeddings of each code-code pair in classifying gold standard pairs curated from literature versus random
pairs. Gold standard pairs curated from literature indicate the presence of strong relationships, while the sparsity of
the network allows us to assume that each random pair represents a weak or no relationship. Figure 3 summarizes
the accuracy of different methods using area under the ROC curve (AUC). We can see that MUGS outperforms all
four benchmark methods in terms of AUC for different types of code-code pairs from different expert sources. The
poor performance of Coder and SapBert, which were pre-trained based on a medical knowledge graph named the
Unified Medical Language System (UMLS) developed for the general patient population, illustrates the
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heterogeneity between the general patient population and the pediatric patient population. It also suggests that EHR
data from BCH is a valuable source for enhancing the quality of pediatric embeddings. Moreover, PreTraining,
which leverages EHR data from MGB, beats Skip-Gram, which only utilizes EHR data from BCH. This suggests a
degree of similarity between MGB and BCH, enabling knowledge transfer from MGB to improve the quality of
pediatric embeddings.

To further highlight the potential advantages of MUGS, we categorized the codes into two groups based on code
frequencies: rare codes, representing those with a patient proportion less than 0.1%; and frequent codes,
encompassing those with a patient proportion greater than or equal to 0.1%. By selecting a cutoff of 0.1%, we
ensured a sufficient number of rare codes for accurate evaluation within this category, and the marginal frequency of
each rare code is relatively low. The accuracy results are summarized in Figure 4. Compared with single-site
method Skip-Gram, both PreTraing and MUGS exhibit higher accuracies in terms of rare codes by leveraging
knowledge from MGB. More importantly, MUGS surpasses PreTraining by enabling the adaptive identification of
heterogeneous codes, especially frequent ones, which possess distinct embeddings in MGB and BCH.

Figure 3. Comparison on AUC between MUGS and benchmark methods using gold labels curated from articles in
children’s hospital websites (BCH and CCH) and pediatric articles from UpToDate website.



Figure 4. Comparison on AUC between MUGS and benchmark methods using gold labels curated from articles in
children’s hospital websites (BCH and CCH) and pediatric articles from UpToDate website. Rare pairs are those in
which at least one code is rare, while frequent pairs are those in which at least one code is frequent.

Secondly, we evaluated the quality of the pediatric embeddings by calculating the rank correlation (Kendall’s tau)
between cosine similarity, mean scores of gold labels manually curated by pediatric physicians, and ranking scores
curated by GPT-3.5 and GPT-4 for six target diseases: Epilepsy, PH, Asthma, Type 1 Diabetes, Ulcerative Colitis,
and Crohn’s disease. Figure 5 clearly demonstrates that MUGS outperforms benchmark methods, exhibiting the
highest rank correlations with gold manual labels, GPT-3.5 labels, and GPT-4 labels. Considering that the rank
correlation between GPT-3.5 and GPT-4 is 0.81, the relatively high rank correlations of MUGS with the three types
of gold labels further verify the quality of MUGS pediatric embeddings. More details on the evaluation methods can
be found in Evaluation in Methods Section.



Figure 5. Average Kendall’s tau is computed for six target diseases between different methods. Cosine similarities
are used for MUGS and benchmark methods, mean scores between 0 to 1 are used for Manual Labels, and ranking
scores between 0 to 1 are used for GPT-3.5 and GPT-4.

Homogeneity and Heterogeneity in Epilepsy and PH for General and Pediatric Patients
Figure 6. and Figure 7. illustrate the relationship among the 15 codes with highest cosine similarity for epilepsy and
PH, respectively, and compare the cosine similarity between BCH and MGB. The analysis demonstrates that MUGS
effectively captures both the homogeneity and heterogeneity between general patients and pediatric patients with the
two diseases. Notably, a total of 13 codes exhibit shared occurrence across both MGB and BCH datasets for
epilepsy, and 12 codes demonstrate such shared occurrence for PH in terms of procedures, laboratory tests,
conditions including comorbidities and symptoms, and medications, highlighting the substantial similarity present
between the two sites regarding the two respective diseases.

MUGS embeddings also effectively capture expected heterogeneity between populations. For instance, infantile
cerebral palsy, a group of intellectual and movement disorders that emerge in early childhood, ranks as the ninth
related feature concerning epilepsy at BCH, with a cosine similarity of 0.50, while at MGB, it is the 15th-most
related feature with respect to epilepsy, with a cosine similarity of 0.41. Topiramate is among the drugs most closely
associated with epilepsy at BCH but has lower cosine similarity at MGB, perhaps reflecting the more diverse uses of
the drug in adult populations, including prevention of migraines, treatment of psychiatric disorders, and management
of weight [44].

Shifting to the realm of PH-related features, notable differences between BCH and MGB include rheumatic heart
disease being selected only at MGB as an associated condition, while complications of cardiac/vascular device and
nonrheumatic tricuspid valve disorders are only selected at BCH. These contrasts reflect expected differences in
population where BCH cares primarily for patients with congenital heart disease while MGB cares primarily for
patients with acquired heart disease. Similarly, ambrisentan was not selected as a highly associated medication at
BCH but was at MGB, reflecting known practice variations between centers.

Another illustration on homogeneity and heterogeneity via knowledge graphs created in a web API with the two
diseases between general and pediatric patients can be found in Figure S1. and Figure S2. in Supplement.
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Figure 6. Top 15 codes selected based on the cosine similarity with epilepsy using MUGS embeddings for MGB
and BCH. For conciseness, parent PheCodes are omitted if child codes are presented. LOINC codes Valproate,
levETIRAcetam, lamoTRIgine, Topiramate, Zonisamide and OXcarbazepine are derived by moving up one layer in
the LOINC hierarchy. For example, Topiramate (LP19239-0) is the parent code encompasses various leaf codes,
such as topiramate [Mass/volume] in Blood (LOINC: 60192-2), and Topiramate [Mass/volume] in Urine (LOINC:
60193-0).

Figure 7. Top 15 codes selected based on the cosine similarity with PH using MUGS embeddings for MGB and
BCH.

Epilepsy or PH Related Codes Identification for Pediatric Patients
Figure 8. and Figure 9. depict feature clouds generated using embeddings for epilepsy and PH, respectively. The
clouds were created using MUGS and Skip-Gram embeddings based on cutoffs of cosine similarity for four
categories: PheCode-PheCode, PheCode-RxNorm, PheCode-LOINC, and PheCode-CCS. Detailed information on
how these cutoffs are selected is provided in Feature Selection: Cutoff of Cosine Similarity in the Methods section.
For epilepsy, with the same cutoff selection method, the number of selected features using Skip-Gram embeddings is
16, compared to 130 using MUGS embeddings, primarily due to the sparsity of BCH EHR data. Consequently,
important features such as infantile cerebral palsy and lacosamide, an antiepileptic medication, were not selected by
the Skip-Gram method but were captured by our MUGS method. MUGS embeddings also identified detailed CSF
testing including CSF amino acid profiling and neurotransmitters, important components of diagnosing epilepsy that
are particular to the pediatric population. Similarly, in the context of PH, Skip-Gram embeddings identified 33



related features, whereas MUGS embeddings identified 58. For example, Bosentan, which is primarily used to treat
PH, was solely selected by our MUGS method. MUGS also uniquely identified the association between PH and
pulmonay embolism. In contrast, the Skip-Gram method identified degeneration of the macula and posterior pole of
the retina (PheCode: 362.2) as a relevant condition, but the association between this condition and PH is not readily
apparent.

(A) (B)
Figure 8. Feature clouds for epilepsy based on cosine similarity of (A) MUGS embeddings and (B) Skip-Gram
embeddings for BCH. Codes selected by both methods are in purple, codes only selected by MUGS are in blue, and
codes only selected by Skip-Gram are in green. The size of the words is proportional to the cosine similarity of
embeddings of each code-code pair.

(A) (B)
Figure 9. Feature clouds for PH based on cosine similarity of (A) MUGS embeddings and (B) Skip-Gram
embeddings for BCH. Codes selected by both methods are in purple, codes only selected by MUGS are in blue, and
codes only selected by Skip-Gram are in green. The size of the words is proportional to the cosine similarity of
embeddings of each code-code pair.



Classifying Pediatric Patients for the Diagnosis of PH
With the target disease PH, we used a dataset comprising 91 pediatric patients from BCH whose records included at
least one PheCode:415.2. Each patient’s true PH status was labeled by a domain expert via manual chart review
[45]. Among them, 66 were labeled as positive, indicating a diagnosis of PH, and the remaining 25 patients were
labeled as absent of PH diagnosis.

The performance of patient classification, utilizing patient embeddings generated from the aforementioned five
distinct sets of code embeddings, is summarized in Table 1. Additionally, a benchmark method relying solely on the
count of ICD code corresponding to PH was employed for comparison. Except the ICD-Benchmark, the five
patient-embedding-based methods harness the interconnectedness between various medical codes and PH by
gauging the cosine similarity between the respective code embeddings. The detailed patient screening procedure,
patient embedding construction, and classification methodology are elaborated in Patient Embeddings Generation
and ‘Patient-like-me’ Classification in Methods Section. Furthermore, a visual representation of patient
classification with PH using MUGS embedding can be found in Figure 10.

Notably, Coder and SapBert are significantly worse than other methods which utilize EHR data in classifying
pediatric patients for PH diagnosis. This stark contrast underscores the substantial value of leveraging EHR data for
accurate patient classification and the identification of 'patient-like-me' profiles. MUGS and Skip-Gram outperform
ICD-Benchmark, exhibiting the efficiency gained through capitalizing on the relatedness between medical codes
learned with EHR data. Comparatively, the performance of PreTraining is worse than that of the ICD-benchmark
and Skip-Gram, which indicates significant heterogeneity in PH presentation between pediatric patients and general
patients. MUGS emerges as the most effective method with the highest AUC, sensitivity, and positive predictive
values (PPV) at specificity = 0.95, which further illustrates its efficiency, adaptivity and robustness in code
embeddings construction and consequently, patient classification.

Table 1. The mean and standard deviation (SD) of 150 AUCs, sensitivities and positive predictive values (PPV) at
specificity = 0.95 on classifying pediatric patients with and without PH of five different code embeddings generating
methods, alongside an ICD-Benchmark (ICD) method soly utilizing the count of PheCode:415.2.

ICD Coder SapBert Skip-Gram PreTraining MUGS

AUC 0.941 (0.038) 0.698 (0.084) 0.710 (0.086) 0.951 (0.032) 0.924 (0.047) 0.961 (0.030)

Sensitivity 0.772 (0.126) 0.216 (0.181) 0.248 (0.208) 0.801 (0.111) 0.679 (0.169) 0.822 (0.115)

PPV 0.975 (0.004) 0.819 (0.225) 0.871 (0.238) 0.976 (0.004) 0.971 (0.009) 0.977 (0.004)
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Figure 10. Three-dimensional illustration of pediatric patients classification with PH based on the first three
principle components (PCs) of MUGS embeddings for BCH. In the figure, red points represent patients diagnosed
with PH, while green points represent patients without a PH diagnosis.

Discussion
The MUGS approach efficiently and robustly summarizes patient-level EHR data into institution-specific code
embeddings by leveraging existing hierarchical medical ontologies and co-training EHR data from multiple
institutions. The novel integration of these additional data sources empowers the generation of high-quality
embeddings, even from sparse EHR data, adaptively capturing the inherent heterogeneity across EHR populations.
The MUGS approach thus facilitates knowledge graph construction, feature extraction, computable phenotyping,
and patient clustering in studying pediatric patients and other populations with sparse EHR data. MUGS
outperforms existing methods in several aspects. First, it enhances knowledge transfer across sites via a shared
hierarchical medical ontology. Second, it can adaptively capture the homogeneous codes and heterogeneous codes
across sites as well as the strength of different group effects through hyperparameter tuning. Last, it maintains
robustness against negative transfer, ensuring no performance degradation when introducing data from another site.

MUGS embeddings can be used for several downstream tasks that rely on accurate concept embeddings tailored to
unique patient populations. This becomes especially pivotal when dealing with information-scarce populations or
sites, and it is critical in studying rare diseases and diseases that manifest or progress differently across patient
populations. An essential application involves automated feature selection, a process utilizing code embeddings for
identifying relevant concepts for studying a disease condition. This can range from straightforward cosine similarity
cutoffs to more complex feature selection algorithms. Effective feature selection plays an important role in the
construction of knowledge graphs and phenotyping efforts. Furthermore, MUGS embeddings can be used to
construct high quality population-specific patient embeddings, facilitating the precise and unbiased development of
computable phenotypes, curation of study cohorts and ‘patient-like-me’ identification tailored to specific
populations, such as pediatric patients with PH from BCH. The joint representation learning framework adopted in
MUGS entails unified embeddings across different institutions, which also allows us to use a specific patient cohort
from a “seed” institution, say a small number of PH patients assembled at BCH, to identify “patient-like-me” from
another institution.

While the training of MUGS using BCH and MGB data already achieved strong performance results compared to
existing methods, there are a few aspects of this study can be improved. One limitation is that MUGS forces the
dimension of embedding to be the same across different sites. However, it is possible that the optimal dimension in
different sites may vary. In practice, we can use the largest one as the dimension of embedding of MUGS. One
potential future work to address this limitation is to allow different dimensions for group effect, code effect and



code-site effect in different sites, then concatenate them as a longer embedding for a code in a site. Incorporating
code-site weights based on the frequencies of different codes across sites, available in EHR data, is another future
work worth studying. It could potentially improve the efficiency of identifying heterogeneous codes, especially
frequent and heterogeneous ones. Additionally, the evaluation and validation currently rely on a limited set of gold
pediatric labels focusing on PheCode-PheCode and PheCode-RxNorm relationships, which could be expanded to
include more relationship types, such as disease and laboratory test pairs or disease and procedure pairs. It could
further enhance the assessment of performance of pediatric embeddings. Moreover, when identifying epilepsy and
PH related codes for pediatric patients, we used an ad-hoc quantile-based cutoff selection method for feature
extraction. Other systematic feature extraction methods, such as sparse embedding regression [27], can also be
employed, which might offer additional insights and potential improvements in the identification process. To
generate more comprehensive knowledge graphs, unstructured/uncoded concepts from clinical notes can be included
as Concept Unique Identifiers (CUIs) when constructing the co-occurrence matrices.

In conclusion, we have demonstrated how MUGS excels in versatile and robust knowledge graph
co-training/transfer learning. It co-trains EHR data from MGB and BCH, and effectively transfers knowledge from
general patients to pediatric patients, overcoming the challenges of heterogeneity between the populations and
sparse pediatric EHR data. MUGS not only facilitates research on understudied pediatric populations but also
provides a transfer learning framework for diverse healthcare populations.

Methods

Data Preprocessing
BCH is a quaternary referral center for pediatric care and also serves as a primary and specialty care site for the local
community. MGB is a Boston-based non-profit hospital system serving primarily an adult population, although
MGB also provides neonatal and some general and subspecialty pediatric care. A total of 250,000 patients from
BCH and a total of 2.5 million patients from MGB with codified data with at least one visit were included in this
analysis.

We gathered four domains of codified data including diagnosis, medication, lab measurements and procedures from
BCH and MGB. Diagnosis International Classification of Disease (ICD) codes representing the same general
diagnosis were aggregated under a single representative one-digit level PheCode using the ICD-to-Phecode mapping
from the PheWAS catalog (https://phewascatalog.org/phecodes) [46]. Local medication codes were consolidated
under the RxNorm codes [47]. Local laboratory measurement codes were aggregated under the corresponding
LOINC codes. Due to the difference in coding systems between MGB and BCH, we rolled up LOINC codes with
the same meaning as a new code. For example, we rolled up LOINC:30341-2 (ESR Bld Qn) and LOINC:4537-7
(ESR Bld Qn Westrgrn) to LP16409-2 (Erythrocyte sedimentation rate). We assigned CCS categories to procedure
codes, including CPT-4 (Current Procedural Terminology), HCPCS, ICD-9-PCS, and ICD-10-PCS codes, using the
CCS mapping software (https://www.hcup-us.ahrq.gov/toolssoftware/ccs_svcsproc/ccssvcproc.jsp). The top-down
hierarchical structures of PheCodes, RxNorm codes, and LOINC codes, allow a comprehensive aggregation of the
codified data into a common ontology.

We generated a summary-level co-occurrence matrix of EHR codes for each site as described in [25]. To start, we
created an individual co-occurrence matrix of EHR codes for each patient’s extracted data. The rows and columns of
these square matrices represent EHR codes, with entries indicating the number of times each pair of codes co-occur
in the patient’s EHR record within 30 days. We sumed the individual co-occurrence matrices for all patients in each
site to yield a summary-level co-occurrence matrix. If the co-occurrence number is less than 200, we replaced it with
zero and removed columns and rows with all zeros from the co-occurrence matrix to achieve frequency control. To
further study the dependency between two codes, we constructed the SPPMI matrix for BCH and MGB.

We denote the co-occurrence matrix in site as , . In this analysis, we have two sites BCH
and MGB, and . We use to denote the vocabulary, the set of all medical codes, of site , and to denote
the cardinality of . For the th site, the th entry of the SPPMI matrix is obtained as

, where is the negative sampling value which is often set to
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1, i.e., no shifting, and are the th row sum and th column sum of the cooccurrence matrix ,
respectively.

Knowledge Transfer via MUGS
Embedding Decomposition
The proposed MUGS algorithm utilizes SPPMI matrices from multiple sites and incorporates shared hierarchical
medical ontology knowledge by decomposing the embedding for a code at a given site into group effect, code effect,
and code-site effect component embeddings. Formally, we decompose the -dimensional embedding vector for
code i in site k, denoted by , as

In the first term of the decomposition, index denotes the group of code , defined by the
hierarchical medical ontology, is the corresponding group containing codes, and is the embedding of
the effect of group . In the second term, is the effect of code i. The third term is the code-site effect of code
i at site k that can capture heterogeneity across sites, and is the set of overlapping codes present in at least two
sites, with cardinality . Note that if a group only contains one code, then the group effect and code effect are not
separable. Similarly, for non-overlapping codes that only exist in one site, code effect and code-site effect are not
separable. To ensure model identifiability, we introduce the indicator function and assume the group effect is
non-zero only if the code is part of a nontrivial group (i.e., a group consisting of two or more codes), and code-site
effect is non-zero only if the code existing in at least two sites.

Penalized Loss Function
The MUGS algorithm learns , , and for all codes across sites from the SPPMI matrices using the
following model:

where the error term represents the noises of SPPMI matrix observed in site . To estimate the group, code, and
code-site effects , we employ a loss function
with penalties for the code and code-site effects:

(1)
where and are two tunable hyperparameters. We highlight that the hyperparameters and can be tuned
adaptively to the degree of heterogeneity across sites and the importance of the hierarchical medical ontology. We
can see this by considering the following extreme cases. When the underlying populations of the sites share little
similarity, both and would be selected as zeros. Consequently, the penalty terms disappear and the method
reduces to direct matrix factorization with respect to SPPMI matrix within each site. In this case, no knowledge will
be transferred. When the underlying populations of the sites are exactly the same, would approach infinity.
Consequently, the code-site effects would be shrunk to zeros, and the resulting embeddings are dominated by the
group and code effects that are shared across sites. When the underlying populations of the sites are exactly the
same and codes in a group also act in the same way, both and would approach infinity. In this case, both code
and code-site effects are shrunk towards zeros and the resulting embeddings are dominated by group effects. In the
analysis with BCH and MGB data, we observed that some codes behave similarly within both pediatric and adult
patients, while others exhibit distinct patterns. Certain groups of codes act as cohesive units, while other groups
show variability in their individual code behaviors. By tuning and carefully, we can effectively identify
homogeneous and heterogeneous codes, and control the signal strength of different group effects.

Additionally, we prioritize the code-site effect in the optimization process, which is the key of capturing potential
heterogeneity across sites. With the unsquared L2 code-site penalty, code-site effects are allowed to be shrunk to
exact zero, implying these codes are homogeneous across sites, whereas the penalty on code effects is a ridge
penalty that prevents overfitting of code effects and controls the signal strength of group effects. The design of our
loss function thus ensures adaptability and a robust performance that is no worse than the baseline single-site matrix
factorization method, Skip-Gram method.
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The decomposed, non-convex nature of the loss function (1) prevents the use of standard optimization algorithms.
We propose an alternating and iterative method to minimize it within a broader context, where matrix can be
asymmetric, which is frequently encountered in recommendation system problems. The detailed procedures on
minimization and hyperparameters tuning are given in the Supplement.

Gold Label Curation
Label Curation from Literature
To evaluate the quality of the MUGS embeddings specifically on the pediatric population, we semi-automatically
curated new pediatric gold labels by performing named entity recognition on disease-specific articles from three
expert sources: BCH website (https://www.childrenshospital.org/conditions), CCH website
(https://www.cincinnatichildrens.org/search/health-library), and UpToDate
(https://www.wolterskluwer.com/en/solutions/uptodate). The web pages serve as the authoritative source, bypassing
the need for individual expert curation. Our process begined by using a web crawler to gather paragraphs of
information from each disease page on the websites. For UpToDate, which contains articles about a variety of
medical subjects not specific to pediatrics, we only selected articles whose titles contain terms like “child”,
“neonate”, or “infant”. Then, we used the Narrative Informative Linear Extraction (NILE) algorithm [48] to identify
key CUIs representing diseases and corresponding conditions, symptoms, and treatments. For each disease, we
generated CUI-CUI pairs of two general forms: disease-condition and disease-treatment. The CUI pairs were
translated into two types of medical code pairs, PheCode - PheCode and PheCode - RxNorm, utilizing an
industry-standard CUI-code dictionary, thereby completing the curation of gold pediatric code-code pairs. In total,
13585 relatedness pairs specific to pediatric conditions are created - 5911 pairs of diseases and drugs (PheCode -
RxNorm) and 7674 pairs of diseases and conditions (PheCode - PheCode). Of the 13585 pairs created, 798 are from
CCH, 1751 are from BCH, and 11036 are from Up-To-Date. Note that not all codes curated here exist in the
co-occurrences matrix from BCH.

Manual Label Curation by Pediatric Physicians
A survey was conducted among pediatric physicians, focusing on six target diseases: Epilepsy,PH, Asthma, Type 1
Diabetes, Ulcerative Colitis, and Crohn’s disease. For each target disease, a random selection of 10 additional
conditions and 10 medications was made. Respondents were asked to indicate their perception of the relationship by
choosing from 'strongly related', 'maybe related', or 'not related'. We received 14 responses for Epilepsy, 6 responses
for Pulmonary Hypertension, and one response each for the remaining four diseases.

Label Curation from ChatGPT and GPT4
For each target disease in the survey above, we tasked GPT-3.5 and GPT-4 as AI models with medical knowledge to
assign a score on the degree of relatedness between the target disease and each of the 20 medical codes paired with
the target disease in the survey. The specific instruction we provided to GPT-3.5 and GPT-4 was as follows: ‘As an
AI with medical knowledge, your task is to evaluate the degree of relatedness between two clinical concepts. The
objective is to aid in feature selection specific for pediatric patients, implying that the concepts should ideally bear
some clinical or medical connection. Please provide your evaluation as a numerical value, rounded to two decimal
points, ranging from 0 (no correlation) to 1 (highly correlated). Note: Only respond with a SINGLE numerical value,
NO textual explanations.’

Evaluation
We first assessed the quality of the embeddings by measuring the accuracy in detecting gold standard pairs
(PheCode-PheCode and PheCode-RxNorm) curated from pediatric literature. Within each type of relation, majority
of the pairs are unrelated. The sparsity of the network allows us to assume that each random pair represents a weak
or no relationship. For each type of relation, using the gold labels curated from a certain source of the literature, we
randomly generated an equal number of random pairs, created a binary vector of 1's and 0's indicating the presence
or absence of a strong relationship. We then computed the cosine similarity between the embeddings in each pair.
The accuracy was summarized using the AUC between the cosine similarity and the binary vector.

For manual labels curated by physicians, we recoded 'strongly related' as 1, 'maybe related' as 0.5, and 'not related' as
0, then calculated the mean score for each pair. For each target disease, labels curated from GPT-3.5 and GPT-4
provided ranking scores between zero and one, reflecting the degree of relatedness. Unlike binary gold labels
curated from literature, these ordinal labels contain more information. As a result, we utilized Kendall’s tau as the
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evaluation criterion instead of AUC. Specifically, for each target disease, we calculated cosine similarity of each
pairs using embeddings from four benchmark methods and MUGS. We then computed Kendall’s tau among cosine
similarities, mean score from manual labels and ranking score from GPT labels. The average Kendall’s tau of the six
target diseases served as the final evaluation criterion.

Feature Selection: Cutoff of Cosine Similarity
When using a PheCode as the target, we consider four types of pairs: PheCode-PheCode, PheCode-RxNorm,
PheCode-LOINC, and PheCode-CCS. To determine suitable cutoffs for feature selection, we randomly generated
5000 pairs for each type and calculated the 99th quantile of their cosine similarities based on code embeddings. We
then used these four quantiles as cutoffs to select codes. Specifically, we retained codes whose cosine similarities
with the target code were greater than or equal to the respective cutoff within each group.

Patient Embeddings Generation and ‘Patient-like-me’ Classification
With target disease PH (PheCode:415.2), we selected BCH patients who have received at least one PheCode:415.2
in the corresponding EHR to form the study cohort. After patient screening, we obtained a dataset comprising 2735
patients. Among these patients, 2644 patients did not have any labels related to PH, while 91 patients had labels
assigned by pediatric physicians.

We formulated a patient embedding as the weighted sum of code embeddings. The weight assigned to each code for
a specific patient is determined by taking the logarithm of one plus the count of times the code appears in the
patient's EHR, divided by the logarithm of one plus the count of patients who received this code. This weight is then
further multiplied by the cosine similarity between the code and the target disease calculated using code
emebddings.

We assume that the patient embeddings of the case group and the control group follow Gaussian distributions with
different means but the same covariance matrix. By minimizing the within-class variance and maximizing the
between-class variance, we can identify ‘patient-like-me’. Specifically, to reduce the dimension, we first performed
principal component analysis (PCA) on patient embeddings derived from various sets of code embeddings,
including Coder, SapBert, Skip-Gram, PreTraining, and MUGS, totaling 2735 labeled and unlabeled patients. We
selected the first PCs as predictors and applied them to conduct regularized discriminant analysis (RDA) [49]
using labeled data. There are two regularization parameters in RDA. We set the first regularization parameter to one,
which yields linear discriminant analysis (LDA). LDA maximizes the ratio of between-class variance to within-class
variance. Due to the relatively small labeled dataset, LDA can be poorly-posed. To stabilize the computation, we
treated the second regularization parameter in RDA, which controls the shrinkage toward the identity matrix, as a
tuning parameter. We also treated as a tunning parameter. We fine-tuned the two tuning parameters through
two-fold cross-validation using mean squared error (MSE) as the guiding criterion. We then refitted the model using
the selected optimal tuning parameters corresponding to the smallest MSE.

To assess the performance of diverse patient embeddings, we partitioned the data randomly into three folds,
employing two for model training and the remaining one for evaluation. To mitigate the impact of random sampling,
we repeated this data splitting process 50 times and reported the mean and standard deviation of 150 AUCs,
sensitivities, and PPVs as our final outcomes. In addition to the aforementioned five methods, we established
another ICD-benchmark outcome. This benchmark employs the logarithm of one plus the count of PheCode:415.2
for each screened patient as a predictor and fits a LDA using labeled data.
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Supplement:

Optimization Algorithm
Although in this paper, we focus on SPPMI matrices from EHR data, our MUGS approach can be applied to broader
settings where is asymmetric. For example, can be a utility matrix of th recommendation
system, with users and items. Hence, we consider the following more general model:

Embedding vector can be similarly decomposed into , where
denotes the group of item , and is the corresponding group containing items. Let

, the loss function (1) can be
correspondingly extended to

(2)

In order to optimize to the correct minimum of the non-convex loss function (2), we first need to find relatively good
initial estimators for the effects of interest. The following Steps 1-3 are on constructing initial estimators of and
, while Step 4 is on updating these effects alternatingly and iteratively until convergence.

Step 1: Perform SVD on the SPPMI/utility matrix in each site, and select the top singular values and
corresponding left and right singular vectors. Let be a diagonal matrix whose diagonal elements
consist of these top singular values, arranged in descending order. Let represent the matrix
containing the corresponding left singular vectors, and let represent the matrix containing the
corresponding right singular vectors in in site . The initial Skip-Gram embedding for each code/user and item in

site is denoted by and , where and are the th rows of matrices
and , respectively.

Step 2: Align the directions of sets of initial Skip-Gram embeddings via orthogonal transformation using

overlapping codes. Let denote the initial Skip-Gram embedding matrix of site
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, and denote the initial Skip-Gram embedding matrix in site of the overlapping codes in site and site
. The estimated orthogonal transformation matrix can be obtained as

, for , where is the set of all
orthogonal matrices, and denotes the Frobenius norm. This can be solved by an orthogonal procrustes

problem. Then the aligned embedding matrices in site are defined as and

, for , and . Since , then

Step 3: Calculate initial estimators for group, code, and code-site effects, denoted by , , and , via pooling

the aligned initial Skip-Gram embeddings across sites. Specifically, , where is the sum

of number of codes in group in sites, , and

, for and . For symmetric , , ,

and . Otherwise, , , and can be estimated similarly using , .

Step 4: For each iteration , update and in an alternating fashion.
Step 4.1: Iteratively update , component-wise, by fixing :

When the stopping condition , where is the pre

specified tolerance, is met, set .
Step 4.2: Iteratively update , component-wise, by fixing the updated . In the same manner as

Step 4.1, sequentially and iteratively update , , and until the stopping condition is met. Then, set

.
Step 4.3: Repeat Step 4.1 and Step 4.2 until the stopping condition

is met. Output and as the final MUGS embeddings.

Tuning Procedure
We randomly selected 25% gold standard pairs from UpToDate pairs to tune , and the remaining 75% of
gold standard pairs were utilized to assess the quality of the embeddings. During the tuning procedure, we randomly
selected an equal number of random pairs as controls. For embeddings trained with a given , AUC of the
cosine similarity in distinguishing gold standard pairs from random pairs was calculated using the 25% gold
standard pairs from UpToDate. We select maximizing the AUC as the final hyperparameters.

Multi-View Knowledge Graphs
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We have developed a Shiny App (https://dev.parse-health.org/shiny/multi-view-net/) that showcases the knowledge
graphs generated using MUGS embeddings for both MGB and BCH. The App offers users the flexibility to utilize
MGB-only, BCH-only, or both MGB and BCH MUGS embeddings. It allows users to select one or more target
medical concepts and perfrom feature selection by specifying cosine similarity cutoffs for four types of codes in
MGB and BCH or determining the number of top nodes to display based on five different sorting criteria.

Figure S1, a screenshot of the App, presents a knowledge graph on epilepsy. We identified the top 30 codes most
relevant to epilepsy based on the mean of cosine similarities for MGB and BCH with MUGS embeddings. Among
these codes, 23 are shared between the two patient populations, denoted by yellow dashed edges, while seven codes
are specific to pediatric patients from BCH, indicated by blue dashed edges. For example, one of the specific codes
for pediatric patients is Vigabatrin, a medication utilized in managing infantile spasms and refractory complex
partial seizures. We also identified the top 30 codes most relevant to PH based on the mean of cosine similarities for
MGB and BCH with MUGS embeddings, presented in Figure S2. Among these codes, 23 are shared between the
two patient populations, while four codes are specific to BCH patients, and three codes are specific to MGB patients,
indicated by red dashed edges.

Figure S1. Knowledge graph with top 30 codes selected based on the cosine similarity with Epilepsy using MUGS
embeddings for MGB and BCH.



Figure S2. Knowledge graph with top 30 codes selected based on the cosine similarity with PH, also known as
chronic pulmonary heart disease, using MUGS embeddings for MGB and BCH.


